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The decay behavior of specific intensity is studied for spatial-frequency domain imaging (SFDI). It is shown using
the radiative transport equation that the decay is given by a superposition of different decay modes, and the decay
rates of these modes are determined by spatial frequencies and Case’s eigenvalues. This explains why SFDI can focus
on shallow regions. The fact that light with nonzero spatial frequency rapidly decays makes it possible to exclusively
extract optical properties of the top layer of a layered medium. We determine optical properties of the top layer of a
solid phantom. This measurement is verified with different layered media of numerical phantoms. © 2020 Optical

Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/JOSAA.402124

1. INTRODUCTION

In near-infrared spectroscopy, light illumination in the spatial-
frequency domain has been developed as a tool that is as
concise as continuous-wave illumination and as informative as
frequency-domain illumination [1]. Spatial-frequency domain
imaging (SFDI) is capable of determining both absorption and
scattering coefficients from time-independent measurements.
SFDI is used mainly to extract optical properties at depths on
the order of millimeters. SFDI was used for imaging skin flap
oxygenation during reconstructive breast surgery [2]. It was
also used to record biochemical compositional changes in a port
wine stain after laser therapy [3]. Tissue optical properties of a
human volar forearm were estimated by SFDI [4]. Burn wounds
were examined by SFDI coupled with laser speckle imaging [5].
See a recent review by Angelo et al. [6] and references therein.

The abovementioned works show that SFDI can exclusively
study shallow regions near the skin. In SFDI, spatially modu-
lated incident beams rapidly decay in biological tissue [7]. In this
paper, we further investigate this feature of SFDI. This property
of SFDI is advantageous when we are interested in measuring
optical properties of shallow regions. Even when the thickness is
thin, we can assume the half space, which is unbounded in the
depth direction. In this paper, we identify optical properties of
the top layer of a layered medium. It is not possible to extract
optical properties of the top layer in the standard setting of near-
infrared spectroscopy, in which optical fibers are attached on the

top of a layered medium, because near-infrared light propagates
not only in the top layer but reaches deeper layers.

In this paper, the ability to extract optical properties of the
top layer is tested by different numerical phantoms. Moreover,
optical properties of the top layer of a solid phantom are deter-
mined. As a numerical tool for this parameter identification, we
demonstrate that the numerical scheme for the radiative trans-
port equation (RTE) based on the method of rotated reference
frames [8,9] provides an efficient numerical algorithm for SFDI
partially because the method relies on the Fourier transform in
the spatial-frequency domain.

Noting that the solution to the RTE is expressed as a super-
position of three-dimensional singular eigenfunctions [10], we
investigate the asymptotic behavior of the solution. The effect
of the spatial frequency q0 on the decay of the specific intensity
is found. The longest-lived mode is controlled by q0 and the
largest Case’s eigenvalue. This finding gives a theoretical reason
that shallow regions can be exclusively studied by SFDI.

Then we numerically solve the RTE in the half space by
the method of rotated reference frames [8]. The method of
rotated reference frames in the half space was developed for a
point source [9,11] and for a spatially oscillating source [12].
In [9,13], the subtraction of the ballistic term was considered.
Using the method of rotated reference frames, the effect of sur-
face scattering in SFDI was studied [14]. The inverse problem
is solved by the Levenberg–Marquardt algorithm. With our
approach, optical parameters of the top layer of a layered solid
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phantom made of epoxy resin was determined within 1 s on a
laptop computer.

The remainder of this paper is organized as follows. In
Section 2, we study the asymptotic behavior of the specific
intensity to consider the penetration depth of near-infrared light
illuminated by a spatially modulated source. In Section 3, recon-
struction of optical properties of the top layer of layered media is
considered for different numerical phantoms. Optical proper-
ties are estimated using a solid phantom in Section 4. Discussion
and conclusions are given in Section 5. In Appendix A, two types
of the diffusion approximation are introduced. Appendix B is
devoted to the eigenmode expansion and numerical algorithm
of the RTE.

2. DECAY BEHAVIOR

Let us consider near-infrared light propagation in the half space.
Let�be the half space, i.e.,

�=
{
r ∈R3

; −∞< x <∞,−∞< y <∞, 0< z<∞
}

.
(1)

Let ∂� be the boundary of�, i.e., the x − y plane. The specific
intensity at position r (r= (ρ, z)T , ρ = (x , y )T ) in direction
ŝ is denoted by I (r, ŝ), where ŝ is a unit vector specified by the
polar angle ϑ ∈ [0, π ] and azimuthal angle ϕ ∈ [0, 2π). Let d ŝ
denote sin ϑdϑdϕ. The RTE is written as (ŝ · ∇ +µt)I (r, ŝ)=µs

∫
S2 p(ŝ, ŝ′)I (r, ŝ′)dŝ′,

(r, ŝ) ∈�× S2,

I (r, ŝ)= Rn(ŝ · ẑ)I (r, ŝR)+ Iinc(r, ŝ), (r, ŝ) ∈ 0−,
(2)

where total attenuation µt is the sum of absorption coefficient
µa and scattering coefficient µs , which are both assumed to be
positive constants, and p(ŝ, ŝ′) is the scattering phase function.
We assume that p(ŝ, ŝ′) is given by

p(ŝ, ŝ′)=
lmax∑
l=0

l∑
m=−l

gl Ylm(ŝ)Y ∗lm(ŝ
′
), (3)

where lmax is a positive integer, g ∈ (−1, 1) is a constant, and the
superscript ∗ denotes a complex conjugate. Spherical harmonics
Ylm(ŝ) are defined by

Ylm(ŝ)=

√
2l + 1

4π

(l −m)!
(l +m)!

P m
l (cos ϑ)e imϕ, (4)

where P m
l (µ) are associated Legendre polynomials.

Throughout the paper, we set lmax = 9. Moreover,

0− =
{
(r, ŝ) ∈ ∂�× S2

; ν(r) · ŝ< 0
}

=
{
(r, ŝ) ∈ ∂�× S2

+

}
, (5)

where ν(r) is the outer unit vector normal to r ∈ ∂�, and S2
+

denotes the set of unit vectors in inward directions. We give the
incident beam Iinc(r, ŝ) as

Iinc(r, ŝ)= e iq0·ρδ(ŝ− ẑ), q0 ∈R
2, (6)

where ẑ is the unit vector in the positive z direction. The Fresnel
reflection for the ratio n between the refractive indices inside
and outside is also considered in the boundary condition. The
direction ŝR is specified by the polar angleπ − ϑ and azimuthal
angle ϕ. Assuming unpolarized light, the Fresnel coefficient
Rn(µ) (0<µ≤ 1) is given by [15]

Rn(µ)=

 1
2

((
µ−nµ0
µ+nµ0

)2
+

(
µ0−nµ
µ0+nµ

)2
)

forµ≥µc ,

1 forµ<µc ,

(7)
whereµ0 =

√
1− n2(1−µ2), andµc =

√
n2 − 1/n.

Suppose that rd is a point on ∂�. We detect the hemispheric
flux

J+(rd ) =
∫ 2π

0

∫ 2π
π
(cos ϑ)I (rd , ŝ) sin ϑdϑdϕ

=−ARTE(q0)e iq0·ρ,
(8)

where q0 = |q0|, and ARTE(q0) is given by (B41) in Appendix B.
The fluence of the specific intensity is asymptotically gov-

erned by the diffusion equation. Let u(r) denote the solution
to the diffusion equation. To do the diffusion approximation,
we split the specific intensity into two terms (see Appendix A):
I (r, ŝ)= I0(r, ŝ)+ I1(r, ŝ), where I0(r, ŝ) satisfies{(

ŝ · ∇ + µ̄
)

I0(r, ŝ)= 0, (r, ŝ) ∈�× S2,

I0(r, ŝ)= Iinc(r, ŝ), (r, ŝ) ∈ 0−.
(9)

Here, different choices are possible for µ̄ [16,17]. Then I1 is
determined depending on the choice of µ̄. The P1 approxima-
tion is made for this I1, and eventually we arrive at the diffusion
equation. We introduce

µ′s = (1− g)µs , µ∗ =µa +µ
′

s , µeff =
√

3µaµ∗. (10)

Probably the most naive choice is

µ̄=µa +µs . (11)

We call this diffusion approximation DA1. In this case, from
(A9), (A11), (A13), and (A16), we obtain

u(r)= vDA1(z)e iq0·ρ, (12)

where

vDA1(z) =
3µs (µ∗+gµt )

µ2
t −µ

2
eff−q2

0

×

(
µt+3µ∗/ζ√

µ2
eff+q2

0+3µ∗/ζ
e−

√
µ2

eff+q2
0 z
− e−µt z

)
.

(13)

Another choice is to set [18]

µ̄=µ∗. (14)

We refer to this diffusion approximation as DA2. In this case,
from (A9), (A25), and (A26), we have

u(r)= vDA2(z)e iq0·ρ, (15)

where

vDA2(z) =
3µ′s µ∗

µ2
∗−µ

2
eff−q2

0

×

(
µ∗+3µ∗/ζ√

µ2
eff+q2

0+3µ∗/ζ
e−

√
µ2

eff+q2
0 z
− e−µ∗z

)
.

(16)
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Using the diffusion approximation, the detected light J+(rd )

can be expressed as

−ADA1(q0)e iq0·ρ or − ADA2(q0)e iq0·ρ, (17)

depending on DA1 or DA2. They are given by (A19) or (A29) in
Appendix A.

In the singular-eigenfunction approach [19], the separation
constant ν is either an eigenvalue ν j (M) > 1 ( j = 1, . . . , J M)
or in the continuous spectrum (0, 1). Although there is only
one positive eigenvalue ν0 in the case of isotropic scattering,
in general there are multiple eigenvalues. We order them as
ν1 > ν2 > · · ·> νJ M > 1 for each M.

Case’s method can be extended to three dimensions [10], and
the solution to (2) can be expressed as

I (r, ŝ)= e iq0·ρ

lmax∑
M=−lmax

×

J M
−1∑

j=0

a M
j 9

M
ν j (M)

(ŝ, q0)e
−µt k̂z(ν j (M)q0)z/ν j (M)

+

∫ 1

0
a M(ν)9M

ν (ŝ, q0)e
−µt k̂z(νq0)z/νdν

,
(18)

with coefficients a M
j , a M(ν). Here, 9M

ν j (M)
(ŝ, q0), 9

M
ν (ŝ, q0)

are three-dimensional singular eigenfunctions introduced in
Appendix B.

We note that ν0 = ν1(0) > 1 is the largest eigenvalue. Let us
define

I0(r, ŝ) = I0(ρ, z, ŝ)
= e iq0·ρa0

09
0
ν0
(ŝ, q0)e

−µt k̂z(ν0q0)z/ν0 .
(19)

When z is large, the contribution of the mode I0 dominates:

‖I (·, z, ·)− I0(·, z, ·)‖L∞(R2;L∞(S2))

= o

(
exp

(
−z

√(
µt
ν0

)2
+ q 2

0

))
,

(20)

as z→∞.
In the case of isotropic scattering (g = 0) [19], the eigenvalue

ν0 satisfies 1− (µs /µt)ν0 tanh−1
(1/ν0)= 0. When µa �µs

as is typical in biological tissue, we have 1/ν0 ≈
√

3(1−µs /µt)

and
µt

ν0
≈
√

3µaµt . (21)

Therefore, we have I ∼ exp(−z
√

3µaµt + q 2
0 ).

In the general case of g 6= 0, we can estimate ν0 using the fact
that Case’s eigenvalues are approximately obtained as eigenval-
ues of a tridiagonal matrix B(M) [see (B29)]. It is found [16]
that

√
1+ η√

3µa
µt

(
1− g µs

µt

) ≤ ν0 ≤
1+
√
η√

3µa
µt

(
1− g µs

µt

) , (22)

where

η=
4

5

µa

µa +µs
(
1− g 2

) . (23)

Whenµa is small, we have

µt

ν0
≈
√

3µa (µt − gµs )≈
√

3µaµ′s , (24)

whereµ′s = (1− g)µs . Thus, ifµa is small, we have in general

I ∼ e−z
√

3µaµ
′
s+q2

0 . (25)

Whenµ′s is large, the asymptotic decay of the diffusion equation

is given by exp(−z
√
µ2

eff + q 2
0 ) in both diffusion approxima-

tions given in (12) and (15). Note that µeff ≈
√

3µaµ′s for
small µa . Since µt < ν0 <µeff if η > 0 is taken into account,
the specific intensity decays slower than the prediction by the
diffusion approximation.

If q0 is large such thatµt <

√
µ2

eff + q 2
0 orµ∗ <

√
µ2

eff + q 2
0 ,

the asymptotic decay from the diffusion approximation given
in (12) or (15) becomes exp(−µt z) or exp(−µ∗z), and in
either case, the asymptotic behaviors of the RTE and diffusion
equation are quite different.

3. SPATIAL-FREQUENCY DOMAIN IMAGING

Although different choices are possible, we modulate the illumi-
nating light in the x direction and give the vector q0 as

q0 = (2π f , 0)T . (26)

When the sample is illuminated by the source,

Iinc(r, ŝ)= cos(2π f x )δ(ŝ− ẑ). (27)

The measured light is expressed as

J+(rd )=−A(q0) cos(2π f xd ), (28)

where xd is the first component of rd . Here, A(q0) depends on
q0 = 2π f .

We use the amplitude A(q0) to reconstruct optical properties.
Let N f be the number of spatial frequencies used for reconstruc-
tion. We have

f = f1, . . . , fN f . (29)

Correspondingly, we write the forward data as A(q (i)0 )

(i = 1, . . . , N f ). Let y ∈RN f be a vector defined as y=
(A(q (i)0 )). We can express ARTE(q0) as ARTE(q

(i)
0 )

(i = 1, . . . , N f ). Similarly, ADA1(q
(i)
0 ) and ADA2(q

(i)
0 ) are

introduced. Then computed values are stored in a vector
F ∈RN f .

Parameters µa , µ
′
s are determined by the Levenberg–

Marquardt algorithm [20,21]. To run the inversion algorithm
with scaled variables ξ1, ξ2, we express the optical properties as
[22,23]

µa =µ
(0)
a e ξ1 , µ′s =µ

′

s
(0)e ξ2 , (30)

where µ(0)a , µ′s
(0) are initial guesses. That is, ξ1 = ln(µa/µ

(0)
a ),

ξ2 = ln(µ′s /µ
′
s
(0)
).
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We express F= F(ξ), where ξ = (ξ1, ξ2)
T . We wish to find

ξ ∗ = arg min
ξ

∣∣y− F(ξ)
∣∣2 . (31)

Let ξ k be the estimated solution at the kth iteration. Starting
with the initial guess ξ 0

= 0, the solution is given by
ξ ∗ = limk→∞ ξ k . The FORTRAN library MINPACK [24] was
used for the numerical calculation of the Levenberg–Marquardt
method. Reconstructed values are obtained as

µa =µ
(0)
a exp(ξ∗,1), µ′s =µ

′

s (0) exp(ξ∗,2). (32)

Below, we will perform several parameter identifications using
numerical phantoms.

A. Thin Slabs

We perform parameter identification for numerical slab phan-
toms of size 90 mm× 90 mm× L as shown in Fig. 1. The
thickness L changes from 1 mm to 10 mm. The optical param-
eters of slabs are set to µa = 0.02 mm−1, µs = 10 mm−1, and
g= 0.9. Moreover, n= 1 (vacuum boundary condition). We
suppose µa , µ

′
s are unknown. We set N f = 2, and f1 = 0.1,

f2 = 0.2 (mm−1).
As the forward data, the hemispheric flux is computed

by Monte Carlo simulations and stored in y. In each run,
108 photons are launched. The vector F= (ARTE(q

(i)
0 ))

(i = 1, 2) is computed from the RTE [see (B41)]. For the
inverse problem of parameter identification, initial values are set
to (µ(0)a , µ(0)s )= (0.01 mm−1, 10 mm−1).

Figure 2 shows estimated µa and µ′s for the slabs. Estimated
values are (µa mm−1, µ′s mm−1)= (0.18, 1.2), (0.055, 1.1),
(0.033, 1.1), (0.023, 1.0), (0.023, 1.0), (0.024, 1.1), (0.023,
1.0), (0.021, 1.0), (0.023, 1.0), and (0.024, 1.0) for L = 1 mm,
2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, and
10 mm, respectively. We see that for slabs of thickness larger
than 4 mm, optical properties are correctly obtained.

The behavior in Fig. 2 is implied in the decay in (25) derived
in Section 2. In the present situation, we have

I ∼ e−2π f z. (33)

For f = 0.1 mm−1, we have e−2π f ·3
= 0.15 and e−2π f ·4

=

0.08. Hence, the specific intensity is reduced by more than one
tenth when the thickness of the slab is 4 mm or larger. Recently,
an intensive study of Monte Carlo look-up tables was reported
for relations between the penetration depths of photons and
spatial frequencies [25]. Our conclusion in Fig. 2 is consistent
with their results.

L

Fig. 1. Thin slab.
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Fig. 2. Upper panel shows estimated µa mm−1 for slabs of thick-
nesses 1 mm through 10 mm. The lower panel shows estimated
µ′s mm−1 for the same slabs. Dotted lines show true values.

30mm

6mm

Fig. 3. Two-layer medium.

Table 1. Reconstructed µa and µ′s (mm−1) of the Top
Layer of the Two-Layer Medium by RTE for
µa = 0.01mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.02 — 1.0 —
RTE 0.0079 0.60 1.1 0.14

B. Two-Layer Media

Let us consider two-layer media, which have top and bottom
layers. As shown in Fig. 3, the thickness of the top layer is 6 mm,
and the bottom layer has a thickness of 30 mm, which can
be regarded as a semi-infinite medium. We set N f = 2, and
f1 = 0.1, f2 = 0.2 (mm−1). The scattering coefficient and
anisotropic factor are fixed to µs = 10 mm−1 and g= 0.9,
respectively, in the entire medium. The refractive index is
set to n= 1.4. The absorption coefficient in the top layer is
µa = 0.02 mm−1. The absorption coefficient µa in the bot-
tom layer takes values 0.01 mm−1 and 0.03 mm−1. We use
ARTE(q

(i)
0 ) (i = 1, 2) for reconstruction. The forward data were

computed by Monte Carlo simulations. Initial values were set to
(µ(0)a , µ(0)s )= (0.01 mm−1, 10 mm−1).

Below, we present obtained µa , µ
′
s in the top layer

when the absorption coefficient of the bottom layer is
0.01 mm−1 (Table 1) and 0.03 mm−1 (Table 2). To see how
the estimated value is close to the true value, in Tables 1
and 2, we also give the relative error, which is defined as
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Table 2. Reconstructed µa and µ′s (mm−1) of the Top
Layer of the Two-Layer Medium by RTE for
µa = 0.03mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.02 — 1.0 —
RTE 0.0087 0.57 1.1 0.13

10mm

2mm

28mm

Fig. 4. Three-layer medium.

|(estimated value− true value)/true value|. Numerical results
show the reconstructed values are not affected by optical
properties of the bottom layer.

C. Three-Layer Media

Here, we consider more complex media that have more than
two layers [26,27]. We reconstruct the optical properties of
the top layer of a three-layer medium, shown in Fig. 4. Their
optical properties are summarized in Table 3. The depths of
layers are, from the top, 10 mm, 2 mm, and 28 mm. From
the top, µs = 18, 3, and 21 (mm−1). In the second layer,
µa = 0.004 mm−1. The absorption coefficients of the first and
third layers vary from 0.01 mm−1 to 0.03 mm−1. In addition,
g= 0.9 andn= 1.4. We set N f = 2, and f1 = 1/15, f2 = 1/10
(mm−1). Starting the Levenberg–Marquardt algorithm with
initial values (µ(0)a , µ(0)s )= (0.01 mm−1, 10 mm−1), we
obtainµa , µ

′
s after about 10 iterations.

For comparison, reconstructions by the diffusion approxima-
tion are also obtained. That is, ADA1 in (A19) and ADA2 in (A29)
are used in addition to ARTE in (8). The forward data were pre-
pared by Monte Carlo simulations.

Tables 4–12 show reconstructed µa , µ
′
s when the true val-

ues in the top layer are µa = 0.01 mm−1, 0.02 mm−1, and
0.03 mm−1. In each table, relative errors are also shown. The
true value of µ′s in the top layer is fixed to 1.8 mm−1, as shown
in Table 3. We see that reconstructed values by DA1 are closer to
those by RTE compared with reconstructed values by DA2. The
absorption coefficient of the bottom layer is µa = 0.01 mm−1

in Tables 4, 7, 10, µa = 0.02 mm−1 in Tables 5, 8, 11, and
µa = 0.03 mm−1 in Tables 6, 9, 12. In all cases, reconstructed

Table 3. Three-Layer Model
a

µa(mm−1) µs (mm−1) d(mm)

1st layer µa ,1 18 10
2nd layer 0.004 3 2
3rd layer µa ,3 21 28

aIn the top layer, µa ,1 = 0.01, 0.02, or 0.03 (mm−1). In the bottom layer,
µa ,3 = 0.01, 0.02, or 0.03 (mm−1).

Table 4. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.01mm−1 in the Top Layer
and µa = 0.01mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.01 — 1.8 —
RTE 0.0084 0.16 1.8 0.021
DA1 0.0060 0.40 1.8 0.018
DA2 0.015 0.53 1.5 0.18

Table 5. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.01mm−1 in the Top Layer
and µa = 0.02mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.01 — 1.8 —
RTE 0.0085 0.15 1.8 0.021
DA1 0.0060 0.40 1.8 0.018
DA2 0.015 0.53 1.5 0.18

Table 6. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.01mm−1 in the Top Layer
and µa = 0.03mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.01 — 1.8 —
RTE 0.0085 0.15 1.8 0.022
DA1 0.0060 0.40 1.8 0.018
DA2 0.015 0.54 1.5 0.18

Table 7. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.02mm−1 in the Top Layer
and µa = 0.01mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.02 — 1.8 —
RTE 0.016 0.20 1.8 0.0015
DA1 0.012 0.39 1.9 0.053
DA2 0.026 0.31 1.5 0.19

Table 8. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.02mm−1 in the Top Layer
and µa = 0.02mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.02 — 1.8 —
RTE 0.016 0.20 1.8 0.0013
DA1 0.012 0.39 1.9 0.053
DA2 0.026 0.31 1.5 0.19

values are not affected by the third layer.

4. SOLID PHANTOM

Figure 5(a) shows a solid phantom made of epoxy resin. The
refractive index of the phantom is 1.58. The phantom has a four-
layer structure, and the width of the top layer is about 4 mm.
When the phantom was made, optical properties of the top
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Fig. 5. (a) Four-layer solid phantom. The width of the top layer is about 4 mm, and the width of the bottom layer is about 47 mm. Measurement
setup: (b) top view and (c) side view. DMD, digital micro-mirror device. BPF, band-pass filter.

Table 9. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.02mm−1 in the Top Layer
and µa = 0.03mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.02 — 1.8 —
RTE 0.016 0.20 1.8 0.0012
DA1 0.012 0.39 1.9 0.053
DA2 0.026 0.32 1.5 0.19

Table 10. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.03mm−1 in the Top Layer
and µa = 0.01mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.03 — 1.8 —
RTE 0.023 0.25 1.8 0.026
DA1 0.017 0.42 2.0 0.088
DA2 0.036 0.21 1.5 0.18

Table 11. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.03mm−1 in the Top Layer
and µa = 0.02mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.03 — 1.8 —
RTE 0.023 0.25 1.8 0.026
DA1 0.017 0.42 2.0 0.088
DA2 0.036 0.21 1.5 0.18

Table 12. Reconstructed µa and µ′s (mm−1) by RTE,
DA1, and DA2 When µa = 0.03mm−1 in the Top Layer
and µa = 0.03mm−1 in the Bottom Layer

µa(mm−1) Error µ′s (mm−1) Error

True 0.03 — 1.8 —
RTE 0.023 0.25 1.8 0.026
DA1 0.017 0.42 2.0 0.088
DA2 0.036 0.21 1.5 0.18

layer were aimed at µa = 0.0165 mm−1 and µ′s = 1.3 mm−1.
The setup of the measurement system is shown in Figs. 5(b)
and 5(c). As a near-infrared light source, a broadband halogen
fiber optic illuminator (Thorlabs, OSL2) with an enhanced
infrared replacement bulb (Thorlabs, OSL2BIR) was used.
The projected patterns were displayed on a digital micro-
mirror device (DMD) module (Keynote Photonics, LC4500
NIR controller). The image was formed on the sample plane
through a visible-near-infrared lens (Schneider, large format

F-mount lens, focal length of 28 mm, F/2.8). To capture reflec-
tion images, a camera with enhanced near-infrared sensitivity
(Ximea, MQ-13RG-E2, 1280x1024 pixels, monochrome) with
a visible-near-infrared lens (Edmund Optics, C series VIS-NIR
fixed focal length lens, focal length of 16 mm, F/1.6) was used.
The polarizer and analyzer placed in the crossed nicols configu-
ration were inserted into the measurement system to remove the
specular reflection from the sample. A band-pass filter (Edmund
Optics, hard coated OD 4.0 25 nm band-pass filter, center
wavelength of 800 nm, FWHM of 25 nm) was placed in front of
the camera to extract the 800 nm wavelength. The top layer of
the phantom was illuminated by the spatially modulated light,
and the reflected light was detected by the camera.

The source term in experiments is given by

Iinc(r, ŝ)=
S0

2
[1+ cos(2π f x + α)] δ(ŝ− ẑ), (34)

where α = 2πp/3 (p = 0, 1, 2). We set N f = 2, and f1 = 0.1,
f2 = 0.2 (mm−1). We have

J+(rd ; α)=
S0

2
(MDC +MAC cos(2π f xd + α)) , (35)

where MDC, MAC depend on rd and f in general. Let us write
J (p)+ = J+(rd ; 2πp/3). By a straightforward calculation, we
have

(MAC)
2
=

2
9

×
[(

J (0)+ − J (1)+
)2
+
(
J (1)+ − J (2)+

)2
+
(
J (2)+ − J (0)+

)2]
.
(36)

Moreover, we can write [7]

MAC =Mexp(rd , f )Aexp(q (i)0 ), (37)

where Mexp (>0) is a constant determined by the optical system,
and q (i)0 = fi (i = 1, 2).

Let us consider MAC,ref of a reference medium, for which
Aexp

ref (q0) can be numerically computed. Then we have [7]

Aexp(q0)=

〈
MAC

MAC,ref

〉
Aexp

ref (q0), (38)

where 〈·〉means the average in space.
We use the bottom layer of the solid phantom as the ref-

erence medium. Since the fourth layer of the phantom has
the thickness 47 mm, it can be regarded as the half space even
for time-resolved measurements in which two optical fibers
are vertically attached on the bottom side of the phantom.
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From time-resolved measurements by TRS-80 (Hamamatsu
Photonics), we found µa = 0.010 mm−1 and µ′s = 1.4 mm−1

for the bottom layer. With these optical parameters, Aexp
ref (q

(i)
0 )

can be computed from the RTE as ARTE(q
(i)
0 ). Thus, Aexp(q (i)0 )

in (38) are prepared and stored in a vector y ∈RN f .
The Levenberg–Marquardt algorithm was run with initial

valuesµ(0)a = 0.01 mm−1 andµ(0)s = 10 mm−1. We obtain

µa = 0.016 mm−1, µ′s = 1.0 mm−1. (39)

Other choices of initial guess, for example, µ(0)a = 0.02 mm−1

and µ′s
(0)
= 2 mm−1, give the same µa , µ

′
s given in (39). The

computation time was less than 1 s with a laptop computer
(MacBook Pro with 2.3 GHz Intel Core i5 and 8 GB memory).

5. DISCUSSION AND CONCLUSION

Taking advantage of the fact that near-infrared light decays
rapidly for nonzero spatial frequencies, in this paper, we esti-
mated optical properties of the top layer of the layered phantom.
Indeed, SFDI has been used for the parameter identification of
the top layer. Various numerical experiments developed in the
present paper confirm that results by SFDI are not affected by
deeper layers. Figure 2 indicates that the necessary width of the
top layer is 4 mm (when 1/µ′s = 1 mm). Our investigation in
the asymptotic limit provides a theoretical reason for the results
of numerical experiments. Using the numerical algorithm based
on the method of rotated reference frames, optical properties of
the top layer of a layered solid phantom were also determined.

Our numerical results show thatµ′s is more accurately recon-
structed than µa . One of the reasons for this inaccuracy is the
ill-posedness of the parameter identification. Future study on
regularization might improve the results.

When two optical fibers are attached to biological tissue in the
direction perpendicular to its surface with a separation of a few
centimeters, the detected reflected near-infrared light contains
photons from depths more than a centimeter. Although this
very feature makes it possible to study the function of the human
brain through the neurovascular coupling [28], the detected
light is affected by optical properties of different layers. In par-
ticular, the signal from the brain is affected by skin blood flow
in the scalp [29]. In this conventional way, it is not possible to
extract only information on shallow regions. Photons that travel
deep inside biological tissue can be excluded if the separation of
two optical fibers is reduced. However, then measurements have
to be conducted in a tiny space, and other difficulties related
to measurements arise (see [30] and references therein). The
SFDI measurement setup described in Fig. 5(a) is free from such
difficulties.

For our approach to work, the top layer of a layered random
medium has to be regarded as a semi-infinite medium. The nec-
essary width of the top layer depends on spatial frequency. This
can be checked by a test parameter identification for numerical
phantoms.

When µa is not small, the decay of the specific intensity
deviates from the diffusive decay and is given by (20) because
then µt/ν0 cannot be approximated by

√
3µaµ′s . Moreover

if the depth is not large compared to ν0/µt or 1/q0, not only

I0 but other modes contribute, and the decay is given by the
superposition of different decays shown in (18).

APPENDIX A: DIFFUSION APPROXIMATION

We begin by decomposing I into the following two terms:

I (r, ŝ)= Ib(r, ŝ)+ Is (r, ŝ). (A1)

The ballistic term Ib and scattering term Is satisfy{(
ŝ · ∇ +µa +µs

)
Ib(r, ŝ)= 0, (r, ŝ) ∈�× S2,

Ib(r, ŝ)= Iinc(r, ŝ), (r, ŝ) ∈ 0−
(A2)

and
(
ŝ · ∇ +µa +µs

)
Is (r, ŝ)=µs

∫
S2 p(ŝ, ŝ′)Is (r, ŝ′)dŝ′

+S(r, ŝ), (r, ŝ) ∈�× S2,

Is (r, ŝ)= Rn(ŝ · ẑ)Is (r, ŝR), (r, ŝ) ∈ 0−.
(A3)

Here, the source term for Is is given by

S(r, ŝ)=µs

∫
S2

p(ŝ, ŝ′)Ib(r, ŝ′)dŝ′. (A4)

Since

Ib(r, ŝ)= e−µt ze iq0·ρδ(ŝ− ẑ), (A5)

we have

S(r, ŝ)=µs e iq0·ρe−µt z p(ŝ, ẑ). (A6)

Suppose that Is weakly depends on ŝ and can be written as

Is (r, ŝ)=
1

4π
u(r)+

3

4π
J(r) · ŝ, (A7)

where

u(r)=
∫
S2

Is (r, ŝ)dŝ, J(r)=
∫
S2

ŝIs (r, ŝ)dŝ. (A8)

Let us write

u(r)= vDA1(z)e iq0·ρ . (A9)

Then from (A3), we obtain

∂2

∂z2
vDA1 −

(
µ2

eff + q 2
0

)
vDA1 =−Be−µt z, (A10)

where

B = 3µ∗µs

(
1+ g

µt

µ∗

)
. (A11)

We note that

J(r)=−
1

3µ∗
∇u(r)+

gµs

µ∗
e iq0·ρe−µt z ẑ. (A12)

We obtain

vDA1(z)=
−B

µ2
t −µ

2
eff − q 2

0

e−µt z
+C1e−

√
µ2

eff+q2
0 z
, (A13)

where C1 is determined from the boundary condition. If we
assume the diffuse boundary condition such that
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−D0
∂u
∂z
+

1

ζ
u = 0, (A14)

where D0 = 1/(3µ∗), and ζ = 2(1+ rd )/(1− rd ), with

rd =−1.4399n−2
+ 0.7099n−1

+ 0.6681+ 0.0636n,
(A15)

we obtain

C1 =
B

µ2
t −µ

2
eff − q 2

0

ζD0µt + 1

ζD0

√
µ2

eff + q 2
0 + 1

. (A16)

On the boundary at rd , we have

u(rd )=
3µ∗µs (1+ gµt/µ∗)e iq0·ρ(√

µ2
eff + q 2

0 +µt

) (√
µ2

eff + q 2
0 + 3µ∗/ζ

) . (A17)

We obtain

J+(rd )=

∫
S2
−

(cos ϑ)

(
1

4π
u(rd )+

3

4π
J(rd ) · ŝ

)
dŝ

=−
1

4
u(rd )+

1

2
J z(rd )

=−ADA1(q0)e iq0·ρ, (A18)

where u(rd ) is given in (A17). Here, we introduced

ADA1(q0)=

(
1

4
+

1

2ζ

)
vDA1(0)−

gµs

2µ∗
. (A19)

Next, instead of (A2), let us introduce the ballistic term as
(ŝ · ∇ +µ∗)I0 = 0; we obtain

I0(r, ŝ)= e−µ∗ze iq0·ρδ(ŝ− ẑ), (A20)

and

S(r, ŝ)= (µ∗ −µt)I0(r, ŝ)+µs

∫
S2

p(ŝ, ŝ′)I0(r, ŝ′)dŝ′

=
(
−µs gδ(ŝ− ẑ)+µs p(ŝ, ẑ)

)
e−µ∗ze iq0·ρ .

(A21)

We can write

u(r)= vDA2(z)e iq0·ρ . (A22)

After similar calculations, we obtain

J(r)=−D0∇u(r), (A23)

and

∂2

∂z2
vDA2 −

(
µ2

eff + q 2
0

)
vDA2 =−3µ∗µ

′

s e−µ∗z. (A24)

Hence,

vDA2(z)=
−3µ∗µ′s

µ2
∗
−µ2

eff − q 2
0

e−µ∗z +C2e−
√
µ2

eff+q2
0 z
, (A25)

where

C2 =
3µ∗µ′s

µ2
∗
−µ2

eff − q 2
0

ζD0µ∗ + 1

ζD0

√
µ2

eff + q 2
0 + 1

. (A26)

We obtain

u(rd )=
3µ∗µ′s e iq0·ρ(√

µ2
eff + q 2

0 +µ∗

) (√
µ2

eff + q 2
0 + 3µ∗/ζ

) .

(A27)
In this case, we obtain

J+(rd )=−ADA2(q0)e iq0·ρ, (A28)

where

ADA2(q0)=

(
1

4
+

1

2ζ

)
vDA2(0). (A29)

The difference between (A17) and (A27) is small when g is
small. In this paper, we use (A17), for which the decomposi-
tion is compatible with the ballistic subtraction developed in
Appendix B.

APPENDIX B: THE METHOD OF ROTATED
REFERENCE FRAMES

For the method of rotated reference frames in the half space,
the subtraction of the ballistic term was considered [13]. Here,
we will compute the hemispheric flux J+ following [13] with a
spatially oscillating source term.

1. PRELIMINARY

We begin with the one-dimensional RTE:
(
cos ϑ ∂

∂z +µt
)

I1(z, ŝ)=µs
∫
S2 p(ŝ, ŝ′)I1(z, ŝ′)dŝ′,
(z, ŝ) ∈ (0,∞)× S2,

I1(z, ŝ)= Rn(µ)I1(z, ŝR)+ g 1(z, ŝ),
ŝ ∈ S2

+
at z= 0

,

(B1)
with a source term g 1(z, ŝ). In one-dimensional transport
theory, it is known that the solution I1 is expressed as [19]

I1(z, ŝ)=
lmax∑

M=−lmax

 J M∑
j=1

ã M
j 8

M
ν j (M)

(ŝ)e−µt z/ν j (M)

+

∫ 1

0
ã M(ν)8M

ν (ŝ)e
−µt z/νdν

 , (B2)

where coefficients ã M
j , ã M(ν) are determined from the bound-

ary condition. Here,8M
ν (ŝ) (ν = ν j (M) or ν ∈ (0, 1)) is given

by [19,31–33]

8M
ν (ŝ)= φ

M(ν, cos ϑ)
(
1− cos2 ϑ

)|M|/2
e i Mϕ, (B3)

whereφM(ν, cos ϑ) is called Case’s singular eigenfunction.
Let us introduceσl > 0 as

σl =µt −µs gl
=µa + (1− gl )µs (B4)

and introduce bl (m) as

bl (m)=
√
(l2 −m2)/((4l2 − 1)σlσl−1). (B5)
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We consider the normalized Chandrasekhar polynomial g m
l (x ),

which satisfies the following three-term recurrence relation
[34,35]:

x
µt

√
(2l + 1)σl g m

l (x )= bl+1(m)
√
(2l + 3)σl+1g m

l+1(x )

+ bl (m)
√
(2l − 1)σl−1g m

l−1(x )
(B6)

for l >m and m ≥ 0. We have

g m
m (x )=

(2m − 1)!!
√
(2m)!

=

√
(2m)!

2mm!
,

g−m
l (x )= (−1)m g m

l (x ),

g m
l (−x )= (−1)l+m g m

l (x ). (B7)

Now, eigenvalues ν j (M) are zeros of g M
l as l→∞ [36].

In (B28), we numerically obtain ν j (M) and ν ∈ (0, 1) as
eigenvalues of a tridiagonal matrix.

Let f (ŝ) be a function of ŝ ∈ S2, which can be expressed as
f (ŝ)=

∑
∞

l=0

∑l
m=−l flmYlm(ŝ), with coefficients flm . We

introduceRk̂ for a unit vector k̂ ∈C (k̂ · k̂= 1) as

Rk̂ f (ŝ)=
∞∑

l=0

l∑
m=−l

flmYlm(ŝ; k̂), (B8)

where [8]

Ylm(ŝ; k̂)=
l∑

m′=−l

e−im′ϕ
k̂d l

m′m(ϑk̂)Ylm′(ŝ). (B9)

Here, ϕk̂, ϑk̂ are the azimuthal and polar angles of k̂, and d l
m′m

are the Wigner d matrices. We choose the branch cut of the
square root function from zero to∞, so 0≤ arg(

√
z) < π for

arbitrary z ∈C. That is, byRk̂, we measure angles in f (ŝ) in the

reference frame rotated so that the z axis lies in the direction of k̂.
Indeed, ν is either an eigenvalue or in the continuous spec-

trum. We take the specific form of k̂= k̂(ν, q) given below,
which depends on ν and q ∈R2:

k̂(ν, q)=
(
−iν

q
µt
, k̂z(νq)

)
, k̂z(νq)=

√
1+ (νq/µt)

2,

(B10)
where q = |q|. We note that k̂(ν, q) · k̂(ν, q)= 1. We obtain

ϕk̂ =

{
ϕq + π for ν > 0,
ϕq for ν < 0,

(B11)

whereϕq is the polar angle of q, and

cos ϑk̂ = k̂ · ẑ= k̂z, sin ϑk̂ =

√
1− cos2 ϑk̂ = i |νq |. (B12)

We note that d l
m′m(ϑk̂) depends on q but is independent of ϕq.

Hence, we write

d l
m′m(ϑk̂)= d l

m′m[iτ(νq)]. (B13)

We define

9M
ν j (M)

(ŝ, q0)=Rk̂(ν j (M),q0)
8M
ν j (M)

(ŝ),

9M
ν (ŝ, q0)=Rk̂(ν,q0)

8M
ν (ŝ). (B14)

2. BALLISTIC SUBTRACTION

As was done in Appendix A, we consider Is by subtracting Ib

from I . Let us introduce the particular solution Ip as

(
ŝ · ∇ +µa +µs

)
Ip(r, ŝ)=µs

∫
S2

p(ŝ, ŝ′)Ip(r, ŝ′)dŝ′

+2(z)S(r, ŝ), (r, ŝ) ∈R3
× S2,

(B15)

where2(·) is the step function. Then we can calculate Is as

Is = Ip +ψ, (B16)

whereψ satisfies


(
ŝ · ∇ +µa +µs

)
ψ(r, ŝ)=µs

∫
S2 p(ŝ, ŝ′)ψ(r, ŝ′)dŝ′,

(r, ŝ) ∈�× S2,

ψ(r, ŝ)= Rn(ŝ · ẑ)ψ(r, ŝR)+ I (p)inc (r, ŝ),
(r, ŝ) ∈ 0−

(B17)
with

I (p)inc (r, ŝ)= Rn(ŝ · ẑ)Ip(r, ŝR)− Ip(r, ŝ), r ∈ ∂�. (B18)

3. PARTICULAR SOLUTION

To find Ip(r, ŝ), we write

Ip(r, ŝ)=µs e iq0·ρe−µt z2(z)
lmax∑
l=0

l∑
m=−l

ηlme−imϕq0 Ylm(ŝ).

(B19)
By multiplying Y ∗lm(ŝ) on both sides of the RTE for Ip and inte-
grating over ŝ ∈ S2, we arrive at the following linear system that
determinesηlm :

∑
l ′m′

[
iq0

2

(
−δm′,m−1δl ′,l−1

√
(l +m)(l +m − 1)

+ δm′,m−1δl ′,l+1

√
(l ′ −m′)(l ′ −m′ − 1)

+ δm′,m+1δl ′,l−1

√
(l −m)(l −m − 1)

− δm′,m+1δl ′,l+1

√
(l ′ +m′)(l ′ +m′ − 1)

)
−µtδm′m

(
δl ′,l−1

√
l2 −m2 + δl ′,l+1

√
(l ′)2 −m2

)
+ δm′mδl ′l (2l + 1)σl

]
ηl ′m′
√

2l ′ + 1

= δm0
(2l + 1)g l

√
4π

.

(B20)
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Suppose that the light in direction ŝ ∈ S2
−

is detected at rd ∈ ∂�.
Here, S2

−
denotes the set of unit vectors in outgoing directions.

We have

Ip(rd , ŝ)=µs e iq0·ρ

lmax∑
l=0

l∑
m=−l

ηlme−imϕq0 Ylm(ŝ). (B21)

4. GENERAL SOLUTION

Since the scattering phase function p(ŝ, ŝ′) depends only on ŝ ·
ŝ′, we can rewrite (3) as

p(ŝ, ŝ′)=
lmax∑
l=0

l∑
m=−l

gl Ylm(ŝ; k̂)Y ∗lm(ŝ
′
; k̂) (B22)

for arbitrary k̂= k̂(ν, q). We note that

Y ∗l M(ŝ; k̂)=Rk̂Y ∗l M(ŝ)

=

l∑
m=−l

e imϕ
k̂d l

mM(ϑk̂)Y
∗

lm(ŝ). (B23)

Let us express the eigenmodes as

ψν(r, ŝ, q)

=

lmax∑
l=0

1
√
σl
〈l |φn(M)〉 Yl M(ŝ; k̂)e−µt k̂·r/ν

= e iq·ρe−µt k̂z(νq)z/ν

×

lmax∑
l=0

〈l |φν〉
√
σl

l∑
m=−l

e−imϕ
k̂d l

mM(ϑk̂)Ylm(ŝ). (B24)

We substitute the above ψν(r, ŝ, q) in the homogeneous
equation of the RTE. By using l ′ = 0, . . . , lmax and
m′ = 0,±1, . . . ,±l ′, we obtain

lmax∑
l ′=0

l ′∑
m′=−l ′

〈
l ′|φn(m′)

〉
√
σl ′

Yl ′m′(ŝ; k̂)

(
−

ŝ · k̂
ν
+ 1

)
µt

=µs

lmax∑
l ′=0

l ′∑
m′=−l ′

gl ′
〈
l ′|φn(m′)

〉
√
σl ′

Yl ′m′(ŝ; k̂). (B25)

By rotating the reference frame in the inverse direction, we
arrive at

lmax∑
m′=−lmax

lmax∑
l ′=|m′|

〈
l ′|φn(m′)

〉
√
σl ′

Yl ′m′(ŝ)
(
−

cos ϑ

ν
+ 1

)
µt

=µs

lmax∑
m′=−lmax

lmax∑
l ′=|m′|

gl ′
〈
l ′|φn(m′)

〉
√
σl ′

Yl ′m′(ŝ). (B26)

By multiplying Y ∗lm(ŝ) (−(lmax − 1)≤m ≤ lmax − 1, |m| ≤ l ≤
lmax) on both sides and integrating over ŝ ∈ S2, we obtain

lmax∑
l ′=|m|

(
bl+1(m)δl+1,l ′ + bl (m)δl−1,l ′

) 〈
l ′|φn(m)

〉

=
νn(m)
µt
〈l |φn(m)〉 . (B27)

In the above equation, we wrote ν = νn(m). We see that
ν
µt
= νn(M)/µt and |φn(M)〉 are eigenvalues and eigenvectors

of the following matrix-vector equation [8,9]:

B(M) |φn(M)〉 =
νn(M)
µt
|φn(M)〉 , (B28)

where M = 0,±1, . . . ,±(lmax − 1), and matrix B(M) ∈
R(lmax−|M|+1)×(lmax−|M|+1) is a tridiagonal matrix whose
elements are given by

{B(M)}l l ′ = bl (M)δl ′,l−1 + bl ′(M)δl ′,l+1 (B29)

for |M| ≤ l , l ′ ≤ lmax. We used the notation such that
〈l |B(M)|l + 1〉 = 〈l + 1|B(M)|l〉 = bl+1(M). These νn(M)
are approximate eigenvalues and discretized values of the con-
tinuous spectrum of Case’s ν [34,37]. We note that for each pair
of νn(M) and 〈l |φn(M)〉 (l = |M|, . . . , lmax), there exists a pair
of eigenvalues −νn(M) and eigenvectors (−1)l 〈l |φn(M)〉 [8].
For the specific intensity ψ(r, ŝ) to vanish as z→∞, we take
only b(lmax − |M| + 1) /2c eigenvalues and eigenvectors such
that

νn(M) > 0, n = 1, 2, . . . ,

⌊
lmax − |M| + 1

2

⌋
. (B30)

From the point of view of the singular eigenfunction, the
method of rotated reference frames is the spherical-harmonic
expansion of the singular eigenfunction [10,37,38]:

8m
ν (ŝ)≈

lmax∑
l=|m|

ξm
l (ν)Ylm(ŝ). (B31)

Using 〈φn(M)|φn(M)〉 = 1 and
∫
S2 µ|8

m
ν (ŝ)|

2d ŝ=
2πNm(ν) with the normalization factor Nm(ν) from
one-dimensional transport theory, we find

ξm
l (ν)=

√
2πµtNm(ν)

νσl
〈l |φn(m)〉 . (B32)

Furthermore, we note that 〈l |φ−ν(M)〉 = (−1)l 〈l |φν(M)〉 [8].
The specific intensityψ(r, ŝ) is given by the superposition of

eigenmodesψν(r, ŝ, q)with separation constant ν as

ψ(r, ŝ)=
1

(2π)2
∑
ν>0

∫
R2

Cν(q)ψν(r, ŝ, q)dq

=
1

(2π)2
∑
ν>0

∫
R2

Cν(q)e iq·ρ
lmax∑
l=0

l∑
m=−l

〈l |φν〉
√
σl
(−1)m

× e−imϕqd l
mM[iτ(νq)]Ylm(ŝ)e−µt k̂z(νq)z/νdq,

(B33)
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where Cν(q) is determined later from the boundary condition.
We note that

I (p)inc (r, ŝ)=µs e iq0·ρ

lmax∑
l=0

l∑
m=−l

ηlme−imϕq0

×
(
Rn(ŝ · ẑ)(−1)l+m

− 1
)

Ylm(ŝ). (B34)

Let us find Cν(q). As was done in [11], we introduce

Bm
ll ′(n)=

∫
S2
+

Rn(cos ϑ)Yl ′m(ŝ)Y ∗lm(ŝ)dŝ

=
1

2

√
(2l + 1)(2l ′ + 1)(l −m)!(l ′ −m)!

(l +m)!(l ′ +m)!

×

∫ 1

0
Rn(µ)P m

l (µ)P
m
l ′ (µ)dµ. (B35)

Note that B−m
ll ′ (n)=Bm

ll ′(n). Furthermore, we let Bm
ll ′(∞)

denote Bm
ll ′(n), with Rn = 1. Let us take the Fourier transform

for ρ and operate
∫
S2
+

dŝY ∗lm(ŝ) on the boundary condition. By

introducing fMn(q) as

Cν(q)= (2π)2 fMn(q)δ(q− q0), (B36)

we obtain

lmax−1∑
M=0

b(lmax−|M|+1)/2c∑
n=1

 lmax∑
l ′=max(|m|,|M|)

(
Bm

ll ′(∞)− (−1)l
′
+mBm

ll ′(n)
) 〈l ′|φn(M)

〉
√
σl ′

×

(
d l ′

mM(ϑk̂)+ (1− δM0)(−1)Md l ′
m,−M(ϑk̂)

)  fMn(q)

=µs

lmax∑
l ′=m

ηl ′m

(
(−1)l

′Bm
ll ′(n)− (−1)mBm

ll ′(∞)
)

(B37)

for 0≤ l ≤ lmax, 0≤m ≤ l . Note that equations for m and
−m are the same, and hence, f−M,n(q)= (−1)M fMn(q).
Due to the fact that associated Legendre polynomials satisfy
three-term recurrence relations, linearly independent equa-
tions are extracted from the above equations if equations with
l =m + 1+ 2α (α = 0, 1, . . . , b(lmax −m − 1)/2c) are taken
for m = 0, 1, . . . , lmax − 1.

Finally, we obtain

ψ(r, ŝ)= e iq0·ρ

lmax∑
l=0

l∑
m=−l

(−1)me−imϕq0 Ylm(ŝ)K lm(q0, z),

(B38)
where

K lm(q0, z)=
lmax−1∑

M=−(lmax−1)

b(lmax−|M|+1)/2c∑
n=1

fMn(q0)

×
〈l |φn(M)〉
√
σl

d l
mM[iτ(νn(M)q0)]e−µt k̂zz/νn(M).

(B39)

Thus,

J+(rd )=

∫
S2
−

(cos ϑ)Ip(rd , ŝ)dŝ+
∫
S2
−

(cos ϑ)ψ(rd , ŝ)dŝ

=−e iq0·ρd ARTE(q0),

(B40)

where

ARTE(q0)=
√
π

lmax∑
l=0

(−1)l
√

2l + 1

(∫ 1

0
µPl (µ)dµ

)
× (µs ηl0 + K l (q0)) .

(B41)

Here,

K l (q0)= K l0(q0, 0)=
∑

M≥0,n

fMn(q0)
〈l |φn(M)〉
√
σl

× (d l
0M[iτ(νn(M)q0)]

+ (1− δM0)(−1)Md l
0,−M[iτ(νn(M)q0)]). (B42)

Note that
∫ 1

0 µP1(µ)dµ= 1
3 ,
∫ 1

0 µPl (µ)dµ= 0 if l > 1 is
odd, and when l is even,∫ 1

0
µPl (µ)dµ=

(−1)
l
2+1l !

2l (l − 1)(l + 2)
[(

l
2

)
!
]2 . (B43)
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