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Abstract

The diffusion approximation has been one of the central topics in near-infrared spectroscopy (NIRS).
When NIRS measurements are analyzed by the diffusion theory, the measurements must be
performed in the diffusive regime. However, since most of past researches have focused on theoretical
or qualitative nature of the diffusion approximation, it is not easy to know if each measurement is
designed in the diffusive regime. In this paper, we consider the diffusion approximation quantitatively
and propose indicators that quantify the degree of validness of the diffusion approximation. The
difference between the measurement and diffusion theory can be evaluated with the X2 value, 7! and
£? norms, and Kullback-Leibler divergence. We conduct a liquid phantom experiment to test the
proposed X value. Moreover, the \* value is further investigated by Monte Carlo simulations. We
find the x* value becomes significantly large when measurements are performed in the nondiffusive or
transport regime. The proposed indicators similarly work. In particular, the x* value is shown to work
as an indicator which evaluates the degree of validness of the diffusion approximation. These
indicators are general and can be used for different numerical, experimental, and clinical
measurements in NIRS.

1. Introduction

Since near-infrared light is absorbed and scattered in biological tissue, the light detected on the surface has the
information on the medium in which light propagates. Hence we can access optical properties of the medium
such as the absorption and scattering coefficients by illuminating the medium by near-infrared light. Near-
infrared spectroscopy (NIRS) including optical tomography often relies on the diffusion approximation to the
radiative transport equation. When optical properties of biological tissue are retrieved using the diffusion
theory, measurements must be conducted in the diffusive regime, in which the source and detector are well
separated and the absorption coefficient 1, is sufficiently smaller than the reduced scattering coefficient ui.
Although it has been one of the central topics in NIRS to identify the diffusive regime, most researches have
qualitatively studied the diffusion approximation. Hence, in this paper, we revisit the diffusion approximation
quantitatively and provide an indicator which helps design measurements in the diffusive regime.

The transition from the transport regime to the diffusive regime takes place asymptotically when the
propagation distance of light is large and 4, < 1./ Thatis, there is no clear boundary between the two regimes.
However, there is a practical need of drawing the border. In NIRS, optical properties of biological tissue are
determined by the comparison between measurements and simulational results. Since the computational
cost of the radiative transport equation is quite often too expensive, the diffusion equation should be used if
measurements are performed in the diffusive regime. Past researches on the transition from the transport regime
to diffusive regime include the following studies.

©2021 The Author(s). Published by IOP Publishing Ltd
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In [1], the ratio of the fluence rate and its value from the diffusion approximation was plotted against
the distance between the source and detector for different i, values. The plot shows that the diffusion
approximation works well when 1, /¢, = 1/100 and the distance is larger than 10/, and the approximation
becomes worse when the absorption exceeds , / ,u; =1 / 25. Although such tendencies can be read from such
qualitative study, it is not easy to capture how satisfactory the diffusion approximation holds for given 1, and
source-detector distance. Here we will present an indicator which shows the degree of validness of the diffusion
approximation.

In [2], time-resolved measurements were performed in the transmission geometry and measured temporal
profiles were compared with the prediction by the diffusion theory. They concluded that the diffusion
approximation breaks when the width of the slab becomes smaller than 10£* (¢* is the transport mean free
path). In [3], solutions to the time-independent diffusion equation were compared with Monte Carlo solutions
in the reflection geometry for a semi-infinite medium. From the comparison, the criterion 4, < pi! /4 canbe
read as a condition that the diffusion approximation holds. Moreover they found that the diffusion results are
more accurate for small g. By investigating the Brownian motion using a low coherence interferometry, it was
experimentally shown that the transition to the diffusive regime depends on the anisotropic factor geven when
1£, is unchanged [4]. The breakdown threshold 82 was suggested in [5]. In their study, this breakdown threshold
was obtained through time-resolved experiments in the transmission geometry with a sample of various
thicknesses. By observing temporal profiles of transmitted light, slabs of width greater than 8./ were defined to
be in the diffusive regime [6, 7]. In [8], the condition p, < ui / 10 was proposed. The limits of the diffusion
approximation was considered with a two-dimensional numerical phantom of the human brain and a three-
dimensional cubic numerical phantom by the comparison between the diffusion equation and radiative
transport equation calculated by finite-difference scheme [1, 9]. Their calculation shows that the fluence rate by
the diffusion approximation becomes half of its true value when p, = /12 / 2 and the distance is 8 in the unit of
1 / ,u;. It was reported that the deviation of the fluence rate increases when the anisotropic factor g (introduced
below) is close to 1, which is typical in biological tissue [10]. The deviation of the dynamic intensity-intensity
correlation function from the prediction of the diffusion theory was experimentally observed [11].

The extrapolated boundary condition has often been used to further approximate the diffusion equation.
Itis known that those approximate solutions are quite precise in the diffusive regime. The reflectance and
transmittance were derived as functions of time from the diffusion equation solved using the extrapolated
boundary condition [12]. The prediction from those concise formulae agreed well with Monte Carlo
simulations. In [13], the validity of the diffusion model was confirmed by experiments and Monte Carlo
simulations. In [14], the validity of the diffusion model was studied in frequency domain using the spherical and
cylindrical geometries in addition to the slab geometry. The effect of different approximations to the diffusion
equation was studied [ 15, 16]. The diffusion approximation with the extrapolated boundary condition was
tested using Monte Carlo in the slab geometry [17].

It was found that the quality of the diffusion approximation depends on the refractive index [13, 18]. Results
for different index mismatches were reported [ 19]. Moreover, the validity of the diffusion approximation on the
surface was studied [20].

The nondiffusive regime was studied by using other approximations to the radiative transport equation.
When 1, > pg, a clear difference was observed between solutions to the diffusion equation and telegrapher
equation, which takes the ballistic component of photon propagation at short times into account [21]. The
diffusion approximation was compared to the P; and P; approximations [22].

The light propagation is said to be in the diffusive regime if the solution to the radiative transport equation
and the solution to the diffusion equation match. However, there is no unique way of setting the border of the
diffusive regime because the change from the transport regime to diffusive regime takes place gradually. To draw
aline between two regimes, a criterion must be set. In this paper, a constant a (see below) is used as the threshold.
The solution to the radiative transport equation can be obtained from measurements since infrared light in
biological tissue is governed by the radiative transport equation. In this case, the threshold a must be setin such a
way that the determined boundary of the diffusive regime is not affected by measurement noise or error.

In this paper, we propose to use an indicator such as the x* value to identify the diffusive regime. Thus, the
degree of validness of diffusion approximation is given as a > value. Although the change from the nondiffusive
or transport regime to the diffusive regime takes place asymptotically, we find that x* values rather rapidly
change when measurements shift from one regime to the other. The behavior of the x* value is tested both by
liquid phantom experiments and Monte Carlo simulations. By Monte Carlo simulation, it is confirmed that
other indicators #* and #* norms, and the Kullback-Leibler (KL) divergence work as well.
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2. Methods

2.1. Diffusion theory

Here, the diffusion theory is developed for a three-dimensional semi-infinite medium. In addition to the
reflection on the boundary, we take into account the instrument response function, diameters of the optical
fibers, and numerical aperture in the diffusion approximation. The approximate form ®“*(¢) of the detected
light ®(p,, t) (defined below) will be derived.

2.1.1. The radiative transport equation

Let us consider the three-dimensional halfspace @ = {r € R% —oo < x < 00, —00 <y < 00, 0 < z < 00}.
We consider the specific intensity I(r, §, t) of near-infrared light at position r = (x, y, z) in direction § = (sin ¢/
cos (p, sin ¥ sin ¢, cos 1) at time t. Here, the polar angle ¥} and azimuthal angle ¢ varyin 0 <9 < mand 0 < ¢ < 2,
respectively. When absorption coefficient y1, and scattering coefficient y, are positive constants, the specific intensity
I(x, §, t) obeys the following radiative transport equation.

1
(—2 +§-V+ua—|—,us)l(r, S, 1)
c Ot

= fo27rj(;7r p(, $HI(r, ¢, t)sin d¥dy’ + q(1, §, t),

where ¢ > 0 is the speed of light in the medium and p (8, §') is the scattering phase function, which is normalized
as

2w s
f f pG, sind dddy = 1 @)
o Jo
forall ¥’ € [0, 7], ¢’ € [0, 27). Weassume p(§, §') = p(—§', —8). The anisotropic factor gis introduced as
2 g
= §-8)p(S, §)sind ddde. 3
g= [ @906 $)sin dvdy 3)

The reduced scattering coefficient is given by 1, = (1 — g) .. There s the source term ¢ (r, §, t) on the right-
handside of (1).
In addition to the initial condition I (r, §, 0) = 0, the boundary condition is imposed as

I(r,8,t) =R(B)I(x,S,,t) on z=0 4)

for 0 < ¥ < w/2.Here, §, = (sin ¥ cos @, sin ¥ sin p, —cos1}). Let n denote the refractive index of the
medium. We assume air outside the medium. Assuming unpolarized light, the Fresnel reflection R (§) is given by

1|(ncosd — ? nu, — cosd )
R() = — nCoSY = Hy + npy — COSV (5)
2|\ ncos? + p, np, + cosv

for . < cos?¥ < land R(S) = 1when 0 < cos® < p,. Here, 1, = J1 — n3(1 — cos?®9) and
po=n*—1/n.
Letr, = (p, 01), where p; = (x, y,), be the position of the optical fiber for the incident beam on the surface.
We set p, = 0. We write the source term q (1, §, t) as
q(, 8, 1) =6(r — 1)6(8 — 2)h(¢)
=6(x)6(y)6(z — 0M)6(cos? — 1)6(p)h(1), (6)

where §( - ) is Dirac’s delta function, Z = (0, 0, 1), and h(%) is the temporal profile of the incident beam. In our
measurement in the reflection geometry, the detector is placed on the boundary at r; = (p,4, 0) with pg = (x4 ¥,)-
Let R(t) denote the response function. Considering the diameter D(p, r;) and numerical aperture A(S) of the
optical fiber for the detector at r,;, the measured quantity ®(p,, t) is expressed as

B(pp 1) = [ Rt =) [T [T A®)sind
X ff; fj:o D(p, ta)I(p, 0, 8, t')dxdydddpdt’, (7)

where p; = |p4|- If the detector radius pgpe; is small, we can put D(p, 1z) = Wp?lber 6(p — py). If the numerical
apertureis givenas m — Upax < ¥ < 7,0 < ¢ < 27 for some Uhay, then we can write A(S) = xy, (5), where
xna = 1if 9 € [1 — P 7] and yna = 0 otherwise.

3
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The function Z(t) below corresponds to the instrument response function.
t
T(t) = f R(t — s)h(s)ds. (8)
0

Ifh(t) = 6(t), then I (1, §, t) = Ggrre(r, S; 15, Z; t) becomes the Green’s function for the radiative transport
equation in the half space. Let us define

Gl )= [ [ A®sind [~ [ Dip g

X Grre(ps 0, §; 1, 25 t)dxdydddp. )
We note that
D(pp t) = j: R(t — t') wa Glpp t' — t")h(t")dt"dt!
= ( R - t’)h(t/)dt’)g(pd, t — s)ds. (10)
Therefore we obtain

B(pp 1) = [ Glpp t — )T(s)ds
= j(‘)%r [T A®sing [T [T D(p, o)

x fi " Grie(ps 0, 8 1 23 £ — $)I(s)dsdxdydddep. (11)
Throughout the paper we set
pq = 20 mm. 12)
The above ®(p,, t) corresponds to the measurement by the TRS-20, which we denote by D™(py 0.

2.1.2. Diffusion approximation

Let us calculate ®(p,;, 1) using the diffusion approximation. In the spirit of the diffusion approximation, we write
the specific intensity as

3

s =L 3.
I(r, 8, 1) = 47Tu(r, t) + o J(x, t). (13)

By substituting the above expression (13) in (1) after some calculations [23], we obtain
L8 1) - AU ) + s, ) = S(5, ) (14)
c ot
where the diffusion coefficient is given by [24]
D=—, 15
3u£ (15)

where . = (1 — g) pt,. The dependence of the diffusion coefficient on parameters in the radiative transport
equation has been studied. Indeed, D = 1 / [3( ,ui + p,)]is derived from the straightforward calculation.

However, the form 1 / 3 ui) was suggested by more detailed studies [25-27, 24]. In Appendix A, we develop an
alternative approach to the diffusion approximation. The diffusion coefficient (15) is derived in Appendix A.
The source term is obtained as

S, 1) = Qolr, 1) — =V - Qur, 1). (16)

N

Here we introduced

Qo(r, t) = J;Zﬂ foﬂ q(r, 8, t)sind dido,

Q0= o 7 3q(r, 8, tysin dvde. (17)
The current J(r, £) is obtained as

J(t, 1) = —DVu(r, 1) + —Qi(r, 1), (18)

S

Let us consider the boundary condition for the diffusion equation (14). With the diffuse surface reflection,
we obtain the following Robin boundary condition.

4
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(e, 1) — 20A2% (1 ) =0 atz=—o, (19)
0z
where [28,29]
A=t 20)
1 — 17
where
rg = —1.4399n72 4+ 0.70991~' + 0.6681 + 0.063n. (1)

Moreover the initial condition is given by u(r, 0) = 0.
Let us calculate GP%(p,, t) by making the diffusion approximation to G(p;, t). Then we have within the
diffusion approximation,

oo~ [ Gyt~ DI, (22)

Let us begin by considering the diffusion approximation to the Green’s function Grrg. In the radiative
transport equation (1), we set

q, 8, 1) =6(r — )65 — 2)0(¢). (23)

Then we have Qy(r, t) = 6(r — ry)6(t) and Qy(r, t) = 26 (r — r,)6(¢), and the source term for the diffusion
equation is obtained as

S, ) =06(x — x)6(y — 3)6() (6(2’ - 0") — %gé(z — O+)]. (24)
z

S

From the fact thatr; = r,, we see J(r5 t) = — DV u(r,, t). Thus we obtain
T T . 00 00 1 3 ~
GPA(py 1) = j;z ﬁ .A(s)sm19f f D(p; 1) (4—u(rd, 1) + 4—](rd, t) - s)dxdydﬁdga
2 oY 7 /s

Ll (1 cos 2wt 0, 9

2
=T
P ﬁ"“( 2 16A

where we assumed that pgp., is small and LA(S) = xy, (§) was used. Using the Green’s function G(r, r'; t) for the
diffusion equation with the source term § (r — r')§ (¢), we obtain

ua, = [ [ Gay 15t = t)S(r, ¢)drde’

=G (14, X5, ¥, 01) + i,foo 6(z — 0+)£G(xs, Voo 2, T 1) dz, (26)
w0 0z

where we used integration by parts and the reciprocal property G(r, t'; £) = G(r/, r; t). Hence by making use
of the Robin boundary condition,

3
u(rg, t) =114+ —|G(ry 15 t). 27
(ra, 1) ( ZA) (rg ) (27)
Therefore we arrive at

1 — cos Umax 3
gDA(pd’ t) = Wpéber (7ma =+ —(1 — COos 2ﬁmax))

2 16A

X (1 + %)G(rd, I 1) (28)

We can obtain the Green’s function as

ce Hact x4y

G(I', rl; t) - We 4Dct g(z, Zl; t). (29)
Here,
z2—2)2 2+2)2 2 z+z7 ct ! 2D
g(z, 25 1) = e’% + e’(;Dcr) — £ [aDcte T erfe M
4 V4Dct
2 )2 S R P R A /
= e‘(wct) + e‘(fna) — E chte‘% e( i ) erfc w > (30)
4 V4Dct

where £ = 2DA and the complementary error function is given by erfc(z) = % f ™ e~** dt. We note that

G =0whent < 0. The expression (29) is obtained by straightforward calculation [f’)O].

5
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We can write
t
(1) = G f GPNp,, £ — T)VI(7)dr, (1)
0

where G/ = fooo @TRS(t)dt/fOOC J: GPM(py, t — T)I(1)drdt. When ®"*° is compared with results from the
diffusion theory, precise knowledge of p;, Unmax, A is not required because the constant factors on the right-hand
side of (28) can be absorbed by the constant C;’. That is, the following relation holds in the diffusive regime.

B (1) = GPA(1),
®OA() = [ "Gy, 1 t — TVI(T)dT (32)

for some positive constant C;.

2.2.Liquid phantom

2.2.1. Time-resolved spectroscopy instrument

A two-channel time-resolved spectroscopy instrument (TRS-20, Hamamatsu Photonics, Hamamatsu, Japan)
was used to measure optical properties of the liquid phantom. The TRS-20 system consists of three pulsed laser
diodes of wavelengths 759 nm, 794 nm, and 834 nm each of which has the duration of around 100 ps at the
repetition rate of 5 MHz, a high-speed photomultiplier tube for single photon detection, and the TCSPC system,
which has a circuit for time-resolved measurements based on the time correlated single photon counting
(TCSPC) method. The TCSPC system can detect arrival photons with approximately 10 ps time resolution.
Although temporal profiles of emerging photons from the sample can be simultaneously accumulated up to a
count rate of 500 kcps for all three wavelengths, temporal profiles are measured at less than 150 keps to avoid
pile-up distortion. The minimum data acquisition time is 100 ms. The instrumental response of the TRS-20 is
measured by placing the incident optical fiber (200 m diameter, NA = 0.25) opposite the detecting optical fiber
(bundle fiber, 3 mm diameter, NA = 0.29) with a neutral density filter between them. The FWHM (full width
half maximum) of the instrument response function of the TRS-20 is about 350 ps at each wavelength. In this
study, we used the wavelength of 794 nm.

2.2.2. Liquid phantom measurements

Figure 1 shows the experimental setup. A liquid phantom was prepared in a bucket of radius 8—10 cm and height
20 cm. The 10% Intralipos (Otsuka, Tokyo, Japan) and green brown ink (Chugai Kasei, Tokyo, Japan) were
gradually added to water (initially 3 L) to control the scattering and absorption, respectively. The incident and
detecting optical fibers from the TRS-20 were attached to a holder. The separation of the fibers was 2 cm, i.e.,

pa =20 mm. We set the holder on the surface of the liquid phantom and supported optical fibers by using two
arm-type clamps. The liquid phantom was stirred with a magnetic stirrer (SW-030, Nissin Science, Tokyo,
Japan) except for during measurement. We confirmed that the bucket is deep enough and the liquid phantom
can be regarded as a semi-infinite medium even for smallest 1, ug used in the experiments.

In the diffusive regime for large /‘i’ optical properties of the liquid phantom were estimated by the TRS-20,
which obtains 1, and 4. using the Levenberg-Marquardt method by minimizing the difference between the
measured temporal profile and the time-resolved reflectance calculated from the diffusion theory (see [31]
for details). We confirmed that estimated 11, values by the TRS-20 were consistent with values from
spectrophotometric measurements (UV-3100, Shimadzu, Kyoto, Japan). The absorption coefficient s, of the
liquid phantom can be kept the same for different /., by adjusting the ink so that the ratio of the ink to the total
amount of the liquid phantom is fixed. Making use of the fact that the reduced scattering coefficient 1./ of the
liquid phantom linearly depends on the concentration of Intralipos, we determined ui values in the nondiffusive
regime by extrapolating the line fitted by linear regression taking several 1./ values in the diffusive regime in the
plane of the Intralipos concentration and ug. The 1, ,u; values used for the experiments are summarized in
tables B1 and B2 in Appendix B.

2.3.Monte Carlo simulations

In addition to the liquid phantom experiment, we employ Monte Carlo simulation, in which optical properties
of the medium can be precisely specified. The validity of Monte Carlo simulations for a liquid phantom was
confirmed in [32]. Our Monte Carlo simulation was implemented using the variance reduction technique

[33, 34]. While photons propagate in the medium, they are scattered according to the scattering phase function
at each scattering point. The Henyey-Greenstein model [35] was used. The anisotropy factor was set to g = 0.9
for 1, = 0.06 mm ™" and y1, = 0.1 mm ™', and g = 0.33 otherwise. The refractive index was set to #=1.33. On the
boundary at z = 0, the reflection and refraction caused by the refractive index mismatch were considered.

6
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TRS-20

detecting

incident
optical fiber

optical fiber

liguid phantom
(water+ink+Intralipos)

Figure 1. Schematic figure of the experimental setup.

The diameter and numerical aperture of the incident fiber at the origin are 0.2 mm and 0.250, respectively.
The detecting optical fiber was placed at a distance of 20 mm from the source (that is, p; = 20 mm). For the
detector, the diameter and numerical aperture were set to 3 mm and 0.260, respectively.

The weight of detected photon packets was accumulated into time-resolved arrays for absorption
coefficients. The duration of an array element was 10 ps, corresponding to the temporal resolution of the TRS
instrument used in our experiment. In each Monte Carlo simulation, 10° photons were launched.

In Monte Carlo simulations, QMC(pd, t) corresponding to G(p;, t) is numerically computed. We have
D(p, ta) = x,,(p)and A(8) = xy, (8), where x, (p) = 1if[p — pa| < paperand x,,(p) = 0 otherwise. We set
Umax = 0.26, paber = 1.5 mm. We introduce

t
V() = [ Mo ¢~ T (33)
0
We have
ITRS(r) = C,DMC(p), (34)
The constant C, is obtained as
[ TR (1)dt
= (35)
fo OMC (1) dt

2.4. The x* indicator
Let us normalize the time-resolved functions as

Py = 2O (36)
fo DEXP (1) dr

A0 = 2O (37)
fO PPA(1)dt

where EXP means TRS or MC. The integrals in (36) and (37) are computed with the trapezoidal rule.
Measurement times are discrete values given by

te=kAt, At=10ps, k=0,..,M— L. (38)
Here, M = 1024 for TRS and M = 800 for MC.

7



10P Publishing

J. Phys. Commun. 5(2021) 025012 A Capartetal

There are different ways of measuring the difference between two functions. To evaluate the difference
between the measured time-resolved reflectance, which is the solution to the radiative transport equation, and
the temporal profile by the diffusion approximation, we introduce the x> value as

k, | =EXP ~DA
) LT () — @ ()
= E — . (39)
X k=k, 3 (1)

The lower and upper limits k,, k;, are chosen such that $DA(tk) fork=0, ..., k,—landk=k,+1, ..., M—1
are less than one-tenth of the peak height of <T>DA(tk). The integers k,, k;, will be chosen such that values which are
more than 10% of the peak height are considered in the sum in (39).

In addition to the x* value, we propose the #' norm, #* norm, and KL divergence. They are given by

Zih:kalfk - &l Zib:kﬂfk — gl*,and Eih:ka L ln(ﬁ/gk),respectively. Here, f, = 5Exp(tk) and

& = & *(#,). These indicators behave similarly if scaled properly (see figure 8 below). Hence we will focus on
the x* indicator in this paper.

A few remarks are necessary: (i) We note that the x* indicator introduced above has nothing to do with the
X~ test in statistics. The x* value in (39) is used to measure the distance between the solution to the radiative
transport equation and the solution to the diffusion equation. In this paper, we admit that experimentally
obtained data obey the radiative transport equation and treat ®EXP () as the solution to the radiative transport
equation. This means that we do not argue how precisely measured experimental data are described by the
radiative transport equation. (ii) The KL divergence sometimes becomes negative whereas the X2 value, 7' norm,
and #° norm are always nonnegative.

We separate obtained data for different y,, and ug into the diffusive and nondiffusive regimes using the
value (39). To this end, we set a threshold a. The measurement is identified as in the diffusive regime if X’ <a.
Otherwise the measurement is considered to be in the nondiffusive or transport regime.

3. Results

Figure 2 shows x> values (39) obtained from the liquid phantom experiment for the absorption coefficient

e =0.0023 mm ' (purple), 0.012 mm ' (green), and 0.021 mm ' (red). It is found that the x* value becomes
significantly large for y1, = 0.012 mm ™' and 0.021 mm ™' when the source-detector distance p; 11, in the unit of
1 / ,ug is less than 5. In the experiment p; = 20 mm. Tables B1 and B2 in Appendix B summarize x* values
obtained in the liquid phantom experiment. Figure 2 illustrates that the indicator takes large values when y,, is
large.

The diffusive and nondiffusive regimes are segmented in figure 3. The threshold a is set to 5. Since the x*
value rapidly grows as shown in figure 2 once performed measurements move from the diffusive regime to the
transport regime, the same result is obtained if a = 4 or a = 6. Figure 4 shows time-resolved reflectances for
e = 0.021 mm ' (the top curve in figure 3). In figure 4, temporal profiles éTRS(t) from the TRS-20 for the
smallest ui (the leftmost point in figure 3) and largest ,ug (the rightmost point in figure 3) are compared with the

time-resolved reflectances &"* () from the diffusion equation. There is a noticeable discrepancy in the left panel
of figure 4 for the smallest 41/ = 0.207 mm ™.

To explore the intermediate region between the transport and diffusive regimes more carefully, we employ
Monte Carlo simulations. Obtained x* values from Monte Carlo simulations are summarized in tables B3, B4,
and B5 in Appendix B.

In figure 5, we set @ = 10. Then measurements belong to the nondiffusive regime when p, /1,2 and f, / u; are
small.

Let us try other values of the threshold a and see how the defined diffusive regime is affected by a. In the left
panel of figure 6, we set a = 20. Since the criterion a = 20 is loose, the defined diffusive regime is wider than the
region defined in figure 5. That is, there are more blue open squares in the left panel of figure 6. In the right panel
of figure 6, the a value is set to 5. This a = 5 is severe and measurements are classified in the nondiffusive regime
unless p;and p, are very small. When measurements in the non-diffusive regime are of interest, a should be
taken rather large (e.g., a = 20), so that the points marked in red are surely in the non-diffisive regime. On the
other hand, if measurements in the diffusive regime are of interest, a should be set to small values (e.g., a = 5),
so that blue open squares certainly belong to the diffisive regime. Figure 7 shows results for Monte Carlo
simulations with z, = 0.01 mm ™. All curves in figure 7 are plotted together in figure 8 after scaling. The £
norm, Z2 norm, and KL divergence are scaled as
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I I
H, = 0.0023/mm

151 W, = 0.012/mm i

H, = 0.021/mm

10 |

0 |II|||II|II1 a1 !
5 10

15 20 25 30
Pa p‘s,

Figure 2. Obtained x” values are plotted as functions of P ug, where the source-detector distance p; = 20 mm. Results for three i,
values 0.0023 mm ™~ (purple), 0.012 mm ! (green), and 0.021 mm ' (red) are shown.

I T T
0.1 above a ° -

below a o)

0.08

0.06

TR

0.04

0.02

0 5 10 15 20 25 30
Py Hy

Figure 3. Results from the liquid phantom experiment are shown. Red solid circles are used for the nondiffusive regime and
measurements in the diffusive regime are marked by open blue circles. Black solid lines show (1, / /L:) = Pty / (py /L:) for py = 20 mm
and 1, from the top, 0.021/mm, 0.012/mm, and 0.0023 /mm.

25 T T T 25 T T I I

o L TRS ——— | oL TRS —— |
15 DA R 1.5 DA f
'1 i ' =0.207/mm '1 | p,=1.46/mm |
05 5 0.5 | .
0 | | 0 | |

-1 0 1 2 3 4 -1 0 1 2 3 4

time (ns) time (ns)

Figure 4. Comparison between time-resolved curves from the TRS-20 and results calculated with the diffusion approximation for
fa =0.021 mm ™" when (Left) 1/, = 0.207 mm~'and (Right) 4, = 1.46 mm~".

y(x) — y(x=128) + y,2(x = 28)
yx=4) — y(x=28) + y,2(x = 28)

y o= 4) (40)

where x = p, ui and y, 2 isthe x* value. Here, y is either y /1 ¥ o2 OF yx1, which are defined in the same way as

y - Table 1 shows derivatives dy/dx (central differences) for the indicators x> ¢', £%, and KL divergence, which
are calculated from numerical values in figure 8. It is observed that derivatives take negative large values at

Py ,ug = 6.Forlarge p, ,ug, derivatives are small positive numbers. When p, ug is greater than 20, the solution of
the radiative transport equation and the solution of the diffusion equation are almost indistinguishable. Since
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[
above a

below a

o

15

20

Py p‘s,

25

Figure 5. Same as figure 3 but data were taken from Monte Carlo simulation. Measurements in the nondiffusive regime are marked by
red solid squares and measurements in the diffusive regime are denoted by blue open squares. Black solid lines show (1, /1) = p; 1,/
(o ué) for pg = 20 mm and p,, from the top, 0.1/mm, 0.06/mm, 0.02/mm, 0.01 /mm, and 0.002/mm.

30

Mo/ 1y

Ho /1y

0 51015202530
pdus’

Ja=0.01mm .

0 51015202530

Pa “s’

0 5 15 20 25 30
Pa “s’
Figure 6. Same as figure 5 but (Left) a = 20 and (Right) a = 5 are used.
2 T T T 1 3 L——— 15 ——— T 150 ————1
%g 22 ] §'8 T — 10 F P - 100 | \KL —— -
nr ’ 28 ] 5 - . 50 |- 1
8 | L L 0 | | | I 0 | L

0 51015202530
pdl“ls’

Figure 7. From the left, values of XZ, ¢!, ¢% andKL divergence are shown in the case of Monte Carlo simulations with

0 51015202530
Pa “s’

the number of data k;, — k, + 11in (39) increases when p;, ,ug is large and the time-resolved curve is broadened,

derivatives take small positive values for large p, ,ug. Indeed in the case of the Monte Carlo simulation with
fta=0.01 mm ™, (1, mm~Y ky, ky) = (0.2; 4, 54), (0.4; 8,76), (0.6; 11,94), (0.8; 14, 109), (1.0; 17, 122),
(1.2; 19, 134), and (1.4; 22, 145), respectively.

4. Discussion

Let us compare GMC and GPA. We write

gMC — C3 gDA.

(41)

We found A = 2.785 and C; = 1.3. The result that C; is slightly greater than 1 attributes to the fact that the
diffusion approximation breaks on the boundary. In section 2, the source was placed on the surface when ®"(z)
was calculated. In the diffusion approximation, quite often the source S(r, #) is placed inside the medium (z > 0)

10
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Figure 8. Values of Xz’ ¢Y, 2 and KL divergence are shown in the case of Monte Carlo simulations with yi, = 0.01 mm ' To
compare, the curves are scaled according to (40).

Table 1. Derivatives (central differences) of the curves
in figure 8 are shown.

Pk, oA’ @ @' (KL
6.0 —4.68 —4.32 —4.16 —5.07
10.0 —0.93 —1.25 —1.19 —0.71
14.0 —0.23 —0.34 —0.37 —0.15
18.0 —0.05 —0.12 —0.13 —0.05
22.0 0.00 0.07 0.07 0.02

26.0 0.02 0.05 0.06 0.02

about one transport-mean-free-path away although the source term q(r, §, t) represents the optical fiber on the
boundary. This has an effect of improving the value of Cs. To see the effect, let us consider the solution with the
extrapolated boundary condition. In this case, the Green’s function for the diffusion equation in the half space is
obtained by using g, - (z, z’; t) instead of g(z, z’; £) in (29). Here,

Genc(@ 23 1) = et — e (42)
Suppose the source is placed at r; = (x,, ¥, d), where dis small (i.e., 2Ad < ctand 4DA* < ct). Then we have
genc(0,d; t) = [1 4+ d/(2DA)]gepc(0, 0; t). We find that d = 0.871/;4 results in C; = 1.0 (the parameters,
pa =20 mm, pgpe; = 1.5 mm, Uy = 0.26,and n = 1.33 are used). Thus, the optimal depth is about the
transport mean free path.

In addition to values shown in figure 8, we further tested the symmetric x* value, which is given by
22’;17: K, @Exp(tk) — 3>DA(tk) [? / ($EXP(tk) + éDA(tk)). The obtained values were close to the y* values.

As is explained in section 2.2, values of ui for the liquid phantom were determined using about several
measured points for which the source-detector distance is large enough ( > 20£™). However, since ui obtained
by the TRS-20 has only about two significant digits, the error in estimating 4 in the nondiffusive regime may not
be negligible. To find clearer boundaries between the diffusive and nondiffusive regimes, parameter estimation
based on the radiative transport equation is necessary.

In NIRS, the reduced x> value was used to discuss the accuracy of optical parameters calculated by TRS [36].
Instead of evaluating statistical errors, the aim of this paper is to compare the solutions of the radiative transport
equation and diffusion equation. In this paper, the \* function was introduced solely as an indicator which takes
large values in the nondiffusive regime.

The x* value (39) depends on the choice of k,, k;. In this paper we took into account the values which are
more than 10% of the peak height. In [37] and [38], the range between 80% of the peak on the leading edge and
20% on the falling edge was used. In [39], the range from 80% on the leading edge and 1% on the falling edge was
used. In addition to 10%-10% cut for k,, k;, we tried 10%—50%, 50%—10%, 50%—50%, 40%—10%, 80%—20%,
and 80%—-20%, and confirmed that the qualitative conclusion remains the same. In order to capture the
difference between ®EXP () and ®°*(#), we chose the range 10%-10%, which is rather wide. When P A(f) is used
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to fit PEXP(¢) for parameter identification, however, a large value such as 80% should preferably be taken on the
leading edge because the diffusion approximation easily breaks at early times.

5. Conclusion

In this paper, we have proposed indicators such as the y* value (39) to judge if the measurement is in the diffusive
regime or in the nondiffusive regime. By using the x* value, the validness of the diffusion approximation can be
quantitatively studied. Once the criterion a is given, the diffusive regime is defined by the x> value.

The usefulness of these indicators can be read from figure 2. As is shown in Appendix A, the diffusion
equation is obtained from the radiative transport equation when the small parameter € goes to zero. In this sense,
the change from the transport regime to diffusive regime is not abrupt but takes place asymptotically. However,
figure 2 shows that the change is rather sharp when the degree of validness of the diffusion approximation is
measured by the \* indicator function.

Asis seen in section 3, the defined diffusive regime depends on the value of the threshold a. When
measurements require that the diffusion approximation severely holds, a should be set to a small value. Suppose
we want to conduct measurements in the diffusive regime. In order to draw a line between the diffusive and
nondiffusive regimes, a must be defined operationally. First we try a relatively large a, so that many points in the
011 14, / 1. plane are classified into the diffusive regime. Then we try smaller a values. The value of a cannot be
small compared with measurement errors. Thus a suitable a can be chosen.
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Appendix A. Asymptotic expansion

In section 2.1.2, we began with the assumption (13). Here we consider the diffusion approximation by the
asymptotic expansion [40, 41]. The calculation below is close to [42] but small nonzero absorption is assumed in
addition to large x, t. Although basically we follow the calculation in [43] and arrive at the same scaled radiative
transport equation, we consider large x instead of large i, so the relation to the scaling in [42] becomes more
visible. The imposed conditions of large x, t and small y,, in this section are consistent with the conditions in
section 2.1.2.

Let us introduce a small parameter € > 0 which relates variables in (1) to the corresponding slow variables as

er=r% et=1rt% e, =i (A.])
According to the spirit of the diffusion approximation, we consider the specific intensity away from the source

and boundaries, and deal with the homogeneous equation. By using the slow variables the radiative transport
equation is expressed as

2 * *
(ii + €§-V*+ 62#?: + :U'S)I(r_> s, t_)
€

c Ot* €?

o [T 6 1 8, E ) sing dordg A2
—Msfo fop(s,S) ?,s,? sin ¢, (A.2)

where V* = 0/0r". Hereafter we drop the superscript .
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Let us expand the specific intensity as

t
0|55 L)=100 5 0 + eIV, 8, 1)
€ 62

+ D, 8, ) + . (A.3)

First we collect terms of order €. We obtain
N 2T T ~ A
wu IO, 8, 1) = p, j; j(‘) pG, 8
x 1O(x, &/, t)sin'd¥'dy’. (A.4)
The above equation implies that I'”’ is independent of §. That is, we can write
IO, 5, 1) = IO, ) = u(r, t). (A.5)
The terms of order €' yield

§ - VIO, t) + puIV(, §, 1)

= [T [T PG IO, &, nysinddv'dy. (A.6)
We see that IV is obtained as
IO, §, 1) =— ! §- VIO, 1)
- — 1 s vumo. (A7)
We have
IW(r, §, t) = —3D5 - Vu(r, t), (A.8)
where Dis given in (15). Finally, we collect terms of order €.
19 o 2 D(r 2 0 D 2
—8—1( )(r, 1) + 8 - VIO, §, 1) + p, IO, t) + I, §, 1)
c Ot
= o ST PG IO, ¥, tysing'dd'dy. (A.9)
The left-hand side of (A.9) can be expressed as
10 . X
LHS = ——u(r, ) = 3D - V)G - V)ur, 0
c Ot
+ pu(r, t) + p I, 8, 1). (A.10)
If we integrate (A.9) over §, we obtain
10
—a—u(r, t) — DAu(r, t) + p,u(r, t) = 0. (A.11)
c Ot

Thus (14) is derived.

We note that the above equation does not have the source term because we dropped the source term in the
radiative transport equation in (A.2) by focusing on large space and time.

In our derivation, the diffusion coefficient D in (15), which is independent of yz,,, was obtained.
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Appendix B. Values of x*

Table B1. TRS measurements for (Left) 1, = 0.0023 mm ™' and (Right) p, = 0.012 mm !

bg = 20 mm). The unit of ;¢ ismm ™.
/ 28

1, patt, Haf 12, X
0.250 5.00 0.00921 1.95
0.318 6.36 0.00724 3.50
0.379 7.58 0.00607 3.21
0.440 8.80 0.00523 2.64
0.508 10.2 0.00453 2.49
0.569 11.4 0.00404 1.65
0.624 12.5 0.00369 1.14
0.685 13.7 0.00336 0.790
0.746 14.9 0.00308 3.95
0.955 19.1 0.00241 0.650
0.800 16.0 0.00287 0.572
0.855 17.1 0.00269 0.235
0.943 18.9 0.00244 0.179
1.02 20.4 0.00226 0.205
1.09 217 0.00212 0.148
1.15 23.1 0.00199 0.134
1.22 24.4 0.00188 0.148
1.28 25.7 0.00179 0.188
1.40 28.1 0.00164 0.107
1.48 29.6 0.0016

0.178 3.55 0.0675 17.2
0.305 6.11 0.0393 0.125
0.433 8.66 0.0277 0.130
0.568 11.4 0.0211 0.109
0.624 12.5 0.0192 0.140
0.688 13.8 0.0174 0.201
0.752 15.0 0.0160 0.161
0.809 16.2 0.0148 0.0699
0.865 17.3 0.0139 0.0681
0.957 19.1 0.0125 0.0929
1.04 20.7 0.0116 0.202
1.11 22.1 0.0108 0.0890
1.18 23.5 0.0102 0.0606
1.25 25.0 0.00962 0.0483
131 26.2 0.00915 0.0626
1.38 275 0.00872 0.0979
1.44 28.8 0.00834 0.0925

A Capartetal
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Table B2. TRS measurements for f1, = 0.021 mm ™" (p; = 20 mm). The unit of u; ismm™".

I patt, 1/ 1, X
0.207 4.15 0.101 9.68
0.326 6.53 0.0643 0.305
0.472 9.44 0.0445 0.472
0.571 11.4 0.0368 0.162
0.624 12.5 0.0336 0.166
0.684 13.7 0.0307 0.190
0.743 14.9 0.0283 0.311
0.796 15.9 0.0264 0.109
0.849 17.0 0.0247 0.143
0.935 18.7 0.0225 0.173
1.01 20.2 0.0208 0.0625
1.07 215 0.0196 0.0792
1.14 22.8 0.0184 0.119
1.21 24.1 0.0174 0.107
1.27 25.3 0.0166 0.160
1.33 26.5 0.0158 0.0799
1.38 27.7 0.0152 0.0730
1.46 29.2 0.0144 0.0716

Table B3. Monte Carlo simulation for (Left) 1, = 0.002 mm ' and (Right) y, = 0.01 mm '
(pa = 20 mm). The unit of [Li ismm ™.

1, pat, 1/ 1, X

0.2 4.0 0.01 15.3
0.4 8.0 0.005 2.78
0.6 12.0 0.00333 0.554
0.8 16.0 0.0025 0.275
1.0 20.0 0.002 0.262
12 24.0 0.00167 0.345
1.4 28.0 0.00143 0.430
0.2 40 0.05 238
0.4 8.0 0.025 5.09
0.6 12.0 0.0167 1.36
0.8 16.0 0.0125 0.435
1.0 200 0.01 0.233
12 24.0 0.00833 0.250
1.4 28.0 0.00714 0.339

A Capartetal
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Table B4. Monte Carlo simulation for (Left) sz, = 0.02 mm ™" and (Right) p, = 0.06 mm !

(pa = 20 mm). The unit of u's ismm™.

1, ik, Ha /1, X
0.4 8.0 0.0 8.27
0.6 12.0 0.0333 2.38
0.8 16.0 0.025 0.860
1.0 200 0.02 0.449
12 24.0 0.0167 0.433
1.4 28.0 0.0143

0.25 5.0 0.24 62.3
0.3 6.0 0.2 463
0.35 7.0 0.171 354
0.4 8.0 0.15 28.2
0.45 9.0 0.133 22.9
0.5 10.0 0.12 18.2
0.75 15.0 0.08 8.18

Table B5. Monte Carlo simulation for i, = 0.1 mm ™' (p; = 20 mm). The unit of u: ismm™".

I A Ha/ 1, X’

0.25 5.0 0.4 117

0.35 7.0 0.286 67.9
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