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Abstract
The Rytov approximation is known in near-infrared spectroscopy including
diffuse optical tomography. In diffuse optical tomography, the Rytov approx-
imation often gives better reconstructed images than the Born approximation.
Although related inverse problems are nonlinear, the Rytov approximation is
almost always accompanied by the linearization of nonlinear inverse problems.
In this paper, we will develop nonlinear reconstruction with the inverse Rytov
series. By this, linearization is not necessary and higher order terms in the
Rytov series can be used for reconstruction. The convergence and stability
are discussed. We find that the inverse Rytov series has a recursive structure
similar to the inverse Born series.
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1. Introduction

We consider diffuse light propagation in a bounded domain Ω⊂ Rn (n⩾ 2) with a smooth
boundary ∂Ω. In diffuse optical tomography, coefficients of the diffusion equation are
determined from boundary measurements. In this paper, we consider the reconstruction of
the absorption coefficient.
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The time-independent diffusion equation is given by

{
−D0∆u+µau= f, x ∈ Ω,

D0∂νu+ 1
ζ u= 0, x ∈ ∂Ω.

(1)

Here, D0, ζ are positive constants, and ∂ν denotes the directional derivative with the outward
unit vector ν normal to ∂Ω. Furthermore, µa is the absorption coefficient and f is the source
term. The outgoing light u(x) is detected on a subboundary Γ of the boundary (x ∈ Γ⊂ ∂Ω).
On the boundary, we suppose u ∈ Lp(Γ) with some p⩾ 1.

Since the cost function for the inverse problem of determining coefficients of the diffusion
equation in (1) has a complicated landscape, the reconstructed value is trapped in a local min-
imum if iterative schemes such as the Levenberg–Marqusrdt, Gauss–Newton, and conjugate
gradient methods are used. An alternative approach is the use of direct methods in which per-
turbations of coefficients are reconstructed. The Born and Rytov approximations are frequently
used in cooperation with linearization of the nonlinear inverse problem. When the (first) Born
approximation is compared with the (first) Rytov approximation, the superiority of the latter
has been discussed [2, 12, 15].

A systematic way of inverting the Born series has been studied [18, 21, 25, 26, 28]. That
is, higher-order Born approximations can be implemented with the inverse Born series. In this
way, the direct methods can be applied to nonlinear inverse problems without linearization. In
[17], the inverse Born series was implemented for the transport-based optical tomography.
In addition to optical tomography, the Calderón problem was considered with the inverse
Born series [3]. The inverse Born series was applied to inverse problems for scalar waves
[13] and for electromagnetic scattering [14]. The series was developed for discrete inverse
problems [8]. The technique of the inverse Born series was used to investigate the inversion
of the Bremmer series [31]. The inverse Born series was extended to Banach spaces [4, 16].
Recently, a modified Born series with unconditional convergence was proposed and its inverse
series was studied [1]. The convergence theorem for the inverse Born series has recently been
improved [11]. See [27] for recent advances. Moreover a reduced inverse Born series was
proposed [22].

Based on the success of past studies on the inverse Born series, in this paper we consider the
inversion of the Rytov series. In experimental and clinical researches on optical tomography,
quite often the Born approximation is impractical and tomographic images are obtained with
the Rytov approximation. After linearization, the Rytov approximation was used for detecting
breast cancer [6, 7] and used when the brain function was studied through the neurovascular
coupling [9]. The limitation of the linear approximation has been pointed out [5].

Indeed, the inverse Rytov series was considered for the Helmholtz equation and it was
numerically observed that the inverse Rytov series with the first through third approximations
give better reconstructed images than the inverse Born series [32]. In [23], intermediate approx-
imations between the Born and Rytov approximations were explored. The relation between the
inverse Rytov series and Newton’s method was investigated [29]. In these papers, however, no
systematic way of computing higher-order terms was presented.

The remainder of the paper is organized as follows. The Born series is introduced in
section 2 and the Rytov series is introduced in section 3. Then the inverse Rytov series is
discussed in section 4. Section 5 is devoted to the implementation of the inverse Rytov series
and numerical examples. Concluding remarks are given in section 6.
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2. The Born series

Let g be a positive constant. We write

µa(x) = g(1+ η(x)) , η ⩾−1.

We suppose that η is supported in a closed ball Ba of radius a:

suppη ⊂ Ba ⊂ Ω.

It will be seen below that the Born series converges for sufficiently small a> 0. We suppose
that η ∈ Lq(Ba) for some q⩾ 2.

Let u0(x) be the solution to the equation (1) in which µa(x) is replaced by g. We assume
that there exists a constant ξ > 0 such that ξ ⩽ u0 on Γ. Let G(x,y) be the Green’s function
which corresponds to u0. Then the following identity holds.

u(x) = u0(x)− g
ˆ
Ω

G(x,y)η(y)u(y)dy.

From the above identity, the Born series can be constructed as

u= u0 + u1 + . . . ,

where

uj(x) =−g
ˆ
Ω

G(x,y)η(y)uj−1(y)dy ( j = 1,2, . . .).

The first two terms of the Born series are obtained as

u1(x) =−g
ˆ
Ω

G(x,y)η(y)u0(y)dy,

u2(x) = g2
ˆ
Ω

ˆ
Ω

G(x,y)η(y)G(y,z)η(z)u0(z)dydz.

Let us introduce the multilinear operators Kj : Lq(Ba)× ·· ·× Lq(Ba)→ Lp(Γ) such that

uj =−Kjη⊗j,

where η⊗j = η⊗ ·· ·⊗ η is the j-fold tensor product. Here we have

K1η = g
ˆ
Ba

G(x,y)u0(y)η(y)dy,

K2η⊗ η =−g2
ˆ
Ba

ˆ
Ba

G(x,y)G(y,z)u0(z)η(y)η(z)dydz.

In general, the jth term is given by

Kjη
⊗j = (−1)j+1g j

ˆ
Ba×···×Ba

G(x,y1)G(y1,y2) · · ·G(yj−1,yj)

× u0(yj)η(y1) · · ·η(yj)dy1 · · ·dyj.

Let us define the operators Ǩj : Lq(Ba)× ·· ·× Lq(Ba)→ Lp(Γ) such that
1
u0
Kjη

⊗j = Ǩjη
⊗j.

We introduce

µ= g sup
x∈Ba

‖G(x, ·)‖Lr(Ba) , ν = g|Ba|1/r sup
y1,y2∈Ba

∥∥∥∥G(·,y1)u0(y2)u0(·)

∥∥∥∥
L p(Γ)

,

where r= q/(q− 1).
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Lemma 2.1. For j = 1,2, . . ., ‖Ǩj‖⩽ νµj−1.

Proof. For any fi ∈ Lq(Ba) (i = 1, . . . , j), the multilinear operators Ǩj are written as

(Ǩjf1 ⊗ ·· ·⊗ fj)(x) =
(−1)j+1g j

u0(x)

ˆ
Ba×···×Ba

G(x,y1)G(y1,y2) · · ·G(yj−1,yj)

× u0(yj)f1(y1) · · · fj(yj)dy1 · · ·dyj, x ∈ Γ.

Using Hölder’s inequality, we have

‖Ǩjf1 ⊗ ·· ·⊗ fj‖pL p(Γ)

=
(
g j
)pˆ

Γ

∣∣∣∣∣
ˆ
Ba×···×Ba

G(x,y1)G(y1,y2) · · ·G(yj−1,yj)

×
u0(yj)
u0(x)

f1(y1) · · · fj(yj)dy1 · · ·dyj

∣∣∣∣∣
p

dx

⩽ g jp
ˆ
Γ

∣∣∣∣∣
(ˆ

Ba×···×Ba
| f1(y1) · · · fj(yj)|q dy1 · · ·dyj

)1/q

×
(ˆ

Ba×···×Ba

∣∣∣∣G(x,y1)G(y1,y2) · · ·G(yj−1,yj)
u0(yj)
u0(x)

∣∣∣∣r dy1 · · ·dyj)1/r
∣∣∣∣∣
p

dx

⩽ g jp‖ f1‖pLq(Ba) · · ·‖ fj‖
p
Lq(Ba)

ˆ
Γ

∣∣∣∣∣ sup
y1,yj∈Ba

G(x,y1)
u0(yj)
u0(x)

∣∣∣∣∣
p

dx

×
(ˆ

Ba×···×Ba
|G(y1,y2) · · ·G(yj−1,yj)|r dy1 · · ·dyj

)p/r

.

We define

Ij−1 = g j−1

(ˆ
Ba×···×Ba

|G(y1,y2) · · ·G(yj−1,yj)|r dy1 · · ·dyj
)1/r

.

Similar to the calculation in [25], we have

Ij−1 ⩽ µIj−2, I1 ⩽ |Ba|1/rµ.

Hence,

Ij−1 ⩽ µj−1|Ba|1/r ( j = 2,3, . . .).

We obtain

‖Ǩjf1 ⊗ ·· ·⊗ fj‖pL p(Γ) ⩽ ‖ f1‖pLq(Ba) · · ·‖ fj‖
p
Lq(Ba)

νpµp( j−1).

Therefore,

‖Ǩj‖ = sup
f1,...,fj∈Lq(Ba)

fi ̸=0 (i=1,...,j)

∥∥Ǩjf1 ⊗ ·· ·⊗ fj
∥∥
L p(Γ)

‖ f1‖Lq(Ba) · · ·‖ fj‖Lq(Ba)
⩽ νµj−1.
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3. The Rytov series

Let us consider the Rytov series: u= u0e−ψ1−ψ2−···. The function ψj ( j = 1,2, . . .) is propor-
tional to g j. In particular, we consider boundary values of u,u0 at x ∈ Γ. We introduce

ψ = ψ(x) = ln
u0(x)
u(x)

, x ∈ Γ.

We assume ψ ∈ Lp(Γ). We have

−ψ = ln
u0 + u1 + · · ·

u0
= ln

1+
∞∑
j=1

uj
u0


=

∞∑
k=1

(−1)k+1

k

 ∞∑
j=1

uj
u0

k

=
u1 + u2 + · · ·

u0
− (u1 + u2 + · · ·)2

2u20
+

(u1 + u2 + · · ·)3

3u30
− ·· ·

=−ψ1 −ψ2 − ·· · .

By collecting the first- and second-order terms, the first two terms of the Rytov series are
explicitly written as

ψ1 =−u1
u0
, ψ2 =−u2

u0
+

1
2

(
u1
u0

)2

.

In general, we have

ψj =

j∑
m=1

(−1)m

mum0

∑
i1+···+im=j

ui1 · · ·uim , j = 1,2, . . . .

We note that the number of jth order terms in (u1 + · · ·)m is(
j− 1
m− 1

)
.

In total, the number of terms in ψj is

j−1∑
m=1

(
j− 1
m− 1

)
= 2j−1.

We introduce the forward operators Jj : Lq(Ba)× ·· ·× Lq(Ba)→ Lp(Γ) such that

ψj = Jjη
⊗j ( j = 1,2, . . .).

Note that Jj are multilinear. We have

J1η = Ǩ1η =
g

u0(x)

ˆ
Ω

G(x,y)u0(y)η(y)dy,

J2η⊗ η = Ǩ2η⊗ η+
1
2

(
Ǩ1η

)2
=

g2

u0(x)

ˆ
Ω

ˆ
Ω

G(x,y)G(y,z)u0(z)η(y)η(z)dydz+
g2

2u0(x)2

(ˆ
Ω

G(x,y)u0(y)η(y)dy

)2

.
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In general, the jth term is given by

Jjη
⊗j =

j∑
m=1

1
m

∑
i1+···+im=j

(
Ǩi1η

⊗i1
)
· · ·
(
Ǩimη

⊗im
)
.

Lemma 3.1. Wehave ‖Jj‖⩽ ν (µ+ ν)
j−1 for j = 1,2, . . .. Moreover the Rytov series converges

if ‖η‖Lq(Ba) < (µ+ ν)−1.

Proof. We note the binomial formula:

x(x+ y)j−1 =

j∑
m=1

(
j− 1
m− 1

)
xmy j−m. (2)

We have

‖Jj‖⩽
j∑

m=1

1
m

∑
i1+···+im=j

‖Ǩi1‖· · ·‖Ǩim‖

⩽
j∑

m=1

(
j− 1
m− 1

)
νmµj−m

= ν (µ+ ν)
j−1

.

Since we have

∞∑
j=1

‖ψj‖L p(Γ) =
∞∑
j=1

‖Jjη⊗ ·· ·⊗ η‖L p(Γ) ⩽
∞∑
j=1

‖Jj‖‖η‖jLq(Ba)

⩽ ν (µ+ ν)
−1

∞∑
j=1

(µ+ ν)
j ‖η‖jLq(Ba),

the series converges if ‖η‖Lq(Ba) < (µ+ ν)−1.

4. Inverse Rytov series

We begin by formally expanding the perturbation η as

η = η1 + η2 + · · ·
= J1ψ+J2ψ⊗ψ+ · · · .

We refer to the above series as the inverse Rytov series. If we substitute the series ψ = J1η+
J2η⊗ η+ · · · , we have

η = J1 (J1η+ J2η⊗ η+ · · ·)+J2 (J1η+ J2η⊗ η+ · · ·)⊗ (J1η+ J2η⊗ η+ · · ·)+ · · ·
= J1J1η+(J1J2 +J2J1 ⊗ J1)η⊗ η+ · · · .

Thus we obtain

J1J2 +J2J1 ⊗ J1 = 0,

J3J1 ⊗ J1 ⊗ J1 +J2J1 ⊗ J2 +J2J2 ⊗ J1 +J1J3 = 0, . . . .

6



Inverse Problems 39 (2023) 105012 M Machida

Indeed, the equality η = J1J1η does not hold due to the ill-posedness of this inverse prob-
lem. To consider J1, let us introduce η∗ as [17]

η∗ = argmin
η∈Ba

(
1
2
‖J1η−ψ‖2L p(Γ) +αR(η)

)
,

where R(η) is a penalty function with a regularization parameter α> 0 [10, 24, 30]. The reg-
ularized pseudoinverse of J1 is defined as J1 : ψ 7→ η∗. With this operator J1, we have

J2ψ⊗ψ =−J1J2(J1 ⊗J1)(ψ⊗ψ) =−J1

[
Ǩ2(J1 ⊗J1)(ψ⊗ψ)+

1
2

(
Ǩ1J1ψ

)2]
,

and

J3ψ⊗ψ⊗ψ =−(J2J1 ⊗ J2 +J2J2 ⊗ J1 +J1J3)(J1 ⊗J1 ⊗J1)(ψ⊗ψ⊗ψ)

=−J2(J1J1ψ)⊗
[
Ǩ2J1ψ⊗J1ψ+

1
2
(Ǩ1J1ψ)

2

]
−J2

[
Ǩ2J1ψ⊗J1ψ+

1
2
(Ǩ1J1ψ)

2

]
⊗ J1J1ψ

−J1

[
Ǩ3(J1ψ)

⊗3 +(Ǩ1J1ψ)(Ǩ2J1ψ⊗J1ψ)+
1
3
(Ǩ1J1ψ)

3

]
.

For j⩾ 2, we have

Jj =−

 j−1∑
m=1

Jm

∑
i1+···+im=j

Ji1 ⊗ ·· ·⊗ Jim

J1 ⊗ ·· ·⊗J1.

Theorem 4.1. Assume that there exists a constant M1 < 1 such that (µ+ 2ν)‖J1‖⩽M1. Then
the operator Jj : Lp(Γ)× ·· ·× Lp(Γ)→ Lq(Ba) is bounded and

‖Jj‖⩽ C1 (µ+ 2ν)j ‖J1‖,

where constant C1 = C1(M1)> 0 is independent of j. Moreover for anyψ ∈ Lp(Γ), there exists
C2 = C2(M1,µ,ν) such that∥∥Jjψ

⊗j
∥∥
Lq(Ba)

⩽ C2 (µ+ 2ν)j ‖J1ψ‖jLq(Ba).

Proof. We find that for j⩾ 2,

‖Jj‖=

∥∥∥∥∥∥
 j−1∑

m=1

Jm

∑
i1+···+im=j

Ji1 ⊗ ·· ·⊗ Jim

J1 ⊗ ·· ·⊗J1

∥∥∥∥∥∥
⩽

∥∥∥∥∥∥
j−1∑
m=1

Jmν
m

∑
i1+···+im=j

(µ+ ν)
i1−1 · · ·(µ+ ν)

im−1

∥∥∥∥∥∥‖J1‖j

⩽
j−1∑
m=1

‖Jm‖νm
(

j− 1
m− 1

)
(µ+ ν)

j−m ‖J1‖j

⩽ ‖J1‖j
(

j−1∑
m=1

‖Jm‖

)(
j−1∑
m=1

(
j− 1
m− 1

)
νm (µ+ ν)

j−m

)
.
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By using (2), we have

‖Jj‖⩽ ‖J1‖j
(

j−1∑
m=1

‖Jm‖

)(
ν (µ+ 2ν)j−1 − ν j

)

⩽ ν‖J1‖j (µ+ 2ν)j−1
j−1∑
m=1

‖Jm‖

⩽ ‖J1‖j (µ+ 2ν)j
j−1∑
m=1

‖Jm‖.

By noticing the recursive structure of the above inequality, we can write

‖Jj‖⩽ cj [(µ+ 2ν)‖J1‖]j ‖J1‖,

where

cj+1 = cj+ [(µ+ 2ν)‖J1‖]j cj, c2 = 1.

Hence we obtain

cj =
j−1∏
m=2

(
1+ [(µ+ 2ν)‖J1‖]m

)
, j⩾ 3.

We note that

lncj ⩽
j−1∑
m=1

ln
(
1+ [(µ+ 2ν)‖J1‖]m

)
⩽

j−1∑
m=1

[(µ+ 2ν)‖J1‖]m

⩽ 1
1− (µ+ 2ν)‖J1‖

⩽ 1
1−M1

.

Thus cj ( j⩾ 2) are bounded. We put C1 = exp(1/(1−M1)).
We note that∥∥Jjψ

⊗j
∥∥
Lq(Ba)

⩽ ‖J1ψ‖jLq(Ba) (µ+ 2ν)j
j−1∑
m=1

‖Jm‖,

and
j−1∑
m=1

‖Jm‖⩽ C1‖J1‖(µ+ 2ν)
1− (µ+ 2ν)j−1

1− (µ+ 2ν)
.

Hence we obtain∥∥Jjψ
⊗j
∥∥
Lq(Ba)

⩽ C1 (µ+ 2ν)j+1 ‖J1‖
1− (µ+ 2ν)j−1

1− (µ+ 2ν)
‖J1ψ‖jLq(Ba)

⩽ C1M1

1− (µ+ 2ν)
(µ+ 2ν)j ‖J1ψ‖jLq(Ba).
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The proof is complete if we set

C2 =
C1M1

1− (µ+ 2ν)
.

Let us consider the convergence of the inverse Rytov series. If the inverse Rytov series
converges, we write

η ≈ η̃,

where

η̃ =
∞∑
j=1

Jjψ
⊗j.

Theorem 4.2. Assume that there exists a constant M1 < 1 such that (µ+ 2ν)‖J1‖⩽M1.
Suppose that ‖J1ψ‖Lq(Ba) < (µ+ 2ν)−1. Let M2 =max(‖η‖Lq(Ba),‖J1J1η‖Lq(Ba)). We assume
that M2 < (µ+ 2ν)−1. Then for any N ∈ N there exists constants C3 = C3(M1,M2,µ,ν)> 0
such that∥∥∥∥∥∥η−

N∑
j=1

Jjψ
⊗j

∥∥∥∥∥∥
Lq(Ba)

⩽ C3‖(I−J1J1)η‖Lq(Ba) +C2

[
(µ+ 2ν)‖J1ψ‖Lq(Ba)

]N+1

1− (µ+ 2ν)‖J1ψ‖Lq(Ba)
,

where constant C2 > 0 is given in theorem 4.1.

Proof. If we expand ψ in the inverse Rytov series by the Rytov series, we can write

η̃ =
∞∑
j=1

J̃jη⊗ ·· ·⊗ η,

where

J̃1 = J1J1,

and

J̃j =

 j−1∑
m=1

Jm

∑
i1+···+im=j

Ji1 ⊗ ·· ·⊗ Jim

+JjJ1 ⊗ ·· ·⊗ J1, j⩾ 2.

We have

J̃j =

j−1∑
m=1

Jm

∑
i1+···+im=j

Ji1 ⊗ ·· ·⊗ Jim (I−J1J1 ⊗ ·· ·⊗J1J1) .

Since

η− η̃ = (I−J1J1)η−J1J2 (η⊗ η−J1J1η⊗J1J1η)+ · · · ,

we have

‖η− η̃‖Lq(Ba) ⩽
∞∑
j=1

j−1∑
m=1

∑
i1+···+im=j

‖Jm‖‖Ji1‖· · ·‖Jim‖

×‖(η⊗ ·· ·⊗ η)− (J1J1η⊗ ·· ·⊗J1J1η)‖Lq(B j
a)
.

9
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We note the identity

(η1 ⊗ ·· ·⊗ η1)− (η2 ⊗ ·· ·⊗ η2)

= (η1 − η2)⊗ η2 ⊗ ·· ·⊗ η2 + η1 ⊗ (η1 − η2)⊗ η2 ⊗ ·· ·⊗ η2 + · · ·
+ η1 ⊗ η1 ⊗ ·· ·⊗ (η1 − η2)⊗ η2 + η1 ⊗ η1 ⊗ ·· ·⊗ η1 ⊗ (η1 − η2).

Hence,

‖η⊗ ·· ·⊗ η−J1J1η⊗ ·· ·⊗J1J1η‖Lq(B j
a)
⩽ jMj−1

2 ‖η−J1J1η‖Lq(Ba) .

We obtain

‖η− η̃‖Lq(Ba) ⩽
∞∑
j=1

j−1∑
m=1

∑
i1+···+im=j

‖Jm‖‖Ji1‖· · ·‖Jim‖jM
j−1
2 ‖η−J1J1η‖Lq(Ba) .

Furthermore,

‖η− η̃‖Lq(Ba)

⩽
∞∑
j=1

j−1∑
m=1

jMj−1
2 ‖Jm‖

(
j− 1
m− 1

)
νm (µ+ ν)

j−m ‖η−J1J1η‖Lq(Ba)

⩽ ‖η−J1J1η‖Lq(Ba)
∞∑
j=1

jMj−1
2

(
j−1∑
m=1

‖Jm‖

)(
j−1∑
m=1

(
j− 1
m− 1

)
νm (µ+ ν)

j−m

)

= ν ‖η−J1J1η‖Lq(Ba)
∞∑
j=1

jMj−1
2

(
j−1∑
m=1

‖Jm‖

)[
(µ+ 2ν)j−1 − ν j−1

]

⩽ ‖η−J1J1η‖Lq(Ba)
∞∑
j=1

jMj−1
2 (µ+ 2ν)j

(
j−1∑
m=1

‖Jm‖

)
.

Using C1 > 0 in theorem 4.1, we obtain

‖η− η̃‖Lq(Ba) ⩽ C1‖J1‖‖η−J1J1η‖Lq(Ba)
∞∑
j=1

jMj−1
2 (µ+ 2ν)j+1 1− (µ+ 2ν)j−1

1− (µ+ 2ν)

⩽ C1 ‖η−J1J1η‖Lq(Ba)
µ+ 2ν

1− (µ+ 2ν)

∞∑
j=1

j
[
M2 (µ+ 2ν)j−1

]
= C3 ‖η−J1J1η‖Lq(Ba) ,

where

C3 = C1
µ+ 2ν

1− (µ+ 2ν)

∞∑
j=1

j
[
M2 (µ+ 2ν)j−1

]
.

We have

‖η̃‖Lq(Ba) ⩽
∞∑
j=1

‖Jjψ
⊗j‖Lq(Ba) ⩽ C2

∞∑
j=1

(µ+ 2ν)j ‖J1ψ‖jLq(Ba).

10
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Hence η̃ converges. We note that∥∥∥∥∥∥η̃−
N∑
j=1

Jjψ
⊗j

∥∥∥∥∥∥
Lq(Ba)

⩽
∞∑

j=N+1

‖Jjψ⊗ ·· ·⊗ψ‖Lq(Ba)

⩽ C2

∞∑
j=Ns+1

(µ+ 2ν)j ‖J1ψ‖jLq(Ba)

= C2

[
(µ+ 2ν)‖J1ψ‖Lq(Ba)

]N+1

1− (µ+ 2ν)‖J1ψ‖Lq(Ba)

The proof is complete.

The stability of the reconstruction is studied as follows.

Theorem 4.3. Assume that there exists a constant M1 < 1 such that (µ+ 2ν)‖J1‖⩽M1.
Let η1,η2 denote the limits of the inverse Rytov series corresponding to some ψ1,ψ2. We
suppose that M1M3 < 1, where M3 =max(‖ψ1‖L p(Γ),‖ψ2‖L p(Γ)). Then there exists C4 =
C4(M1,M3,µ,ν)> 0 such that

‖η1 − η2‖Lq(Ba) < C4‖ψ1 −ψ2‖L p(Γ).

Proof. We begin with the following inequality.

‖η1 − η2‖Lq(Ba) ⩽
∞∑
j=1

‖Jjψ1 ⊗ ·· ·⊗ψ1 −Jjψ2 ⊗ ·· ·⊗ψ2‖Lq(Ba) .

We note that

(ψ1 ⊗ ·· ·⊗ψ1)− (ψ2 ⊗ ·· ·⊗ψ2)

= (ψ1 −ψ2)⊗ψ2 ⊗ ·· ·⊗ψ2 +ψ1 ⊗ (ψ1 −ψ2)⊗ψ2 ⊗ ·· ·⊗ψ2 + · · ·
+ψ1 ⊗ ·· ·⊗ψ1 ⊗ (ψ1 −ψ2)⊗ψ2 +ψ1 ⊗ ·· ·⊗ψ1 ⊗ (ψ1 −ψ2).

We obtain

‖η1 − η2‖Lq(Ba)

⩽
∞∑
j=1

‖Jj‖
j∑

k=1

‖ψ1‖L p(Γ) · · ·‖ψ1‖L p(Γ)‖(ψ1 −ψ2)‖L p(Γ)‖ψ2‖L p(Γ) · · ·‖ψ2‖L p(Γ),

where ‖(ψ1 −ψ2)‖L p(Γ) is in the kth position of the product. Furthermore,

‖η1 − η2‖Lq(Ba) ⩽
∞∑
j=1

j‖Jj‖Mj−1
3 ‖ψ1 −ψ2‖L p(Γ)

⩽ C1‖J1‖‖ψ1 −ψ2‖L p(Γ)
∞∑
j=1

j(µ+ 2ν)jMj−1
3

⩽ C1

M3
‖ψ1 −ψ2‖L p(Γ)

∞∑
j=1

j(µ+ 2ν)j−1Mj−1
3 .

11
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The proof is complete if we put

C4 = C1

∞∑
j=1

j(µ+ 2ν)j−1Mj−2
3 .

5. Two-dimensional radial problem

5.1. Setup

Let us assume the two-dimensional radial geometry, which was considered in [26]. We con-
sider diffuse optical tomography for this domain. In the polar coordinate system we have
x= (r,θ), where r is the radial coordinate and θ is the angular coordinate. Let Ω be the disk
of radius R centered at the origin. Assuming that η has the radial symmetry, we write

η(x) = η(r), 0< r< R.

Let us suppose that η is given by

η(r) =

{
ηa, 0⩽ r⩽ Ra,

0, Ra < r⩽ R.

Although point sources were used in [26], here we assume the following spatially oscillating
source term for diffuse optical tomography in spatial frequency domain.

f(r,θ) = eiαθ
1
r
δ(r−R), α= 1, . . . ,MS.

Hereafter we write

g= k2, k> 0.

We define ℓ= ζD0 and setD0 = 1. We writeΩ1 = {x; |x|⩽ Ra},Ω2 = {x; Ra < |x|< R}, and
ka = k

√
1+ ηa. Let rx,ry be the radial coordinates of x,y. Let θx,θy be the angular coordinates

of x,y.

5.2. Forward problem

Let us express the Green’s function G(x,y), which has the source term 1
rx
δ(rx− ry)δ(θx− θy),

as [19]

G(x,y) =
1
2π

∞∑
n=−∞

ein(θx−θy)gn(rx,ry),

where gn(r,r ′) satisfies

r2∂2
r gn(r,r

′)+ r∂rgn(r,r
′)−

(
k2r2 + n2

)
gn(r,r

′) =−rδ(r− r′),

gn(R,r
′)+ ℓ∂rgn(R,r

′) = 0.

We note that the homogeneous equation for the above equation is the modified Bessel differ-
ential equation. Hence the solution is given as a superposition of In(kr),Kn(kr). Here, In,Kn
are the modified Bessel functions of the first and second kinds, respectively. We obtain

12
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gn(rx,ry) = Kn (kmax(rx,ry)) In (kmin(rx,ry))

−Kn(kR)+ kℓK′
n(kR)

In(kR)+ kℓI′n(kR)
In (krx) In (kry) .

We note

I′n(x) =
1
2
(In−1(x)+ In+1(x)) , K′

n(x) =−1
2
(Kn−1(x)+Kn+1(x)) , x ∈ R.

Hence,

u0(x) =
ˆ 2π

0

ˆ R

0
G(x,y)f(ry,θy)ry drydθy = eiαθxgα(rx,R).

We have

gα(R,R) = Iα(kR)Kα(kR)− dαIα(kR),

where

dα =
Kα(kR)+ kℓK′

α(kR)
Iα(kR)+ kℓI′α(kR)

Iα(kR).

For the forward data, we observe u,u0 at rx = R, θx = 0. That is, the outgoing light is meas-
ured at one point on the boundary while boundary values were observed at different points on
the boundary in [26]. See appendix for the calculation of u. Let us setMD = 1 (i.e.MSD =MS).
For the vector ψ ∈ RMSD , we have

ψα = ln
(Kα(kR)− dα) Iα(kR)

Iα(kR)Kα(kR)+ bαKα(kR)+ cαIα(kR)
(3)

for α= 1, . . . ,MSD. We note that bα,cα, which are given in appendix, depend on ηa,Ra,k,R, ℓ.
Let us introduce

G(n)(rx,ry) := gn(rx,ry)ry.

We obtain(
Kjη

⊗j
)
(x)

= (−1)j+1g jeiαθx
ˆ R

0
· · ·
ˆ R

0
G(α)(R,ry1)G

(α)(ry1 ,ry2) · · ·G(α)(ryj−1 ,ryj)G
(α)(ryj ,R)

×η(ry1) · · ·η(ryj)dry1 · · ·dryj , x ∈ Γ,

and(
Ǩjη

⊗j
)
(x) =

(
1
u0
Kjη

⊗j

)
(x)

=
(−1)j+1g j

G(α)(R,R)

ˆ R

0
· · ·
ˆ R

0
G(α)(R,ry1)G

(α)(ry1 ,ry2) · · ·G(α)(ryj−1 ,ryj)G
(α)(ryj ,R)

× η(ry1) · · ·η(ryj)dry1 · · ·dryj , x ∈ Γ.

13
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5.3. Implementation of the inverse Rytov series

Let us begin by writing

ψα =
∞∑
j=1

(
J(α)j η⊗j

)
(R), α= 1, . . . ,MSD.

We consider how the jth-order operator Jj in the inverse Rytov series can be numerically
constructed. Here we assume that r ∈ (0,R) is discretized into Nr points ri (i= 1, . . . ,Nr) with
small interval ∆r. Thus, η can be expressed by a vector η ∈ RNr .

5.3.1. Forward vectors. We set

ri = i∆r (i = 1, . . . ,Nr), ∆r=
R
Nr
.

Let b ∈ RNr be a vector. We define K0 ∈ RMSD , K1 ∈ RMSDNr as

{K0}α =−G(α)(R,R),

{K1(b)}i+(α−1)Nr = g∆r
Nr∑
n=1

G(α)(ri,rn)G
(α)(rn,R){b}n

for 1⩽ α⩽MSD, 1⩽ i⩽ Nr. Moreover,

{Kj(b1, . . . ,bj)}i+(α−1)Nr

=−g∆r
Nr∑
n=1

G(α)(ri,rn){bj}n{Kj−1(b1, . . . ,bj−1)}n+(α−1)Nr .

Using there Kj ∈ RMSDNr , we introduce

{Jj(b1, . . . ,bj)}α =

j∑
m=1

(−1)m

m{K0}mα

×
∑

i1+···im=j
{Ki1(b1, . . . ,bi1)}αNr · · ·{Kim(bj−im+1, . . . ,bj)}αNr

for α= 1, . . . ,MSD.

5.3.2. Linearized problem. In particular, we have

{J1(b)}α =− 1
{K0}α

{K1(b)}αNr

for α= 1, . . . ,MSD, i = 1, . . . ,Nr. From this, we can define a matrix J1 ∈ RMSD×Nr such that
J1(b) = J1b as

{J1}α,i =
g∆r

G(α)(R,R)

[
G(α)(R,ri)

]2
.

Using J1, we computeJ 1. Here,J 1 is theMoore–Penrose pseudoinverse with a regularizer
such as the truncated singular value decomposition:

J 1 = J+1,reg ∈ RNr×MSD .

14
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The first term of the inverse Rytov series can be calculated as

η1 = J 1ψ,

where

{η1}i = η1(ri), i = 1, . . . ,Nr.

We solve ψ = J1η1 as follows.

5.3.2.1. Underdetermined. Suppose we have

MSD ⩽ Nr.

That is, the inverse problem is underdetermined.
In this case, we obtain

η1 = J+1,regψ,

where

J+1,reg = J∗1M
−1
reg , M= J1J

∗
1 .

Here, ∗ denotes the Hermitian conjugate and reg means that the pesudoinverse is regularized
by discarding singular values that are smaller than σ0. Let σ2

j and vj be the eigenvalues and
eigenvectors of the matrix M:

Mzj = σ2
j zj.

We obtain

η1 =
∑

j
σj>σ0

1
σ2
j

(
z∗j ψ

)
J∗1zj.

5.3.2.2. Overdetermined. Suppose we have

MSD ⩾ Nr.

That is, the inverse problem is overdetermined.
In this case, we obtain

η1 = J+1,regψ,

where

J+1,reg =M−1
regJ

∗
1 , M= J∗1J1.

After solving the eigenproblem Mzj = σ2
j zj, we obtain

η1 =
∑

j
σj>σ0

1
σ2
j

(
z∗j J

∗
1ψ
)
zj.

5.3.3. Inversion. Let a1, . . . ,aj be real vectors of dimension MSD. To compute the jth-order
term ηj, let us first introduce

η
(1)
i = J 1ai (i = 1, . . . , j).

15
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We introduce vector J j(a1, . . . ,aj) ∈ RNr which has a recursive structure: for j= 1,

J 1(a1) = η
(1)
1 ,

and for j⩾ 2,

J j(a1, . . . ,aj)

=−
j−1∑
m=1

∑
i1+···+im=j

J m

(
Ji1(η

(1)
1 , . . . ,η

(1)
i1 ), . . . ,Jim(η

(1)
j−im+1, . . . ,η

(1)
j )
)
.

More specifically, J j(a1, . . . ,aj) can be computed as follows. If j= 1, then η(1)
1 is returned.

For j⩾ 2, we let m move from 1 to j− 1. We form the compositions [i1, . . . , im] such that
i1 + · · ·+ im = j. For each m (1⩽ m⩽ j− 1) and each composition (i1, . . . , im), we compute

ηtmp =−J m

(
Ji1(η

(1)
1 , . . . ,η

(1)
i1 ), . . . ,Jim(η

(1)
j−im+1, . . . ,η

(1)
j )
)
.

LetΣ(m) denote the sum of ηtmp for all

(
j− 1
m− 1

)
compositions. The above step is repeated

for all m (1⩽ m⩽ j− 1). We obtain

J j(a1, . . . ,aj) =
j−1∑
m=1

Σ(m).

The jth term is calculated as

ηj =J j(ψ, . . . ,ψ).

In this way, we obtain ηj ( j = 1, . . . ,N). The Nth-order approximation is given by

η(N) = η1 + · · ·+ηN.

Finally, the reconstruction can be done as follows.We have µa(r) = g(1+ η(r)). The recon-
structed µa(r) is obtained as

µa(ri)≈ µ(N)
a (ri) = g

(
1+

{
η(N)

}
i

)
.

5.4. Numerical results

We set k= 1, R= 3, Ra = 1.5, ℓ= 0.3. Moreover, Nr =MSD = 90. We chose σ0 such that the
largest 23 singular values were taken. Since only 23 singular values are taken, η is not fully
reconstructed. When reconstructing η, we obtain at most ηproj ∈ RNr , which is given by

ηproj = J 1J1η.

In figures 1 through 3, η,ηproj,η
(1),η(2),η(3),η(4),η(5) are shown.

In figure 1, ηa = 0.2 (Left) and 1.0 (Right), and in figure 2, ηa = 2.0 (Left) and 5.0 (Right).
In the case of ηa = 0.2, the first Rytov approximation η(1) is different from ηproj but the third
Rytov approximation η(3) already gives a good reconstruction. For ηa = 1.0, the reconstruc-
tion approaches ηproj after the fifth term η5 is added. When ηa = 2.0, the reconstruction is
reasonable after η5 is added but still different from ηproj. When ηa is large and ηa = 5.0, all
reconstructions differ from ηproj.

Noise was added for figure 3. For both u0,u, Gaussian noise with mean zero was added.
The standard deviation of the noise was the standard deviation of u0 multiplied by a constant γ.
For u0,u, no noise was added when the resulting value became negative. Figure 3 shows the
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Figure 1. Reconstruction of η. The forward data is given in (3). We set (Left) ηa = 0.2
and (Right) ηa = 1.

Figure 2. Reconstruction of η. The forward data is given in (3). We set (Left) ηa = 2,
and (Right) ηa = 5.

Figure 3. Reconstruction of η when ηa = 1.0. Gaussian noise with (Left) γ = 10−4 and
(Right) γ = 10−5 was added. The largest 9 and 7 singular values were used for the
weaker and stronger noise levels, respectively.

reconstruction of η for ηa = 1.0. Due to noise, fewer numbers of singular values had to be
used. The largest nine singular values were used for γ = 10−4 and the largest seven singular
values were used when γ = 10−5.

6. Concluding remarks

In this paper, multilinear forward operators Jj : Lq(Ba)× ·· ·× Lq(Ba)→ Lp(Γ) and inverse
operators Jj : Lp(Γ)× ·· ·× Lp(Γ)→ Lq(Ba) were considered. As was done for the inverse

17
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Born series [4, 11, 16, 27], it is possible to consider the inverse Rytov series for nonlinear
inverse problems in Banach spaces X,Y, for which the forward problem is from X to Y instead
of from Lq(Ba) to Lp(Γ).

Although the expression of ψj in the Rytov series is more complicated than that of uj in the
Born series, the inverse Rytov series can also be computed in a recursive manner.

In this paper, the diffusion coefficient D0 was assumed to be a known constant. Markel and
Schotland has discussed the simultaneous reconstruction of the two functions with the (first)
Rytov approximation [20]. It is an interesting future issue to extend the inverse Rytov series
to the case of simultaneous reconstruction.

Data availability statement

The numerical values for the figures will not be on a website but can be available upon
request. The data that support the findings of this study are available upon reasonable
request from the authors. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.
7910/DVN/0X4QFP.
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Appendix. Forward data

LetGa be the Green’s function of the two-dimensional radial problem for the equation in which
η = ηa in r ∈ [0,Ra] and η= 0 otherwise. In the case of the delta-function source δ(x− xs),
xs ∈ ∂Ω, we have [26]

Ga(x,xs) =
1
2π

∞∑
n=−∞

ane
in(θ−θs)In(kar), r ∈ Ω1,

and

Ga(x,xs) =
1
2π

∞∑
n=−∞

ein(θ−θs)In(kr)Kn(kR)

+
1
2π

∞∑
n=−∞

ein(θ−θs) (bnKn(kr)+ cnIn(kr)) , r ∈ Ω2.

Here, coefficients an,bn,cn can be computed as the solution to the following system of linear
equations, which is derived from the interface and boundary conditions. In(kaRa) −Kn(kRa) −In(kRa)

kaI′n(kaRa) −kK′
n(kRa) −kI′n(kRa)

0 Kn(kR)+ kℓK′
n(kR) In(kR)+ kℓI′n(kR)

 an
bn
cn


=

 In(kRa)Kn(kR)
kI′n(kRa)Kn(kR)

kℓIn(kR)K′
n(kR)+ In(kR)Kn(kR)

 .
18
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Therefore we obtain for x ∈ ∂Ω,

u(x) =
ˆ 2π

0

ˆ R

0
Ga(x,y)f(ry,θy)ry drydθy

= Reiαθx [Iα(kR)Kα(kR)+ bαKα(kR)+ cαIα(kR)] .
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