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Diffuse optical tomography (DOT) is an imaging modality that uses near-infrared light. Although iterative
numerical schemes are commonly used for its inverse problem, correct solutions are not obtained unless good
initial guesses are chosen. We propose a numerical scheme of DOT, which works even when good initial guesses
of optical parameters are not available. We use simulated annealing (SA), which is a method of the Markov-chain
Monte Carlo. To implement SA for DOT, a spin Hamiltonian is introduced in the cost function, and the Metropolis
algorithm or single-component Metropolis–Hastings algorithm is used. By numerical experiments, it is shown that
an initial random spin configuration is brought to a converged configuration by SA, and targets in the medium are
reconstructed. The proposed numerical method solves the inverse problem for DOT by finding the ground state
of a spin Hamiltonian with SA. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing
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1. INTRODUCTION

In near-infrared spectroscopy, tomographic images of opti-
cal properties are obtained by diffuse optical tomography
(DOT) [1,2]. To obtain reconstructed images, inverse prob-
lems of determining coefficients of the diffusion equation from
boundary measurements are solved.

For these inverse problems in DOT, direct approaches such as
the use of the Born approximation and iterative methods such
as the conjugate gradient method and damped Gauss–Newton
method are commonly used [3,4]. One of the direct approaches
is the inversion of a linearized problem by singular value decom-
position (SVD) with the L2 regularization (for example, see
[5]). To solve the nonlinear inverse problem of DOT, iterative
methods are frequently used [3]. For example, breast cancer was
detected with the nonlinear-conjugate gradient method [6].
See, e.g., [7,8] for recent advances in DOT.

Although different penalty terms can be employed in iterative
methods, the calculation gets trapped by local minima unless a
good initial guess is given (for example, see [9]). It was demon-
strated in [10] that bad initial guesses (even though they look
reasonable) lead to completely wrong reconstructed results, even
when the diffusion coefficient is known, and the absorption
coefficient is characterized by only one unknown parameter in
the diffusion equation.

As numerical schemes that are free from the issue of being
trapped by local minima, statistical approaches have been
developed [11,12]. Monte Carlo methods have the advan-
tage that the computation is not trapped by local minima,

since jumps occur randomly in the landscape. In particular,
the Metropolis–Hastings Monte Carlo algorithm was used to
estimate parameters in coefficients of the diffusion equation
or the radiative transport equation, which is approximated to
the diffusion equation at large scales [10,13,14]. However, only
several unknown parameters, such as the position of a target
and the absorption and scattering coefficients of the target, were
determined in those studies.

In this paper, values of the absorption coefficient will be deter-
mined at 1830 different points in the medium. The simulated
annealing (SA) (e.g., [15]) makes it possible to handle a large
number of unknown parameters. To the best of our knowledge,
this is the first attempt to use SA for DOT.

The rest of the paper is organized as follows. In Section 2,
we introduce the diffusion equation, in which near-infrared
light in biological tissue is obeyed. In Section 3, we formulate
our inverse problem with the Rytov approximation. Spins are
introduced in Section 4. Then, the cost function for the inverse
problem is rewritten as a spin Hamiltonian in Sections 5 and
6. The algorithm of SA for DOT is described in Section 7.
In Section 8, numerical tests of our SA are presented. Finally,
concluding remarks are given in Section 9.

2. DIFFUSION EQUATION

We consider DOT in a domain �⊂Rd (d = 2, 3). Let ∂� be
the boundary of �. Let ν(r) be the outer unit normal vector
at r ∈ ∂�. We assume that � is occupied by biological tissue,
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and the outside of� is vacuum. Let u be the photon density of
near-infrared light.

If the reconstruction is done using time-resolved data, the
time-dependent diffusion equation needs to be considered.
Let c be the speed of light in �. We assume that the diffusion
coefficient D0 is a positive constant but µa varies in space. The
energy density u obeys
(

1
c
∂

∂t − D01+µa (r)
)

u(r, t)= f (r, t), r ∈�, t > 0,

D0ν · ∇u(r, t)+ 1
ζ
u(r, t)= 0, r ∈ ∂�, t > 0,

u(r, 0)= 0, r ∈�,
(1)

where ζ > 0 is a constant (see Section 8), and f (r, t) is the
source term. We note thatµa is non-negative.

In the case of the continuous-wave measurement, light propa-
gation in� is governed by the following diffusion equation for
u(r) (r ∈�):{

−D01u(r)+µa (r)u(r)= f (r), r ∈�,

D0ν · ∇u(r)+ 1
ζ

u(r)= 0, r ∈ ∂�.
(2)

Even for measurements in time domain, quite often the time-
independent diffusion of Eq. (2) is used for reconstruction with
moments or Laplace transforms of the raw time-resolved data.
We assume the incident beam f (r) as

f (r, t)= g 0δ(r − r(p)s )δ(t) or f (r)= g 0δ(r − r(p)s ),

(3)
where g 0 > 0 is a constant, and r(p)s is the position of the
source of the pth source-detector pair (p = 1, 2, . . . , MSD).
Furthermore, δ(·) is the Dirac delta function. Light is detected
on the boundary at r(p)d .

We choose a region of interest �ROI in �. Let µ̄a be a
non-negative constant. We suppose

µa (r)= µ̄a (4)

for r in�, including the boundary ∂� and excluding�ROI. Let
us writeµa (r) as

µa (r)= µ̄a + δµa (r), r ∈�ROI. (5)

3. RYTOV APPROXIMATION

We will use SA by regarding δµa (r) as spins. For this purpose,
here, we develop the perturbation theory and give the solution
u(r) in terms of an integral of δµa (r). Since the Rytov approxi-
mation for the time-dependent case is similarly derived, we
consider the time-independent case below.

Let u0(r) be the solution to Eq. (2) in the case of δµa ≡ 0.
Then, u0(r)= g 0G(r, r(p)s ), where G(r, r ′) is Green’s
function, which satisfies Eq. (2) with the source term
f (x )= δ(r − r ′). Let us subtract the equation for u0 from
the equation for u [3]:

{
−D01 (u(r)− u0(r))+ µ̄a (u(r)− u0(r))=−δµa (r)u(r), r ∈�,
D0ν · ∇ (u(r)− u0(r))+ 1

ζ
(u(r)− u0(r))= 0, r ∈ ∂�. (6)

Since the above diffusion equation for u − u0 has the source
term−δµa u, the solution u(r) satisfies the following identity:

u(r)= u0(r)−
∫
�

G(r, r ′)δµa (r ′)u(r ′)dr ′. (7)

The nth Born approximation un is given by un =
∑n

k=0 vk ,
where

vk+1(r)=−
∫
�

G(r, r ′)δµa (r ′)vk(r ′)dr ′, k = 0, 1, . . . ,

(8)
with v0(r)= u0(r). When the perturbation δµa is small, the
Born series converges and u = limn→∞ un . In particular, for
non-negative δµa , a concise proof of the convergence is known
under the condition 0≤ δµa (r)≤ µ̄a for any r ∈� [16]. Let
us define the first and second Rytov approximations u R , u R2 as

u R = u0e v1/u0 , u R2 = u0e v1/u0 exp

[
v2

u0
−

1

2

(
v1

u0

)2
]

.

(9)
When the first Born approximation is compared with the first

Rytov approximation, the superiority of the latter has been dis-
cussed [3,17,18].

The difference u − u R can be written as

u(r)− u R(r)= u0(r)
(
1− e v1(r)/u0(r)

)
−

∫
�

G(r, r ′)δµa (r ′)u R(r ′)d r ′

−

∫
�

G(r, r ′)δµa (r ′)
(
u(r ′)− u R(r ′)

)
d r ′.

(10)

When ‖µa‖L∞(�) is small, we have

1− e v1(r)/u0(r) ≈−
v1(r)
u0(r)

=
1

u0(r)

∫
�

G(r, r ′)δµa (r ′)u0(r ′)dr ′,

(11)
and ∫

�

G(r, r ′)δµa (r ′)u R(r ′)dr ′

=

∫
�

G(r, r ′)δµa (r ′)u0(r ′)e v1(r ′)/u0(r ′)dr ′

≈

∫
�

G(r, r ′)δµa (r ′)u0(r ′)dr ′. (12)

Therefore, for sufficiently small ‖ δµa‖L∞(�), we obtain

‖ u − u R‖L∞(�) ≤C1′ ‖ δµa‖L∞(�) ‖ u0‖L∞(�)

+C1′ ‖ δµa‖L∞(�) ‖ u − u R‖L∞(�), (13)

where C ′1 is a positive constant. By moving the last term on
the right-hand side to the left-hand side, we arrive at the
following inequality for sufficiently small ‖ δµa‖L∞(�):
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‖ u − u R‖L∞(�) ≤C1 ‖ δµa‖L∞(�) ‖ u0‖L∞(�), (14)

where C1 is a positive constant.
The outgoing light is detected at r(p)d ∈ ∂�. Let us introduce

the dataφ(p) as

φ(p) = ln
u0(r

(p)
d )

u(r(p)d )
. (15)

In the first Rytov approximation, we have φ(p) ≈ φ(p)R2 ≈

φ
(p)
R , where

φ
(p)
R =−

v1(r
(p)
d )

u0(r
(p)
d )

,

φ
(p)
R2 =−

v1(r
(p)
d )

u0(r
(p)
d )
+

1

2

(
v1(r

(p)
d )

u0(r
(p)
d )

)2

−
v2(r

(p)
d )

u0(r
(p)
d )

. (16)

Note that u0, u R are positive. Using Eq. (14), we have∣∣∣e−φ(p) ∣∣∣= ∣∣∣∣u − u R

u0
+

u R

u0

∣∣∣∣
≤

C1 ‖ δµa‖L∞(�) ‖ u0‖L∞(�)

u0
+ e v1/u0 . (17)

The above inequality implies that φ(p)→ 0 as
‖ δµa‖L∞(�)→ 0.

4. DISCRETIZATION

Let M be an even integer. We introduce a spin variable of discrete
values as

S(r)= 0,±1,±2, . . . ,±
M
2
, r ∈�ROI. (18)

To explain how S(r) can be related to δµa (r), we will con-
sider the following two cases. In both cases, the two-dimensional
space (d = 2) is assumed.

A. Single-Spin Model

Let us assume

δµa (r)= η f ā (x )δ(y − y0), (19)

where η, y0 are given positive constants. In this case, �ROI is a
point (x , y )= (0, y0). Here, we assume that f ā (x ) is given by

f ā (x )=
[

ā3
+ 3

(
1+

tanh x 2

10

)
ā2

] (
1− tanh x 2) , (20)

where ā is a constant. Thus, δµa is determined by ā . This ā is the
unknown parameter to be reconstructed in the forward data.

When ā is sought, we assume that the minimum a (min) and
maximum a (max) of candidates of ā are known a priori. Let a be a
candidate of ā . We give a as

a = a (min)
+

a (max)
− a (min)

M + 1

(
S +

M
2
+ 1

)
∈ (a (min), a (max)

].

(21)

B. Multi-Spin Model

Next, we suppose that the support of δµa is unknown, but we
know δµa is zero outside a domain�ROI (supp δµa ⊂�ROI).

We divide the region of interest �ROI into cells ωi ⊂�

(i = 1, . . . , N) such that �ROI =
⋃N

i=1 ωi and ωi1 ∩ωi2 =∅

if i1 6= i2. Let |ω| denote the area (volume) of subdomains ωi .
We suppose N > MSD, which means that the inverse problem
is underdetermined. Let us assume δµa ∈ [0, δµ(max)

a ] with a
constant δµ(max)

a > 0. We introduce

δµa (r i )= δµ
(max)
a

(
Si

M
+

1

2

)
, Si = 0,±1,±2, . . . ,±

M
2

(22)
for i = 1, . . . , N. Here, r i ∈ωi is a representative point in ωi .
Thus, δµa is discretized in [0, δµ(max)

a ] by M + 1 values at each
point r i .

5. SPIN HAMILTONIAN: CASE 1

We consider the single-spin model of Eq. (19) for the
time-dependent diffusion of Eq. (1).

We note that Green’s function for Eq. (1) is given by

G(r, t; r ′, s )=
e−µ̄a c (t−s )

4πD0(t − s )
e−

(x−x ′)2

4D0 c (t−s )

[
e−

(y−y ′)2

4D0 c (t−s ) + e−
(y+y ′)2

4D0 c (t−s )

−

√
4πD0c (t − s )

`
e−

(y+y ′)2

4D0 c (t−s ) e

(
y+y ′+2D0 c (t−s )/`
√

4D0 c (t−s )

)2

× erfc

(
y + y ′ + 2D0c (t − s )/`√

4D0c (t − s )

)]
(23)

for t > s , and otherwise G(r, t; r ′, s )= 0. Here, `= D0ζ
and the complementary error function is given by erfc(x )=
(2/
√
π)
∫
∞

x exp(−t2)dt . Using Green’s function, we obtain

u0(r, t)=
g 0e−µ̄a c t

2πD0t
e−

(x−x i
s )

2
+y 2

4D0 c t

×

[
1−

√
πD0c t
`

e

(
y+2D0 c t/`
√

4D0 c t

)2

erfc

(
y + 2D0c t/`
√

4D0c t

)]
.

(24)

Let us define

g (y , t; y ′, s )=
1

4πD0(t − s )
e
−

(y+y ′)2

4D0c (t−s )

[
1+ e

(y+y ′)2−(y−y ′)2

4D0c (t−s )

−

√
4πD0c (t − s )

`
e

(
y+y ′

2
√

D0c (t−s )
+

√
D0c (t−s )
`

)2

× erfc

(
y + y ′

2
√

D0c (t − s )
+

√
D0c (t − s )

`

)]
.

(25)

Then, we have
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∫ t

0
G(r, t; r ′, s )u0(r ′, s )ds = e−µ̄a c t

∫ t

0
e
−

(x−x ′)2

4D0c (t−s ) e
−
(x ′−x

(p)
s )

2

4D0c s g (y , t; y ′, s )g (y ′, s ; 0, 0)ds . (26)

Therefore, we obtain

u R (r, t; r(p)s )= u0(r, t; r(p)s ) exp

[
−

e−µ̄a c t

u0(r, t; r i
s )

∫
∞

0

∫
∞

−∞

δµa (r ′)

(∫ t

0
e−

(x−x ′)2

4D0c (t−s ) e−
(x ′−x

(p)
s )

2

4D0c s g (y , t; y ′, s )g (y ′, s ; 0, 0)ds

)
d x ′dy ′

]
. (27)

We will use Eq. (27) to obtain the forward data in our numerical experiment.
By substituting the form of Eq. (19) for δµa in Eq. (27), we obtain

u R (r
(p)
d , t; r(p)s ; a)= u(r(p)d , t)

= u0(r
(p)
d , t; r(p)s ) exp

[
−

ηe−µ̄a c t

u0(r
(p)
d , t; r(p)s )

∫ t

0
g (0, t; y0, s ) g (y0, s ; 0, 0)

(∫
∞

−∞

fa (x ′)e
−
(x
(p)
d −x ′)

2

4D0c (t−s ) e−
(x ′−x

(p)
s )

2

4D0c s dx ′
)

ds

]
,

(28)

where

u0 =
g 0e−µ̄a c t

2πD0t
e
−
(x
(p)
d −x

(p)
s )

2

4D0c t

1−

√
πD0c t
`

e

(√
D0c t
`

)2

erfc

(√
D0c t
`

) . (29)

We obtain

φ
(p)
R =

ηe−µ̄a c t

u0(r
(p)
d , t; r(p)s )

∫ t

0
g (0, t; y0, s )g (y0, s ; 0, 0)

∫ ∞
−∞

fa (x ′)e
−
(x
(p)
d −x ′)

2

4D0c (t−s ) e
−
(x ′−x

(p)
s )

2

4D0c s dx ′

 ds . (30)

Let us discretize time as t→ t j ( j = 1, . . . , Mt ). With this discretization, we write φ̃(p)R instead ofφ(p)R .
In order to use SA instead of the naive Metropolis–Hastings Markov-chain Monte Carlo (MCMC) [10], we treat the cost function as

a spin Hamiltonian. We let8(p) denote the experimentally obtained data corresponding to φ(p). We can solve the inverse problem for
our DOT by minimizing the cost function, which is given by

H(S)=
1

2

MSD∑
p=1

Mt∑
j=1

∣∣∣8(p)
− φ̃

(p)
R

∣∣∣2 + α|S − S(0)|, (31)

whereα is the regularization parameter, and S(0) is an initial guess. We putα = 0.
The cost function in Eq. (31) has one local minimum and one global minimum [10]. To see this structure ofH, we introduce

h(t)=
1

t
exp

(
−

y 2
0

4Dc t

)[
1−

√
πDc t
`

e
(

y0
2
√

Dc t
+

√
Dc t
`

)2

erfc

(
y0

2
√

Dc t
+

√
Dc t
`

)]
. (32)

The following form is obtained using Eq. (28). By neglecting noise, we have

u
(

r(p)d , t j ; r(p)s ; ā
)
− u

(
r(p)d , t j ; r(p)s ; a

)
=
ηe−µa0c t j

(2πD)2

∫ t j

0
h(t j − s )h(s )

∫ ∞
−∞

dā (a , x ′)
(

1− tanh x ′2
)

e
−
(x
(p)
d −x ′)

2

4Dc (t j−s ) e−
(x ′−x

(p)
s )

2

4Dc s dx ′

 ds ,

(33)

where dā (a , x ′)= ξ(ā , x ′)− ξ(a , x ′)with

ξ(a , x ′)= a2

[
a + 3

(
1+

tanh x ′2

10

)]
. (34)

For a given x ′, the function |dā (a; x ′)|2 has the global minimum at a = ā > 0, a local minimum at a =−2(1+ tanh x ′2

10 ) < 0, and a
local maximum at a = 0. This structure of |dā (a; x ′)|2 implies that iterative methods, which always look for a position that lowers the
value of the cost function, do not work when the initial guess a0 is negative.
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6. SPIN HAMILTONIAN: CASE 2

Here, we consider the multi-spin model of Eq. (22) for the time-
independent diffusion of Eq. (2).

Let us define

K p,i = δµ
(max)
a |ω|

G(r(p)d , r i )G(r i , r(p)s )

G(r(p)d , r(p)s )
, (35)

where G is Green’s function for Eq. (2) withµa = µ̄a . Let φ̃(p)R ,
φ̃
(p)
R2 be discretized versions ofφ(p)R ,φ(p)R2 , respectively. Assuming

thatωi is small, we have

φ
(p)
R ≈ φ̃

(p)
R , φ

(p)
R2 ≈ φ̃

(p)
R2 , (36)

where

φ̃
(p)
R =

N∑
i=1

K p,i

(
Si

M
+

1

2

)
, (37)

and

φ̃
(p)
R2=

N∑
i=1

K p,i

(
Si

M
+

1

2

)

+
1

2

N∑
i1=1

N∑
i2=1

K p,i1 K p,i2

(
Si1

M
+

1

2

)(
Si2

M
+

1

2

)

− |ω|2
N∑

i1=1

N∑
i2=1

[
G(r(p)d , r(p)s )

]−1

× G(r(p)d , r i1)δµa (r i1)G(r i1 , r i2)δµa (r i2)G(r i2 , r(p)s ).
(38)

Let S= (Si ) (i = 1, . . . , N) denote the spin configura-
tion. We will look for S∗, which minimizes the following cost
function9(S):

9(S)=
1

2

MSD∑
p=1

∣∣∣8(p)
− φ̃

(p)
R2

∣∣∣2 + α N∑
i=1

|Si − S(0)i |, (39)

where α > 0 is the regularization parameter, and S(0) =
(S(0)i ) ∈RN is an initial guess, which we set as S(0)i =−M/2
(i = 1, . . . , N).

To compare terms of order (δµ(max)
a )2, let us introduce

g 1 = K p,i1 K p,i2 ,

g 2 = g 1 − 2
(
δµ(max)

a

)2
|ω|2

G(r(p)d , r i1)G(r i1 , r i2)G(r i2 , r(p)s )

G(r(p)d , r(p)s )
.

(40)

We have∣∣φ(p)g 2

∣∣= |g 1|

∣∣∣∣φ(p) g 2

g 1

∣∣∣∣
= |g 1|

∣∣φ(p)∣∣ ∣∣∣∣∣1− 2
G(r(p)d , r(p)s )G(r i1 , r i2)

G(r(p)d , r i2)G(r i1 , r(p)s )

∣∣∣∣∣ .

(41)

Recall that |φ(p)|→ 0 as ‖ δµa‖L∞(�)→ 0. Thus, for
arbitrary p, i1, i2 (p = 1, . . . , MSD, i1, i2 = 1, . . . , N),

|g 1| ≥ |φ
(p)g 2| (42)

when ‖ δµa‖L∞(�) is sufficiently small.
By neglecting g 2, we have 9 =H(S)+ const., where only

the first term H(S) on the right-hand side depends on Si . The
HamiltonianH(S) is given by

H(S)=−
N∑

i=1

N∑
j=1

J ijSi S j −

N∑
i=1

h i Si , (43)

where

J ij =
−1

2M2

MSD∑
p=1

K p,i K p, j ,

h i =M
N∑

j=1

J ij +
1

M

MSD∑
p=1

8(p)K p,i − α

 . (44)

The spin interactions are symmetric: J ij = J ji. We note that
the modulus |h i | of the magnetic field becomes large when the
hyperparameterα in the regularization term is large. In this case,
the spin Hamiltonian has a unique ground state (S∗ = S(0)) for
sufficiently largeα.

Thus, our optical tomography is reformulated as the
problem of searching the ground state of H(S), i.e., the spin
configuration S∗ = argminSH(S).

7. SIMULATED ANNEALING

The algorithm of SA is described below. Although we assume
Case 2 of multiple spins, the single spin in Case 1 can be
similarly implemented.

The Hamiltonian H(S) in Eq. (43) can be seen as a
Hamiltonian of spins that interact with each other in a solid
state material. In a real physical spin system, spins fluctuate
depending on temperature, and the spin system reaches its
lowest energy state if temperature gradually decreases. In SA,
we seek the optimal solution by mimicking this physical proc-
ess with thermal fluctuations. To this end, we introduce the
parameter T, which corresponds to temperature. We will find
the ground state S∗ ofH(S) in Eq. (43) by gradually decreasing
T from Thigh to Tlow.

The partition function Z is given by

Z =
∑
{Si }

e−βH(S), (45)

where β = 1/T is the inverse temperature. Here, we
used the notation

∑
{Si }
=
∑

S1
· · ·

∑
SN

. We treat
{Si } = {S1, S2, . . . , SN} as random variables. We give the prob-
ability density function π(S) as the Boltzmann distribution
given by

π(S)=
e−βH(S)

Z
. (46)
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We see that π(S) is large if H(S) is small. When the tem-
perature is sufficiently low, i.e., β is large, π(S∗) becomes
significantly larger than the probability of other configurations.

Although calculating the denominator Z on the right-
hand side of Eq. (46) is difficult, we can find S∗ by using the
Metropolis algorithm [15,19]. The proposal distribution
q(S ′i |S) is given for each spin, say the i th spin, and the value of
S ′i is generated with equal probability. We note that

π(S′)
π(S)

= eβ(H(S)−H(S
′))

= exp

β
J ii

(
S ′i

2
− S2

i

)
+

2
N∑

j = 1
j 6= i

J ijS j + h i


(
S ′i − Si

)


 . (47)

While the naive Metropolis–Hastings algorithm does not
work in high dimensions [20,21], the Metropolis algorithm
or single-component Metropolis–Hastings algorithm can
handle many unknown parameters [22]. Although we use the
standard Metropolis algorithm as the first attempt of the single-
component Metropolis–Hastings algorithm for DOT, different
algorithms with faster relaxation have been developed for spin
systems [15]. Our algorithm is summarized as the following six
steps:

1. Start with a small β = 1/Thigh > 0. Give (Si ) randomly as
an initial guess. Then, set i = 1.

2. Compute heff,i = 2
∑N

j=1 ( j 6=i) J ijS j + h i .

3. Calculatew=−β[heff,i (S ′i − Si )+ J ii(S ′i
2
− S2

i )], where
S ′i ∼ q(·|S) is randomly chosen.

4. Set Si = S ′i ifw≤ 0. Otherwise, put Si = S ′i with probabil-
ity e−w.

5. Set i = 1 if i = N. Otherwise, set i = i + 1. Return to Step
2. After repeating several loops from Step 2 to Step 5 until
the initial large fluctuation ceases, proceed to Step 6.

6. Decrease temperature and go to Step 2. If the temperature
reaches Tlow, finish the iteration.

In this paper, we decrease T as

T − 10int(log10 T)−2
→ T. (48)

8. NUMERICAL TEST

A. Single Spin

We take the unit of length and unit of time to be millimeters
(mm) and picoseconds (ps), respectively. On the x axis, we place
two sources at (x , y )= (−20, 0), (20, 0) and three detectors at
(x , y )= (−40, 0), (0,0), (40,0). As a result, we have MSD = 6.
We set D0 = 0.33,µa = 0.02, andn= 1.37. Suppose that there
is absorption inhomogeneity at depth five. For δµa , we put
η= 300/c , y0 = 5, and

ā = 1.5. (49)

When we prepare8(p), we added 3% Gaussian noise. We set

t j = j1t ( j = 1, . . . , Mt), 1t = 5, Mt = 500. (50)

Furthermore, we set M = 512, a (min)
=−3, and a (max)

= 3.
It is known that iterative methods cannot reach ā = 1.5 when

the initial value is negative [10]. We set the initial value a0 of a as

a0 =−0.01. (51)

In Fig. 1, we compare the SA developed in this paper with
the Levenberg–Marquardt algorithm [23–25], which is one of
iterative methods. The Levenberg–Marquardt algorithm fails to
arrive at the correct answer, whereas SA converges to the correct
value. In our simulation, converged values for the Levenberg–
Marquardt algorithm and SA are−2.05 and 1.68, respectively.
As is mentioned in the end of Section 5, the cost function has
a local minimum at a negative value of a . The calculation of
the Levenberg–Marquardt algorithm is trapped by this local
minimum. On the other hand, a goes back and forth between
the local minimum and global minimum in SA and then falls in
the global minimum as temperature decreases.

B. Multiple Spins

Let us consider DOT in the half space �, i.e., �= {r ∈
R2
; −∞< x <∞, 0< y <∞}. The boundary ∂�

is the x axis. Measurements are performed on the x axis:
r(p)s = (x

(p)
s , 0+), r(p)d = (x

(p)
d , 0). In this case, Green’s

function is explicitly given by

-6
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 2
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 0  50  100  150  200  250  300

simulated annealing

a

k

Fig. 1. (top) The value a is plotted against Monte Carlo steps for the
simulated annealing in Section 7. (bottom) The reconstruction is done
with the Levenberg–Marquardt algorithm.
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Fig. 2. (left) One absorber at the depth 10 mm. (right) One absorber at a deeper position at y = 15 mm.

G(r, r ′)=
1

2πD0

∫
∞

0

cos(q(x − x ′))
λ

×

(
e−λ|y−y ′|

+
`λ− 1

`λ+ 1
e−λ(y+y ′)

)
dq , (52)

where `= ζD0 and λ= λ(q)=
√
µ̄a
D0
+ q 2. Equation (52)

implies ‖ G(r, ·)‖L1(�) <∞ and ‖ G(r, ·)‖L∞(�) <∞

for any r ∈�. The integrand in Eq. (52) decays slowly when
y , y ′ are small and is oscillatory. The numerical integration in
Eq. (52) can be done by the double-exponential formula [26].

We use MSD = 240 source-detector pairs from 16 sources and
15 detectors:

x (p)s =±2,±6, . . . ,±30 mm,

x (p)d = 0,±4,±8, . . . ,±28 mm.
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Fig. 3. Two absorbers with separation of 20 mm reconstructed by
the proposed method.

In addition to the refractive indexn= 1.37, we set

µ̄a = 0.02 mm−1, D0 = 0.33 mm−1. (53)

We assume absorption inhomogeneity of the shape of disks in
the medium. Inside the disks, we set

δµa = 0.2 mm−1. (54)

We compute the forward data 8(p) (p = 1, . . . , MSD) by
the finite-difference scheme with the Gauss–Seidel method. We
added 3% Gaussian noise to u(r(p)d ) and u0(r

(p)
d ). Assuming

the diffuse surface reflection, we have [27]

ζ = 2
1+ rd

1− rd
, (55)

where

rd =−1.4399n−2
+ 0.7099n−1

+ 0.6681+ 0.0636n. (56)

We take (2Nx + 1)Ny = 1830 cells (Nx = 30, Ny = 30)
of the area |ω| = h2 (h = 1 mm). Moreover, the following
parameter values were used for SA:

α = 0.01, Thigh= 10−5, Tlow= 10−10, M = 256.
(57)

Figures 2 and 3 show reconstructed images by the proposed
method. In Fig. 2, a disk target of radius 2.5 mm was placed at
the depth of 10 mm (left) and 15 mm (right), that is, the x and
y coordinates of the disk center are x = 0 mm and y = 10 mm
or 15 mm. In general, the reconstruction at deeper positions is
more difficult because the signal becomes noisy, and the relative
contribution of the regularization term in the cost function
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Fig. 4. Two absorbers with separation of 20 mm. (left) The reconstruction by the truncated SVD with 52 singular values. (right) The reconstruc-
tion by the truncated SVD with 80 singular values.
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becomes larger [12]. As is expected, the reconstruction at a
deeper position is more difficult.

Next, we consider two disks of radius of 2.5 mm in Fig. 3. The
centers of the disks are placed at (x , y )= (±10 mm, 10 mm).
Figure 3 shows the reconstruction by the proposed scheme using
the same parameters described above for Fig. 2. For comparison,
we also used the truncated SVD. Reconstructions from the
truncated SVD are presented in Fig. 4 with 52 largest singular
values (left) and 80 largest singular values (right), respectively. In
the reconstructed images by the truncated SVD, the separation
between the two targets is less sharp.

In each numerical calculation, there are 5× 105 unknown
parameter values. The computation time to find S∗ was about
3 min on a laptop computer (MacBook Pro with 2.3 GHz Intel
Core i5 and 8 GB memory).

9. CONCLUDING REMARKS

We have developed a stochastic approach of DOT using the
Metropolis algorithm of the Monte Carlo method. Due to the
fact that the inverse problem for DOT is severely ill-posed, the
reconstructed values are always blurred at least to some extent.
This motivated us to introduce spins, which have discrete val-
ues. The effect of the discretization of the parameter is subtle
for the single-spin model but becomes important when the
number of spins increases in the multi-spin model because the
discretization reduces the search space.

For linearized inverse problems, the truncated SVD is often
used [3,4]. Although the truncated SVD has a filtering property
similar to the Tikhonov regularization, the penalty term of the
proposed method is not restricted to the 2-norm. In this paper,
the 1-norm was used. This might explain the difference of the
quality of reconstruction in Fig. 4. Another advantage of our
method is that it is feasible to use a priori information and set the
lower and upper bounds of δµa , whereas the reconstructed δµa

by the truncated SVD is unbounded. This feature is reflected in
the difference between the proposed method and SVD in Fig. 4.
As is seen for the single-spin model, the proposed method can
treat both linear and nonlinear inverse problems.

The single-spin model provides a nonlinear inverse prob-
lem. Although it is a linearized inverse problem, the multi-spin
model demonstrates that a large number of unknowns can be
treated by our numerical scheme. It is a natural next step to
consider nonlinear inverse problems with multiple spins. For
this, nonlinear terms such as u R2 in the Rytov series have to be
taken into account. When the landscape has a more complicated
structure, it is important to decrease temperature gradually.

To achieve fast convergence, it is crucial to bring the spin sys-
tem efficiently to the thermal equilibrium state. Various Monte
Carlo methods for spin systems have been developed to reduce
the computation time. These techniques may be implemented
in our approach, which solves the inverse problem of DOT
from the viewpoint of statistical mechanics of spin systems.
Existing Monte Carlo methods for spin systems include the
following algorithms. The replica exchange method prepares
multiple copies of a spin system to let the system at low temper-
atures escape from local minima [28]. To minimize the average
rejection rate, the MCMC algorithm by Suwa and Todo breaks
the detailed balance condition while preserving the balance

condition [29]. Quantum annealing makes use of quantum
fluctuations of spins whereas SA uses thermal fluctuations [30].
Quantum annealing also has potential to provide an efficient
algorithm for DOT.
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