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ABSTRACT
The radiative transport equation in a three-dimensional infinite
medium is considered. The coefficients of the radiative transport
equation are assumed to be constant. For a pencil beam, we extend
the analytical discrete-ordinates method to three dimensions by
rotating reference frames. Obtained results are compared to the
Monte Carlo simulation.
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1. Introduction

The discrete-ordinates method was first proposed by Wick [1] and Chandrasekhar [2]. In
one-dimensional transport theory, analytical solutions are available in terms of singular
eigenfunctions by Case’s method [3–6]. The method of analytical discrete ordinates (ADO)
[7–10] assumes the same separated solution as Case’s method for the equation in which
the cosine of the polar angle is discretized. Although the method was constructed for
the one-dimensional transport equation, the searchlight problem in three dimensions was
considered with ADO in the case of isotropic scattering [11]. ADO was developed for the
one-dimensional transport equationwith the scatteringphase functionwhich has the polar
and azimuthal angles [12].

In this paper, we consider the three-dimensional radiative transport equation with gen-
eral anisotropic scattering and construct ADO in three dimensions with the help of rotated
reference frames [13]. We assume that the medium is homogeneous, and the scattering
and absorption coefficients of the radiative transport equation are constants. Furthermore,
we assume the pencil beam for the source term. The formulation is a direct extension of
ADO developed in one dimension and the introduction of a pseudoproblem is not neces-
sary. This is made possible by the knowledge of three-dimensional singular eigenfunctions
obtained from the extension of Case’s method to three dimensions [14]. For isotropic
scattering in an infinite medium, solutions are known for different sources [15]. General
anisotropic scattering can be treated in the numerical scheme proposed below.
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Kim and his collaborators developed discrete ordinates for the three-dimensional radia-
tive transport equation [16–18]. The present method is similar to their formulation in the
sense that the samestructureof theplane-wavedecomposition is derivedanddiscreteordi-
nates are used. However, in the three-dimensional ADO which is developed in this paper,
the explicit expression of eigenmodes are obtained and there is no need of computing
eigenvalues for each Fourier vector.

The rotated reference frames were first introduced in the spherical-harmonics method
[13, 19, 20]. In particular, Markel devised an efficient numerical algorithm called themethod
of rotated reference frames [13, 21, 22]. In the three-dimensional ADO, eigenmodes are
obtained by the rotation of the eigenmodes for the original ADO in one-dimensional
transport theory.

The remainder of the paper is organized as follows. In Section 2, the radiative transport
equation is introduced. The specific intensity is then decomposed into the ballistic part and
scatteringpart. In Section 3, eigenmodes are considered. Using these eigenmodes, the scat-
tering part of the specific intensity is calculated in Section 4. The formula for the energy
density is derived in Section 5. In Section 6, numerical tests are performed. Concluding
remarks are given in Section 7. The fundamental solution is calculated in the Appendix.

2. Radiative transport equation

We consider the radiative transport equation in the three-dimensional spaceR
3. Let r ∈ R

3

be the position vector with r = t(ρ, z), ρ = t(x, y). The direction of propagation is specified
by unit vector ŝ ∈ S

2. The specific intensity I(r, ŝ) obeys the following radiative transport
equation:

(ŝ · ∇ + μt)I(r, ŝ) = μs

∫
S2

p(ŝ, ŝ′)I(r, ŝ′)dŝ′ + f (r, ŝ), (1)

where ∇ = ∂/∂r, and μt > 0 and μs > 0 are constants. Moreover, we assume that μa =
μt − μs is positive. We have I(r, ŝ) → 0 as |r| → ∞. Here, p(ŝ, ŝ′) is the scattering phase
function which is assumed to be

p(ŝ, ŝ′) = 1
4π

lmax∑
l=0

(2l + 1)glPl(ŝ · ŝ′) =
lmax∑
l=0

l∑
m=−l

glYlm(ŝ)Y
∗
lm(ŝ

′) (2)

with lmax ≥ 0, Legendre polynomials Pl , and spherical harmonics Ylm. Spherical harmonics
are defined as

Ylm(ŝ) = Ylm(μ,ϕ) =
√
2l + 1
4π

(l − m)!
(l + m)!

Pml (μ) e
imϕ , (3)

where μ ∈ [−1, 1] is the cosine of the polar angle of ŝ, ϕ ∈ [0, 2π) is the azimuthal angle of
ŝ, and Pml (μ) are associated Legendre polynomials. The constant g ∈ [0, 1] is the anisotropic
factor. We will consider the following source term:

f (r, ŝ) = δ(ρ)δ(z)δ(ŝ − ŝ0), (4)
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where δ(ρ) = δ(x)δ(y) and ŝ0 ∈ S
2. That is, I(r, ŝ) is the fundamental solution of the radia-

tive transport equation. Here, ŝ ∈ S
2 is given by

ŝ =
(
ω

μ

)
, ω =

(√
1 − μ2 cosϕ√
1 − μ2 sinϕ

)
(5)

for −1 ≤ μ ≤ 1, 0 ≤ ϕ < 2π . We note that δ(ŝ − ŝ0) = δ(μ− μ0)δ(ϕ − ϕ0) with μ0,ϕ0
angles for ŝ0.

By dividing both sides of the above radiative transport Equation (1) by μt , we obtain

(ŝ · ∇∗ + 1)I∗(r∗, ŝ) = �

∫
S2

p(ŝ, ŝ′)I∗(r∗, ŝ′)dŝ′ + f∗(r∗, ŝ), (6)

where r∗ = μtr, ∇∗ = ∂/∂r∗, I∗(r∗, ŝ) = I(r, ŝ), and

f∗(r∗, ŝ) = 1
μt

f (r, ŝ) = μ2
t δ(ρ∗)δ(z∗)δ(ŝ − ŝ0). (7)

Here, � = μs/μt ∈ (0, 1) is the albedo for single scattering. Hereafter, we will drop the
subscript ∗.

We decompose the specific intensity into the ballistic and scattering terms as

I(r, ŝ) = Ib(r, ŝ)+ Is(r, ŝ). (8)

The ballistic term Ib satisfies

(ŝ · ∇ + 1)Ib(r, ŝ) = f (r, ŝ) in R
3 × S

2. (9)

The scattering term Is satisfies

(ŝ · ∇ + 1)Is(r, ŝ) = �

∫
S2

p(ŝ, ŝ′)Is(r, ŝ′)dŝ′ + S(r, ŝ) in R
3 × S

2, (10)

where

S(r, ŝ) = �

∫
S2

p(ŝ, ŝ′)Ib(r, ŝ′)dŝ′. (11)

Let us introduce the step function	 as	(x) = 1 for x>0 and	(x) = 0 for x<0.Weobtain

Ib(r, ŝ) = 	(μ0z)
μ2
t

|μ0|δ(ρ − ω0z/μ0) e−z/μ0δ(ŝ − ŝ0), (12)

where ω0,μ0 are components of ŝ0. We note that

δ(ρ − ωz/μ) = 1
|ρ|δ

(
|ρ| − z

√
1 − μ2

μ

)
δ(ϕρ − ϕ)

=
∣∣∣∣ z

(ρ2 + z2)3/2

∣∣∣∣
[
δ

(
μ− z√

ρ2 + z2

)
+ δ

(
μ+ z√

ρ2 + z2

)]
δ(ϕρ − ϕ),

(13)
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where ϕρ is the angle of ρ and ρ = |ρ|. Hence,

S(r, ŝ) = �p(ŝ, ŝ0)	(μ0z)
μ2
t

|μ0|δ(ρ − ω0z/μ0) e−z/μ0 . (14)

The Fourier transform Ĩs(q, z, ŝ) is given by

Ĩs(q, z, ŝ) =
∫

R2
e−iq·ρ Is(r, ŝ)dρ, (15)

where

q = q

(
cosϕq
sinϕq

)
, q = |q|, 0 ≤ ϕq < 2π . (16)

This Ĩs(q, z, ŝ) is obtained as the solution to the following equation:(
μ
∂

∂z
+ 1 + iω · q

)
Ĩs = �

∫
S2

p(ŝ, ŝ′)Ĩs(q, z, ŝ′)dŝ′ + S̃, z ∈ R, ŝ ∈ S
2, (17)

where

S̃(q, z, ŝ) = �p(ŝ, ŝ0)	(μ0z)
μ2
t

|μ0| e
−z/μ0 e−iq·ω0z/μ0 . (18)

The scattering term is given by

Is(r, ŝ) = Is(ρ, z, ŝ) = 1
(2π)2

∫
R2

eiq·ρ Ĩs(q, z, ŝ)dq. (19)

We note that

ω · q = q
√
1 − μ2 cos(ϕ − ϕq). (20)

We will obtain Ĩs by using discrete ordinates:

Ĩs ≈ Ǐs, (21)

where Ǐs is the solution to the following equation:(
μi
∂

∂z
+ 1 + iωi · q

)
Ǐs = �

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Ǐs(q, z, ŝi′)dϕ

′ + S̃ (22)

for z ∈ R, ŝi ∈ S
2. Here, we discretize the integral by discrete ordinates with the

Gauss–Legendre quadrature of weights wi (i = 1, . . . ,N ). We use the Golub–Welsch
algorithm [23].We labelμi (i = 1, . . . ,N ) such that 0 < μ1 < μ2 < · · · < μN < 1 and−1 <
μ2N < · · · < μN+2 < μN+1 < 0 (μN+i = −μi, 1 ≤ i ≤ N). Furthermore, we introduced

ŝi =
(
ωi

μi

)
, ωi =

⎛
⎝
√
1 − μ2

i cosϕ√
1 − μ2

i sinϕ

⎞
⎠ (23)

for i = 1, 2, . . . , 2N , 0 ≤ ϕ < 2π . We have

ωi · q = q
√
1 − μ2

i cos(ϕ − ϕq). (24)

Let us define

ω0
i (q,ϕ) = q

√
1 − μ2

i cosϕ. (25)
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3. Eigenmodes

In order to obtain Ǐs in (22), we find the solution Ǐ to (28) belowwith separation of variables.
We refer to Ǐ as eigenmodes. The eigenmodes are labeled by a separation constant ν. This
constant ν, which is referred to as an eigenvalue, is the reciprocal of the square roof of an
eigenvalue of the eigenproblem (92) below or the negative of the reciprocal.

We begin by defining unit vector k̂ as [13]

k̂ = k̂(ν,q) =
(

−iνq
k̂z(νq)

)
, k̂z(νq) =

√
1 + (νq)2, (26)

where ν ∈ R. We will extend the rotation in R
3 to C

3 by analytic continuation (see (33)
below) [21, 22]. To this end, we extend the usual dot product inR

3 toC
3 as α · β = α1β1 +

α2β2 + α3β3 for α,β ∈ C
3. We note that k̂ · k̂ = 1. We have

ŝi · k̂ = −iνq
√
1 − μ2

i cos(ϕ − ϕq)+ k̂z(νq)μi. (27)

Let us consider the homogeneous equation below (i.e. the Equation (22)without the source
term S̃ ). (

μi
∂

∂z
+ 1 + iωi · q

)
Ǐ(q, z, ŝi) = �

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Ǐ(q, z, ŝi′)dϕ

′ (28)

for q ∈ R
2, z ∈ R, ŝi ∈ S

2. LetRk̂ be the operator which rotates the reference frame in such

a way that the z-axis is rotated to the direction of k̂ [24]. In ADO for the one-dimensional
transport equation, the separated solution in which the spatial variable only exists in
the exponential function was used [7–10]. In the same spirit, we assume the following
separated solution:

Ǐ(q, z, ŝi) = Rk̂(ν,q)

m
ν (ŝi) e

−k̂z(νq)z/ν , (29)

where


m
ν (ŝi) = φm(ν,μi)(1 − μ2

i )
|m|/2 eimϕ . (30)

The function φm(ν,μi) is normalized as

2N∑
i=1

wiφ
m(ν,μi)(1 − μ2

i )
|m| = 1. (31)

The normalization condition (31) implies

1
2π

2N∑
i=1

wi

∫ 2π

0
φm(ν, ŝi · k̂)[1 − (ŝi · k̂)2]|m| dϕ = 1. (32)

We note that

Rk̂Ylm(ŝ) =
l∑

m′=−l

e−im′ϕk̂dlm′m(θk̂)Ylm′(ŝ), (33)

where dlm′m are Wigner’s d-matrices [25]. If k̂ ∈ R
3, the operatorRk̂ means the usual rota-

tion of the reference frame in R
3 such that the z-axis coincides with the direction of the
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vector k̂ [13]. For k̂ ∈ C
3, the polar angle θk̂ and azimuthal angle ϕk̂ of k̂ in the laboratory

frame are analytically continued as follows [21, 22]. We write

cos θk̂ = ẑ · k̂ = k̂z , sin θk̂ =
√
1 − cos2 θk̂ =

√
k̂2x + k̂2y (34)

and

cosϕk̂ = k̂x√
k̂2x + k̂2y

, sinϕk̂ = k̂y√
k̂2x + k̂2y

. (35)

We take square roots such that 0 ≤ arg
√
z < π and �√

z ≥ 0 for all z ∈ C by drawing the
branch cut on the positive real axis. The angles θk̂,ϕk̂ of k̂ are given by

cos θk̂(ν,q) = k̂z(νq), sin θk̂(ν,q) = i|νq| (36)

and

ϕk̂(ν,q) =
{
ϕq + π (ν > 0),

ϕq (ν < 0).
(37)

We can write

dlmm′(θk̂(ν,q)) = dlmm′ [iτ(νq)]. (38)

Using Y∗
lm(ŝ) = (−1)mYl,−m(ŝ), we have

Rk̂Y
∗
lm(ŝ) = (−1)m

l∑
m′=−l

e−im′ϕk̂dlm′ ,−m(θk̂)Ylm′(ŝ) =
l∑

m′=−l

eim
′ϕk̂dlm′m(θk̂)Y

∗
lm′(ŝ). (39)

Moreover, we have

R−1
k̂

Ylm(ŝ) =
l∑

m′=−l

eim
′ϕk̂dlmm′(θk̂)Ylm′(ŝ), (40)

R−1
k̂

Y∗
lm(ŝ) =

l∑
m′=−l

e−im′ϕk̂dlmm′(θk̂)Y
∗
lm′(ŝ). (41)

The identity R−1
k̂

Rk̂Ylm(ŝ) = Ylm(ŝ) can be derived with the formula
∑l

m′=−l d
l
m′m(θk̂)

dlm′m′′(θk̂) = δmm′′ .
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We note that μi = ŝi · ẑ, where ẑ = t(0, 0, 1). We have

Rk̂(ν,q)μi = ŝi · k̂(ν,q) = −iνωi · q + k̂z(νq)μi. (42)

This relation is also obtained as follows using d100(θ) = cos θ , d110(θ) = −(1/√2) sin θ , and
dlmm′(θ) = (−1)m+m′

dl−m,−m′(θ):

Rk̂(ν,q)μi =
√
4π
3
Rk̂(ν,q)Y10(ŝi)

=
√
4π
3

1∑
m′=−1

e−im′ϕk̂d1m′0(θk̂)Y1m′(ŝi)

=
√
1 − μ2

i sin θk̂ cos(ϕ − ϕk̂)+ μi cos θk̂

= k̂z(νq)μi − iνq
√
1 − μ2

i cos(ϕ − ϕq). (43)

By substitution, we have(
1 − ŝi · k̂(ν,q)

ν

)
Rk̂(ν,q)


m
ν (ŝi) = �

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Rk̂(ν,q)


m
ν (ŝi′)dϕ

′. (44)

Now, we view (44) in the reference frame whose z-axis is rotated to the direction of k̂. Note
that p(ŝi, ŝi′) is invariant under rotation because it depends only on ŝi · ŝi′ . We note by (42)

ŝi · k̂(ν,q) = Rk̂(ν,q)ŝi · ẑ, (45)

where ẑ = t(0, 0, 1). If we operateR−1
k̂(ν,q)

on the left-hand side of (44), we obtain

R−1
k̂(ν,q)

(
1 − ŝi · k̂(ν,q)

ν

)
Rk̂(ν,q)


m
ν (ŝi) = R−1

k̂(ν,q)
Rk̂(ν,q)

(
1 − ŝi · ẑ

ν

)

m
ν (ŝi)

=
(
1 − ŝi · ẑ

ν

)

m
ν (ŝi). (46)

Let us rewrite the right-hand side of (44) as

�

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Rk̂(ν,q)


m
ν (ŝi′)dϕ

′

= �

2N∑
i′=1

wi′

∫ 2π

0
p(Rk̂(ν,q)ŝi,Rk̂(ν,q)ŝi′)Rk̂(ν,q)


m
ν (ŝi′)dϕ

′

≈ �

2N∑
i′=1

wi′

∫ 2π

0
p(Rk̂(ν,q)ŝi, ŝi′)


m
ν (ŝi′)dϕ

′. (47)

In the last step of the above equation, we used the fact that the integral over all angles is
invariant under the rotation of the reference frame. Similarly by operating R−1

k̂(ν,q)
on the
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right-hand side of (44), we have

R−1
k̂(ν,q)

�

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Rk̂(ν,q)


m
ν (ŝi′)dϕ

′

≈ R−1
k̂(ν,q)

�

2N∑
i′=1

wi′

∫ 2π

0
p(Rk̂(ν,q)ŝi, ŝi′)


m
ν (ŝi′)dϕ

′

= �

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)


m
ν (ŝi′)dϕ

′. (48)

Thus by inverse rotation, Equation (44) is reduced to

(
1 − μi

ν

)

m
ν (ŝi) = �

lmax∑
l′=0

l′∑
m′=−l′

gl
′
Yl′m′(ŝi)

2N∑
i′=1

wi′

∫ 2π

0
Y∗
l′m′(ŝi′)


m
ν (ŝi′)dϕ

′ (49)

for i = 1, . . . , 2N . We have

2N∑
i′=1

wi′

∫ 2π

0
Y∗
l′m′(ŝi′)


m
ν (ŝi′)dϕ

′ = δmm′(−1)m
√
(2l′ + 1)πgml′ (ν), (50)

where

gml (ν) = (−1)m

√
(l − m)!
(l + m)!

2N∑
i=1

wiφ
m(ν,μi)(1 − μ2

i )
|m|/2Pml (μi). (51)

Noting that P−m
l (μi) = (−1)m[(l − m)!/(l + m)!]Pml (μi) and Pmm(μi) = (−1)m(2m − 1)!!

(1 − μ2
i )

m/2 (m ≥ 0), we obtain

gmm(ν) = (2m − 1)!!√
(2m)!

=
√
(2m)!
2mm!

, g−m
m (ν) = (−1)mgmm(ν) (52)

form ≥ 0. Equation (49) is written as

(
1 − μi

ν

)
φm(ν,μi)(1 − μ2

i )
|m|/2 = �

2
(−1)m

lmax∑
l′=|m|

(2l′ + 1)gl
′
√
(l′ − m)!
(l′ + m)!

Pml′ (μi)g
m
l′ (ν).

(53)
Let us define

pml (μ) = (−1)m

√
(l − m)!
(l + m)!

Pml (μ)(1 − μ2)−|m|/2. (54)

We have

pmm(μ) = (2m − 1)!!√
(2m)!

=
√
(2m)!
2mm!

, p−m
m (μ) = (−1)mpmm(μ) (55)

form ≥ 0. Moreover, from (l − m + 1)Pml+1(μ) = (2l + 1)μPml (μ)− (l + m)Pml−1(μ),√
(l + 1)2 − m2pml+1(μ) = (2l + 1)μpml (μ)−

√
l2 − m2pml−1(μ) (56)
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for l ≥ |m| + 1, and

pm|m|+1(μ) =
√
2|m| + 1μpm|m|(μ). (57)

Thus,

(ν − μi)φ
m(ν,μi) = �ν

2

lmax∑
l′=|m|

(2l′ + 1)gl
′
pml′ (μi)g

m
l′ (ν). (58)

We note that

gml (ν) =
2N∑
i=1

wiφ
m(ν,μi)p

m
l (μi)(1 − μ2

i )
|m|. (59)

The following recurrence relations are obtained.√
(l + 1)2 − m2gml+1(ν)+

√
l2 − m2gml−1(ν)

= (2l + 1)νgml (ν)− �ν

2

lmax∑
l′=|m|

(2l + 1)(2l′ + 1)gl
′
gml′ (ν)

2N∑
i=1

wip
m
l (μi)p

m
l′ (μi)(1 − μ2

i )
|m|.

(60)

Recall
∫ 1
−1 P

m
l (μ)P

m
l′ (μ)dμ = 2(l + m)!δll′/[(2l + 1)(l − m)!]. For sufficiently large N, the

recurrence relations below are obtained.√
(l + 1)2 − m2gml+1(ν)+

√
l2 − m2gml−1(ν) = νhlg

m
l (ν) (61)

for l ≥ |m| + 1, and √
2|m| + 1gm|m|+1(ν) = νh|m|gm|m|(ν), (62)

where

hl =
{
(2l + 1)(1 −�gl), 0 ≤ l ≤ lmax,

2l + 1, l > lmax.
(63)

The polynomials gml (ν) are called the normalized Chandrasekhar polynomials [26, 27].
For numerical calculation, gml (ν) can be computed using the recurrence relations. To

compute gml (ν) for ν > 1, we define [27]

ḡml (ν) = gml+1(ν)

gml (ν)
. (64)

Then we have

ḡml−1(ν) =
√
l2 − m2

νhl −
√
(l + 1)2 − m2ḡml (ν)

(65)

for l = |m| + 1, |m| + 2, . . . . We can set ḡml (ν) = 0 for sufficiently large l. Using ḡml (ν), we
obtain

gml+1(ν) = ḡml (ν)g
m
l (ν), l = |m|, |m| + 1, . . . . (66)
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Suppose ν 
= μi. Then from (58),

φm(ν,μi) = �ν

2
gm(ν,μi)

ν − μi
, (67)

where

gm(ν,μi) =
lmax∑
l′=|m|

(2l′ + 1)gl
′
pml′ (μi)g

m
l′ (ν). (68)

We obtain


m
ν (ŝi) = (−1)m�ν

ν − μi

lmax∑
l=|m|

√
(2l + 1)πglgml (ν)Ylm(ŝi). (69)

If ν 
= ŝi · k̂, we have

φm(ν, ŝi · k̂(ν,q)) = �ν

2
gm(ν, ŝi · k̂(ν,q))
ν − ŝi · k̂(ν,q)

. (70)

Thus,

Rk̂(ν,q)

m
ν (ŝi) = (−1)m�ν

ν − ŝi · k̂(ν,q)
lmax∑
l=|m|

√
(2l + 1)πglgml (ν)(Rk̂(ν,q)Ylm(ŝi)). (71)

The above eigenmodes satisfy the orthogonality relation.

Lemma 3.1:

2N∑
i=1

wiμi

∫ 2π

0
(Rk̂(ν,q)


m
ν (ŝi))(Rk̂(ν′ ,q)


m′∗
ν′ (ŝi))dϕ = N (ν, q)δνν′δmm′ , (72)

whereN (ν, q) is a positive constant which depends on ν, q.

The factorN (ν, q) in Lemma 3.1 satisfiesN (−ν, q) = −N (ν, q) because gm(−ν,−μi) =
gm(ν,μi). Note that

|
m
ν (ŝi)|2 = π� 2ν2

(ν − μi)2

⎡
⎣ lmax∑
l=|m|

√
2l + 1glYlm(μi, 0)gml (ν)

⎤
⎦
2

, (73)

and for k̂ = k̂(ν,q),

R−1
k̂
μi =

√
4π
3
R−1

k̂
Y10(ŝi) =

√
4π
3

1∑
m′=−1

d10m′(ϑk̂)Y1m′(ŝi)

= k̂z(νq)μi − i|νq|
√
1 − μ2

i cosϕ. (74)
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Since integrals over all angles do not change their values if the reference frame is rotated,
for sufficiently large Nwe have

2N∑
i=1

wiμi

∫ 2π

0
(Rk̂(ν,q)


m
ν (ŝi))(Rk̂(ν,q)


m∗
ν (ŝi))dϕ

=
2N∑
i=1

wi

∫ 2π

0
μiRk̂(ν,q)(


m
ν (ŝi)


m∗
ν (ŝi))dϕ

≈
2N∑
i=1

wi

∫ 2π

0
R−1

k̂(ν,q)
[μiRk̂(ν,q)(


m
ν (ŝi)


m∗
ν (ŝi))] dϕ

=
2N∑
i=1

wi

∫ 2π

0
(R−1

k̂(ν,q)
μi)|
m

ν (ŝi)|2 dϕ. (75)

Hence we have

N (ν, q) ≈
2N∑
i=1

wi

∫ 2π

0
(R−1

k̂(ν,q)
μi)|
m

ν (ŝi)|2 dϕ

= 2π k̂z(νq)
2N∑
i=1

wiμi|
m
ν (ŝi)|2. (76)

Proof of Lemma 3.1.: We begin by expressing (44) as(
1 − ŝi · k̂(ν,q)

ν

)
Rk̂(ν,q)


m
ν (ŝi)

= �

lmax∑
l=0

l∑
m′=−l

glYlm′(ŝi)
2N∑
i′=1

wi′

∫ 2π

0
Y∗
lm′(ŝi′)Rk̂(ν,q)


m
ν (ŝi′)dϕ

′. (77)

Note that ν = νm depends on m. Let us consider k̂1 = k̂(νm1
1 ,q) and k̂2 = k̂(νm2

2 ,q). We
have

(Rk̂2

m2
ν2
(ŝi))Rk̂1

(
1 − μi

ν1

)

m1
ν1
(ŝi)

= (Rk̂2

m2
ν2
(ŝi))�

lmax∑
l=0

l∑
m=−l

glYlm(ŝi)
2N∑
i′=1

wi′

∫ 2π

0
Y∗
lm(ŝi′)Rk̂1


m1
ν1
(ŝi′)dϕ

′ (78)

and

(Rk̂1

m1
ν1
(ŝi))Rk̂2

(
1 − μi

ν2

)

m2
ν2
(ŝi)

= (Rk̂1

m1
ν1
(ŝi))�

lmax∑
l=0

l∑
m=−l

glY∗
lm(ŝi)

2N∑
i′=1

wi′

∫ 2π

0
Ylm(ŝi′)Rk̂2


m2
ν2
(ŝi′)dϕ

′. (79)
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By subtraction,

− 1
ν1
(Rk̂2


m2
ν2
(ŝi))Rk̂1

μi

m1
ν1
(ŝi)+ 1

ν2
(Rk̂1


m1
ν1
(ŝi))Rk̂2

μi

m2
ν2
(ŝi)

= (Rk̂2

m2
ν2
(ŝi))�

lmax∑
l=0

l∑
m=−l

glYlm(ŝi)
2N∑
i′=1

wi′

∫ 2π

0
Y∗
lm(ŝi′)Rk̂1


m1
ν1
(ŝi′)dϕ

′

− (Rk̂1

m1
ν1
(ŝi))�

lmax∑
l=0

l∑
m=−l

glY∗
lm(ŝi)

2N∑
i′=1

wi′

∫ 2π

0
Ylm(ŝi′)Rk̂2


m2
ν2
(ŝi′)dϕ

′. (80)

Hence by summing both sides of the above two equations by
∑2N

i=1 wi
∫ 2π
0 dϕ,

(
k̂z(ν2q)

ν2
− k̂z(ν1q)

ν1

)
2N∑
i=1

wi

∫ 2π

0
μi(Rk̂1


m1
ν1
(ŝi))(Rk̂2


m2
ν2
(ŝi))dϕ = 0. (81)

Suppose ν = ν1 = ν2 butm1 
= m2. In this case, k̂ = k̂1 = k̂2 and

2N∑
i=1

wi

∫ 2π

0
μi(Rk̂


m1
ν (ŝi))(Rk̂


m2
ν (ŝi))dϕ

=
2N∑
i=1

wi

∫ 2π

0
μi(Rk̂


m1
ν (ŝi)
m2

ν (ŝi))dϕ ∝ δm1,−m2 . (82)

Noting that ν−m = νm and
−m
ν (ŝi) = 
m∗

ν (ŝi), we have

2N∑
i=1

wi

∫ 2π

0
μi(Rk̂1


m1
ν1
(ŝi))(Rk̂2


m2∗
ν2

(ŝi))dϕ ∝ δν1ν2δm1m2 . (83)

�

Let us calculate eigenvalues. Equation (49) can be rewritten as (i = 1, . . . , 2N , −lmax ≤
m ≤ lmax)

(
1 − μi

ν

)
φm(ν,μi) = �

2

lmax∑
l′=|m|

gl
′
(2l′ + 1)pml′ (μi)

2N∑
i′=1

wi′p
m
l′ (μi′)(1 − μ2

i′)
|m|φm(ν,μi′).

(84)
Hence, for i = 1, . . . ,N,(

1 − μi

ν

)
φm(ν,μi) = �

2

∑
l′=|m|

lmaxg
l′(2l′ + 1)pml′ (μi)

×
N∑

i′=1

wi′p
m
l′ (μi′)(1 − μ2

i′)
|m|[φm(ν,μi′)+ (−1)l

′+mφm(ν,−μi′)],

(85)
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(
1 + μi

ν

)
φm(ν,−μi) = �

2

lmax∑
l′=|m|

gl
′
(2l′ + 1)pml′ (μi)

×
N∑

i′=1

wi′p
m
l′ (μi′)(1 − μ2

i′)
|m|[(−1)l

′+mφm(ν,μi′)+ φm(ν,−μi′)].

(86)

We arrive at the following matrix-vector equation:(
IN − 1

ν
�

)

m

+(ν) = �

2
[Wm

+

m
+(ν)+ Wm

−

m
−(ν)],(

IN + 1
ν
�

)

m

−(ν) = �

2
[Wm

−

m
+(ν)+ Wm

+

m
−(ν)],

(87)

where IN is the N-dimensional identity matrix. Matrix� and vectors
m± are defined as

� =

⎛
⎜⎝
μ1

. . .
μN

⎞
⎟⎠ , 
m

±(ν) =

⎛
⎜⎝
φm(ν,±μ1)

...
φm(ν,±μN)

⎞
⎟⎠ . (88)

Elements of the matricesWm± are given by

{Wm
±}ij = wj

lmax∑
l=|m|

(2l + 1)glpml (±μi)p
m
l (μj)(1 − μ2

j )
|m|

= wj

lmax∑
l=|m|

(2l + 1)gl
(l − m)!
(l + m)!

Pml (±μi)P
m
l (μj)(1 − μ2

i )
−|m|/2(1 − μ2

j )
|m|/2

= 4πwj

lmax∑
l=|m|

gl
(1 − μ2

j )
|m|/2

(1 − μ2
i )

|m|/2 Ylm(±μi, 0)Ylm(μj, 0), (89)

where we wrote Ylm(ŝi) = Ylm(μi,ϕ). The fact 
m±(−ν) = 
m∓(ν) implies that −ν is an
eigenvalue if ν is an eigenvalue.

According to [7, 28], we introduce

Um(ν) = 
m
+(ν)+
m

−(ν), Vm(ν) = 
m
+(ν)−
m

−(ν). (90)

By adding and subtracting two equations, we obtain

Um(ν)− 1
ν
�Vm(ν) = �

2
(Wm

+ + Wm
− )U

m(ν),

Vm(ν)− 1
ν
�Um(ν) = �

2
(Wm

+ − Wm
− )V

m(ν).
(91)

Hence we arrive at [11, 29]

Em−Em+�U
m = 1

ν2
�Um, (92)
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where

Em± =
[
IN − �

2
(Wm

+ ± Wm
− )

]
�−1. (93)

We note that (92) is not the only matrix-vector equation for 1/ν2 (see [30]). From (92), the
eigenvalues are obtained as

ν = νmn > 0 (n = 1, . . . ,N, m = 0, . . . , lmax) (94)

with the relation ν−m
n = νmn . In addition, −νmn are also eigenvalues.

4. Scattering term

Let ϕ0 be the azimuthal angle of ŝi0 for some i0. By setting S̃ = δ(z − z′)δii0δ(ϕ − ϕ0) in (22)
for z′ ∈ R, let us consider the fundamental solution Gq(z, ŝi; z′, ŝi0):(

μi
∂

∂z
+ 1 + iωi · q

)
Gq(z, ŝi; z′, ŝi0)

= �

2N∑
i′=1

wi′

∫ 2π

0
p(ŝi, ŝi′)Gq(z, ŝi′ ; z

′, ŝi0)dϕ + δ(z − z′)δii0δ(ϕ − ϕ0) (95)

for z ∈ R, 1 ≤ i ≤ 2N, ϕ ∈ [0, 2π). We obtain (see Appendix)

Gq(z, ŝi; z′, ŝi0) =
lmax∑

m=−lmax

N∑
n=1

wi0

N (νmn , q)
e∓k̂z(νmn q)(z−z′)/νmn

× (Rk̂±

m
±νmn (ŝi))(Rk̂±


m∗
±νmn (ŝi0)), (96)

where upper (lower) signs are taken for z > z′ (z < z′) and

k̂± = k̂(±νmn ,q). (97)

Let us define

C(τ ; ζ , η) = e−τ/ζ − e−τ/η

ζ − η
. (98)

We note that C(−τ ;−ζ ,−η) = −C(τ ; ζ , η) and

C(τ ; η, η) = τ

η2
. (99)

The solution Ǐs to (22) is obtained as

Ǐs(q, z, ŝi) =
2N∑
i′=1

∫ 2π

0

∫ ∞

−∞
Gq(z, ŝi; z′, ŝi′)S̃(q, z′, ŝi′)dz′dϕ′

= �μ2
t

|μ0|
∫ ∞

−∞
	(μ0z

′)

[
2N∑
i′=1

∫ 2π

0
Gq(z, ŝi; z′, ŝi′)p(ŝi′ , ŝi0)dϕ

′
]
e−(1+iq·ω0)z′/μ0 dz′. (100)
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Since p(ŝi′ , ŝi0) = p(Rk̂ŝi′ ,Rk̂ŝi0) for a unit vector k̂ ∈ C, we have

lmax∑
l=0

l∑
m=−l

glYlm(ŝi′)Y
∗
lm(ŝi0) =

lmax∑
l=0

l∑
m=−l

gl(Rk̂Ylm(ŝi′))(Rk̂Y
∗
lm(ŝi0)). (101)

We obtain

2N∑
i′=1

∫ 2π

0
Gq(z, ŝi; z′, ŝi′)p(ŝi′ , ŝi0)dϕ

′

=
lmax∑

m=−lmax

N∑
n=1

1
N (νmn , q)

e∓k̂z(νmn q)(z−z′)/νmn (Rk̂±

m
±νmn (ŝi))

×
lmax∑
l=0

l∑
m′=−l

gl(Rk̂±Y
∗
lm′(ŝi0))

2N∑
i′=1

wi′

∫ 2π

0
(Rk̂±


m∗
±νmn (ŝi′))(Rk̂±Ylm′(ŝi′))dϕ

′

≈
lmax∑

m=−lmax

N∑
n=1

1
N (νmn , q)

e∓k̂z(νmn q)(z−z′)/νmn (Rk̂±

m
±νmn (ŝi))

×
lmax∑
l=0

l∑
m′=−l

gl(Rk̂±Y
∗
lm′(ŝi0))

2N∑
i′=1

wi′

∫ 2π

0

m∗

±νmn (ŝi′)Ylm′(ŝi′)dϕ
′. (102)

To reach the rightmost side of the above equation, we used the fact that the discretized
integral over all angles is numerically unchanged about the rotation of the reference frame
for sufficiently large N. Hence,

2N∑
i′=1

∫ 2π

0
Gq(z, ŝi; z′, ŝi′)p(ŝi′ , ŝi0)dϕ

′

≈
lmax∑

m=−lmax

N∑
n=1

1
N (νmn , q)

e∓k̂z(νmn q)(z−z′)/νmn (Rk̂±

m
±νmn (ŝi))

×
lmax∑
l=0

l∑
m′=−l

glRk̂±Y
∗
lm′(ŝi0)

2N∑
i′=1

wi′

∫ 2π

0

m∗

±νmn (ŝi′)Ylm′(ŝi′)dϕ
′

=
lmax∑

m=−lmax

N∑
n=1

(−1)m

N (νmn , q)
e∓k̂z(νmn q)(z−z′)/νmn (Rk̂±


m
±νmn (ŝi))

×
lmax∑
l=|m|

√
(2l + 1)πglgml (±νmn )(Rk̂±Y

∗
lm(ŝi0)), (103)

where we used (50).
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Hereafter, we assume

ŝ0 = ẑ = t(0, 0, 1). (104)

Since

Rk̂±Ylm(ẑ) =
√
2l + 1
4π

dl0m[iτ(νnq)], (105)

we have

Rk̂±Y
∗
lm(ŝi0) = Rk̂(±νmn ,q)Y

∗
lm(ẑ) =

√
2l + 1
4π

dl0m[iτ(ν
m
n q)]. (106)

If (103) is substituted into (100), Ǐs(q, z, ŝi) is calculated as

Ǐs(q, z, ŝi) = �μ2
t

2

∫ z

−∞
	(z′)

⎡
⎣ lmax∑
m=−lmax

N∑
n=1

(−1)m

N (νmn , q)
e−k̂z(νmn q)(z−z′)/νmn (Rk̂+


m
νmn
(ŝi))

×
lmax∑
l=|m|

(2l + 1)glgml (ν
m
n )d

l
0m[iτ(ν

m
n q)]

⎤
⎦ e−z′/μ0 dz′

+ �μ2
t

2

∫ ∞

z
	(z′)

⎡
⎣ lmax∑
m=−lmax

N∑
n=1

(−1)m

N (νmn , q)
ek̂z(ν

m
n q)(z−z′)/νmn (Rk̂−


m
−νmn (ŝi))

×
lmax∑
l=|m|

(2l + 1)glgml (−νmn )dl0m[iτ(νmn q)]

⎤
⎦ e−z′/μ0 dz′. (107)

In the above equation, we assumed that N is large enough that the approximation in (103)
is numerically exact. Thus we have

Ǐs(q, z, ŝi) = �μ2
t

2

lmax∑
m=−lmax

N∑
n=1

(−1)mνmn
N (νmn , q)k̂z(νmn q)

[	(z)(ψ1 + ψ2)+ (1 −	(z))ψ3], (108)

where

ψ1 = C

(
z; 1,

νmn

k̂z(νmn q)

)
(Rk̂+


m
νmn
(ŝi))

lmax∑
l=|m|

(2l + 1)glgml (ν
m
n )d

l
0m[iτ(νnq)], (109)

ψ2 = e−zk̂z(νmn q)

νmn + k̂z(νmn q)
(Rk̂−


m
−νmn (ŝi))

lmax∑
l=|m|

(2l + 1)glgml (−νmn )dl0m[iτ(νnq)], (110)

ψ3 = ek̂z(ν
m
n q)z/νmn k̂z(νmn q)

νmn + k̂z(νmn q)
(Rk̂−


m
−νmn (ŝi))

lmax∑
l=|m|

(2l + 1)glgml (−νmn )dl0m[iτ(νnq)]. (111)
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5. Energy density

In this section, we return to the original unit of length and put the subscript ∗ for the scaled
space variables. We suppose ρ 
= 0. The energy density U(r) is given by

U(r) =
∫

S2
I(r, ŝ)dŝ. (112)

Noting Ĩs ≈ Ǐs by the discretization of the cosine μ of the polar angle, we have

U(r) =
∫

S2
Ib(r, ŝ)dŝ + 1

(2π)2

∫
R2

eiq·ρμt

∫
S2

Ĩs(q, z∗, ŝ)dŝdq

≈ 1
(2π)2

∫
R2

eiq·ρμt

2N∑
i=1

wi

∫ 2π

0
Ǐs(q, z∗, ŝi)dϕ dq

= 1
2π

∫ ∞

0
qJ0(qρ∗)

2N∑
i=1

wi

∫ 2π

0
Ǐs(q, z∗, ŝi)dϕ dq

= U(ρ, z), (113)

where ρ∗ = μtρ, z∗ = μtz, and we used the Hansen–Bessel formula

J0(x) = 1
2π

∫ 2π

0
eix cosϕ dϕ (114)

with J0(x) (x ≥ 0) the Bessel function of order 0. Note that

2N∑
i=1

wi

∫ 2π

0
Rk̂(ν,q)


m
ν (ŝi)dϕ ≈ 2πδm0 (115)

for sufficiently large N because
∫
S2 Rk̂


m
ν (ŝ)dŝ = ∫

S2 

m
ν (ŝ)dŝ. Within this approximation

we have

U(ρ, z) = �μ2
t

2

∫ ∞

0
qJ0(qρ∗)F(q, z∗)dq, (116)

where

F(q, z∗) =
N∑

n=1

ν0n

N (ν0n , q)

⎡
⎣	(z∗)e−z∗ − e−k̂z(ν0nq)z∗/ν0n

k̂z(ν0nq)− ν0n

lmax∑
l=0

(2l + 1)glg0l (ν
0
n)d

l
00[iτ(νnq)]

+	(z∗)
e−z∗

k̂z(ν0nq)+ ν0n

lmax∑
l=0

(−1)l(2l + 1)glg0l (ν
0
n)d

l
00[iτ(νnq)]

+(1 −	(z∗))
ek̂z(ν

0
nq)z∗/ν0n

k̂z(ν0nq)+ ν0n

lmax∑
l=0

(−1)l(2l + 1)glg0l (ν
0
n)d

l
00[iτ(νnq)]

⎤
⎦ . (117)
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For the purpose of numerical calculation, we use the asymptotic expression of the Bessel
function:

J0(x) =
√

2
πx

[(
1 − 9

128x2
+ O(x−4)

)
cos

(
x − π

4

)

+
(

1
8x

− 75
1024x3

+ O(x−5)

)
sin

(
x − π

4

)]
. (118)

We define

d(q, ρ∗)

= qJ0(qρ∗)−
√

2q
πρ∗

×
[(

1 − 9
128(qρ∗)2

)
cos

(
qρ∗ − π

4

)
+
(

1
8qρ∗

− 75
1024(qρ∗)3

)
sin

(
qρ∗ − π

4

)]
.

(119)

Let us set

a = π

4ρ∗
. (120)

We have

U(ρ, z) = �μ2
t

2

∫ a

0
qJ0(qρ∗)F(q, z∗)dq + �μ2

t

2

∫ ∞

a
d(q, ρ∗)F(q, z∗)dq

+ �μ2
t√

2πρ∗

∫ ∞

0
[F1(s, r∗)+ F2(s, r∗)] ds, (121)

where s = q−a,

F1(s, r∗) =
√
s + π

4ρ∗

(
1 − 9

128(sρ∗ + π
4 )

2

)
F

(
s + π

4ρ∗
, z∗

)
cos(sρ∗),

F2(s, r∗) =
√
s + π

4ρ∗

(
1

8(sρ∗ + π
4 )

− 75
1024(sρ∗ + π

4 )
3

)
F

(
s + π

4ρ∗
, z∗

)
sin(sρ∗).

(122)

The integrals
∫∞
0 F1(q) dq and

∫∞
0 F2(q) dq can be evaluated by the double-exponential

formula [31–33]. Define

φ(t) = t

1 − e−6 sinh t
(123)

with

φ′(t) = 1 − (1 + 6t cosh t) e−6 sinh t

(1 − e−6 sinh t)2
. (124)

With the approximation of the double-exponential formula, we can write

∫ ∞

0
F1(s, r∗)ds ≈ π

ρ∗

Nk∑
k=−Nk

F1

(
π

hρ∗
φ

(
kh + h

2

)
, r∗

)
φ′
(
kh + h

2

)
,
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∫ ∞

0
F2(s, r∗)ds ≈ π

ρ∗

Nk∑
k=−Nk

F2

(
π

hρ∗
φ(kh), r∗

)
φ′(kh), (125)

where Nk > 0 is an integer and h is a mesh size.

6. Numerical tests

Let us compute U(r) = U(ρ, z) = ∫
S2 I(r, ŝ)dŝ in (112), where I(r, ŝ) is the solution of the

radiative transport Equation (1) for the source term f (r, ŝ) = δ(ρ)δ(z)δ(ŝ − ŝ0) given in (4).
As was assumed in (104), ŝ0 = ẑ.

Numerical calculation was conducted for

μa = 0.01mm−1, μs = 10mm−1, g = 0 or 0.9. (126)

When the integral (116) over q is computed for U(ρ, z) making use of the double-
exponential formula, we set h = 0.01, and Nk = 400. The trapezoidal rule was used for the
first two integrals in (121) with 104 trapezoids. The upper limit of the second integral was
set to 1. We took 101 points on the z-axis between −50 and 50mm(g = 0.9) or −5 and
5mm(g = 0 ). Results are shown in Figures 1– 4.

We set g = 0.9 in Figures 1 and 2. We first set ρ = 5mm. In Figure 1(a), U(ρ, z) in (121) is
plotted for lmax = 9. A smooth curve is obtainedwhenN = 9 andN = 11. Figure 1(b) shows
that the calculationwith lmax = 3 andN = 3 is almost identical to the result for lmax = 9 and
N = 11. Using FORTRAN (gfortran), the computation timewas 5.6 s for lmax = 9,N = 11 and
0.5 s for lmax = 3, N = 3 on a laptop computer (Apple, MacBook Pro, 2.3 GHz Intel Core i5).
Next we set ρ = 2mm. Figure 2(a) shows that only the case of N ≥ 11 is successful when
lmax = 9. In Figure 2(b), the result for lmax = 3, N = 3 is close to the curve for lmax = 9,
N = 11, which gives the converged curve.

In Figures 3 and 4, U(ρ, z) in (121) is compared to Monte Carlo simulation. The Monte-
Carlo RTE solver MC [34] was used with the number of photons 108. The Monte Carlo
simulation uses the Henyey–Greenstein model (lmax = ∞). Parameters were chosen as
lmax = 3, N = 3. In Figure 3, we set g = 0.9 . In Figure 4, g is set to 0. In both figures, U(ρ, z)

Figure 1. The energy density U(ρ, z) in (121) is plotted for ρ = 5mm. The parameters are set to μa =
0.01,μs = 10, and g = 0.9. (a) Dependence on N for lmax = 9. (b) Convergence behavior.
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Figure 2. Same as Figure 1 butρ = 2mm. (a) Dependence onN for lmax = 9. (b) Convergence behavior.

Figure 3. The energy density U(ρ, z) is plotted. Results from (121) are compared to Monte Carlo sim-
ulation. From the top, ρ = 5, 10, 15, and 20mm. The parameters are set to μa = 0.01, μs = 10, and
g = 0.9.

are plotted as functions of z for different ρ. Good agreement is seen in each line of Figures
3 and 4.

7. Concluding remarks

In one dimension, the equivalence between the discrete-ordinates method and spherical-
harmonics method is known [4, 35]. In three dimensions, eigenmodes of the method of
rotated reference frames [13] are obtained by expanding singular eigenfunctions with
spherical harmonics [36] and then rotating the resulting expressions. However, the series
expansion in the method of rotated reference frames diverges because components of k̂
become very large even if k̂ · k̂ = 1 always holds.

Kim and Keller [17] and Kim [16] established discrete-ordinates with plane-wave decom-
position for the three-dimensional radiative transport equation. Their method can be
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Figure 4. Same as Figure 3, but g = 0. From the top, ρ = 1, 2, and 3mm.

viewed as separation of variables assuming the form

Ǐ(q, z, ŝi) = Vλ(ŝi,q) eλ(q)z . (127)

The eigenvalues λ and eigenvectors Vλ are numerically computed for each q ∈ R
2. In the

present paper, on the other hand, the form (29) was assumed. The explicit form of the
eigenvectors is obtained and we can compute eigenvalues ν by diagonalizing a matrix
once.

In Section 6, we computed the energy density. For the computation of the specific inten-
sity itself, the post-processing procedure [28, 37], which was proposed in the original ADO
is expected to help obtaining stable numerical solutions.

In this paper, the pencil beam (4) was assumed. For a general source function f (r, ŝ), the
solution I(r, ŝ) to (1) is given by

I(r, ŝ) =
∫

S2

∫
R3

G(r, ŝ; r′, ŝ′)f (r′, ŝ′)dr′ dŝ′, (128)

where G(r, ŝ; r′, ŝ′) (r′ = t(ρ′, z′)) is the solution of (1) for the source term δ(ρ − ρ′)δ(z −
z′)δ(ŝ − ŝ′). For any ŝ0, we can obtain G(r, ŝ; r′, ŝ0) simply by shifting ρ, z by ρ′, z′ in the
solution I(r, ŝ) to (1) for the source term (4). Moreover, the solution to (1) can be computed
without the decomposition (8) if the source term is smooth. In this alternative approach for
smooth f, the solution to (1) is obtained as Is(r, ŝ) in (10) in which S(r, ŝ) is replaced by f (r, ŝ).
Accordingly, S̃ in (100) is replacedby the Fourier transformof f. Then the calculation in Sec. 4
is modified in a straightforward way.
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Appendix. Fundamental solution

Let us obtain Gq(z, ŝi ; z′, ŝi0)which satisfies (95). Since Gq → 0 as z → ±∞, we can write

Gq(z, ŝi ; z′, ŝi0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lmax∑
m=−lmax

N∑
n=1

Amn Rk̂(νmn ,q)

m
νmn
(ŝi) e−k̂z(νmn q)(z−z′)/νmn ,

z > z′,
lmax∑

m=−lmax

N∑
n=1

Bmn Rk̂(−νmn ,q)

m
−νmn (ŝi) e

k̂z(νmn q0)(z−z′)/νmn ,

z < z′,

(A1)

where coefficients Amn = Amn (q, ŝi0), B
m
n = Bmn (q, ŝi0) will be determined from the source term. With

the source term, the jump condition is written as

μi[Gq(z
′ + 0, ŝi ; z′, ŝi0)− Gq(z

′ − 0, ŝi ; z′, ŝi0)]

= δii0δ(ϕ − ϕ0). (A2)

Hence,

μi

lmax∑
m=−lmax

N∑
n=1

[
Amn Rk̂(νmn ,q)


m
νmn
(ŝi)− Bmn Rk̂(−νmn ,q)


m
−νmn (ŝi)

]

= δii0δ(ϕ − ϕ0). (A3)

Using the orthogonality relation in Lemma (3.1), we obtain

Amn = wi0

N (νmn , q)
Rk̂(νmn ,q)


m∗
νmn
(ŝi0),

Bmn = −wi0

N (−νmn , q)
Rk̂(−νmn ,q)


m∗
−νmn (ŝi0). (A4)

Thus we arrive at (96).

http://whale.med.upenn.edu/vmarkel/CODES/MC.html
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