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A fast algorithm for fluorescence diffuse optical tomography is proposed. The algorithm is robust against the choice
of initial guesses. We estimate the position of a fluorescent target by assuming a cuboid (rectangular parallelepiped)
for the fluorophore target. The proposed numerical algorithm is verified by a numerical experiment and an exper-
iment with a meat phantom. The target position is reconstructed with a cuboid from measurements in the time
domain. Moreover, the long-time behavior of the emission light is investigated making use of the analytical solution
to the diffusion equation. ©2020Optical Society of America
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1. INTRODUCTION

Fluorescence diffuse optical tomography (FDOT) is one type
of optical tomography that makes use of fluorescent light from
fluorophore. In FDOT, diffuse light from fluorophore, such as
indocyanine green (ICG), is detected on the boundary of bio-
logical tissue to obtain tomographic images [1,2]. FDOT can be
formulated as an inverse source problem. As theoretical results,
in addition to the usual L2 regularization, the L1 regularization
was tested [3–6], and the total variation was considered [7].
An improvement in image quality was reported with the total
variation by making use of the Bregman distance [8]. In data
acquisition, the measured fluorescent light can be divided by the
measured excitation light to cancel unknown constants, which
was introduced as normalized measurements [9].

FDOT has been verified in vivo [10,11] and also in clinical
research for breast cancer [12–14]. Noncontact measurements
with a CCD camera were established, and fluorescence yield was
reconstructed for mice with lung tumors [15]. The resolution of
tomographic images is a function of the number of sources and
detectors. A large number of parallel channels can be employed
by a detection fiber array coupling onto a CCD camera, which
leads to fluorescence molecular tomography finding a target of
a few millimeters [16,17]. A tumor in a mouse was imaged by
the use of a conical mirror, by which light is collected by a CCD

camera without attaching optical fibers to the mouse [18]. As
an alternative, the number of measured data can be increased
by time-dependent experiments [19]. The superiority of the
time-resolved approach over the continuous-wave approach in
FDOT was concluded [20], although the quality of images can
be improved even for a time-independent experiment if a large
data set is used [21]. In FDOT, usually it is not easy to know
precise values of absorption and scattering coefficients. The
reduction in the reconstruction errors due to this inaccuracy is
proposed with the Bayesian approximation error approach [22].

Among three types of FDOT (continuous wave, frequency
domain, and time domain), the measurement in time domain
has the most fruitful information. Although the governing
equation for near-infrared light in the frequency domain
reduces to the time-independent diffusion equation, the time-
resolved curve for the time-domain FDOT is calculated from
the time-dependent diffusion equation. Usually, the infor-
mation carried by measurements in time domain is not fully
explored. By a transformation in time such as Fourier transform,
Laplace transform, Mellin transform, Mellin–Laplace trans-
form, etc., the problem is reduced to an inverse problem for the
time-independent diffusion equation [23].

A straightforward way of solving the linear inverse problem
of FDOT is the direct inversion with singular value decompo-
sition (SVD). Although SVD is proven to be successful [21],
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the method is computationally expensive from the viewpoint
of memory and speed. An alternative approach is the use of
iterative methods. For example, the Levenberg–Marquardt
(LM) method [24,25] has been successfully used for FDOT
of breast cancer in the frequency domain [12]. By the regulari-
zation of total variation, edges in reconstructed images are not
smoothed. However, compared with the usual L2 regulariza-
tion, some care is necessary for the use of total variation. To
this end, the split Bregman iteration was developed [26,27]
and used in Ref. [7]. The three-dimensional FDOT in the time
domain with the time-dependent diffusion equation is still a
challenging problem. In Ref. [19], reconstructed images for the
time-domain FDOT by the time-dependent diffusion equa-
tion were obtained in two dimensions by an iterative scheme
of the Newton–Raphson inversion. Two-dimensional time-
dependent diffusion equations were solved for the FDOT by
the total light approach [28,29]. Although the original cou-
pled diffusion equations are simplified by this approach, the
corresponding inverse problem becomes more difficult, since
the approach makes use of the weak nonlinearity of the FDOT
inverse problem, which is almost linear.

In this paper, we consider FDOT by measuring time-resolved
data from reflected light. Aiming at a fast and robust numerical
algorithm, we focus on the reconstruction of the position of
a fluorophore target, neglecting its precise shape. We assume
a cuboid or rectangular parallelepiped in the medium. Then
we try to find the cuboid that represents the true target. Due
to the assumption of the cuboid shape, the reconstruction of
our FDOT can be done by determining only several unknown
parameters. For the robustness and fast convergence of our
reconstruction scheme, we narrow the region of interest during
the reconstruction process. Before assuming a cuboid, we use
a cubic to have a good initial guess. The initial guess for the
cubic is chosen using the spatial knowledge of the intensity from
boundary measurements. The proposed reconstruction scheme
was tested both numerically and experimentally. We will con-
sider the three-dimensional FDOT using the time-dependent
diffusion equation, which is the most computationally expen-
sive FDOT. Using the proposed method, we show that the
three-dimensional FDOT in the time domain is feasible on a
laptop computer (Apple MacBook Pro, 2.7 GHz Intel Core i5).
If we consider continuous-wave or frequency-domain measure-
ments, two numerical integrals are removed in our formulation
[see Um in Eq. (13)] and the computational time will be further
reduced. Furthermore, we study the asymptotic behavior of
the temporal profile of the emission light using the diffusion
equation.

The paper is organized as follows. In Section 2, we develop
the formulation of our FDOT and give an analytical formula for
the emission light. The proposed numerical scheme is described
in Section 3 with a numerical example of an ellipsoidal target. In
Section 4, we validate our numerical method with a beef sample
in which a fluorescent target is embedded. The detected emis-
sion light carries information on the target to be reconstructed.
In Section 5, we study the time dependence of the emission
light for a point fluorophore. Finally, Section 6 is devoted to
conclusions.

2. FORMULATION

Let us suppose that a fluorescent target is embedded in biological
tissue occupying the half space (−∞< x <∞,−∞< y <∞,
0< z<∞). Let c be the speed of light in the medium. Let
ue (r, t), um(r, t) be the energy densities of the excitation
light and emission light, respectively. Here, r= (ρ, z), with
ρ = (x , y ) as the position and t as time. Boundary measure-
ments are performed during 0< t < T. We assume that the
reduced scattering coefficient µ′s and the absorption coefficient
µa are constants everywhere in the medium. Although the
wavelength of the emission light is longer than the wavelength
of the excitation light, and thus values ofµa andµ′s are different
for the excitation light and emission light, we ignore this differ-
ence. Moreover, compared with µa , the absorption coefficient
for the fluorophore is negligible because it is nonzero only at
the position of the fluorophore. Then in the medium (z> 0),
ue (r, t) and um(r, t) obey the following diffusion equations
(e.g., [19,20]): (

1

c
∂

∂t
− D1+µa

)
ue = 0, (1)

(
1

c
∂

∂t
− D1+µa

)
um = F , (2)

where D= 1/(3µ′s ), and

F (r, t)=
n(r)
τ

∫ t

0
e−(t−s )/τue (r, s )ds . (3)

Here, n(r) is proportional to the fluorophore concentration,
whose proportionality constant is the product of the quantum
yield and absorption cross section, and τ is the fluorescence life-
time. We assume that ue = 0 and um = 0 at t = 0. The sample
is illuminated at position rs = (ρ s , 0) by a pencil beam of the
temporal profile h(t) (t > 0) in the x−y plane. At z= 0, ue , um

satisfy the Robin boundary conditions as

−
∂

∂z
ue + βue = h(t)δ(ρ − ρ s ), −

∂

∂z
um + βum = 0.

(4)

The parameterβ is given byβ = 1
2D (1− 2

∫ 1
0 R(µ)µdµ)/(1+∫ 1

0 R(µ)µ2dµ) with the Fresnel reflectance R(µ), which
depends on the refractive index of the medium [30]. Suppose
the out-going light is detected at rd on the boundary. The exci-
tation light and emission light are detected through a response
function R as

Ue (rd , t; rs )=

∫ t

0
R(t − s )ue (rd , s )ds ,

Um(rd , t; rs )=

∫ t

0
R(t − s )um(rd , s )ds , (5)

where the function R is determined by the detector. These
Ue ,Um correspond to experimentally measured light
U exp

e (rd , t; rs ), U exp
m (rd , t; rs ).

Let G(r, r′; t) be the Green’s function that satisfies(
1

c
∂

∂t
− D1+µa

)
G(r, r′; t)= δ(r− r′)δ(t), (6)
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with the initial condition G = 0 at t = 0 and the Robin bound-
ary condition − ∂

∂z G + βG = 0. The Green’s function is
obtained as [31–34]

G(r, r′; t)= c (4πDc t)−3/2e−µa c t

× exp

(
−
(x − x ′)2 + (y − y ′)2

4Dc t

)
g (z, z′; t),

(7)

where

g (z, z′; t)=

exp

(
−
(z+ z′)2

4Dc t

)
+ exp

(
−
(z− z′)2

4Dc t

)
− 2β
√
πDc t

× exp
(
β(z+ z′)+ β2 Dc t

)
erfc

(
z+ z′ + 2βDc t
√

4Dc t

)
. (8)

We introduce the instrument response function as

q(t)=
∫ t

0
R(t − s )h(s )ds . (9)

The fluorophore target that we try to reconstruct may have
different shapes. In this paper, we focus on the position of the
target and solve the inverse problem assuming a cuboid. That
is, we will find the location of the target using a cuboid. In the
formulation below, we assume that the target has the shape of a
cuboid.

Let�c be a cuboid specified by x1, x2, y1, y2, z1, z2 as x1 <

x < x2, y1 < y < y2, z1 < z< z2. We assume that

n(r)=
{

M, r ∈�c ,

0, r /∈�c ,
(10)

where M > 0 is a constant. Then we obtain

Um(rd , t; rs )=

∫ t

0
Q(s )

∫ t−s

0

∫
�c

n(r′)G(rd , r′; t − s − s ′)

× G(r′, rs ; s ′)dr′ds ′ds ,
(11)

where we introduce

Q(t)=
D
τ

∫ t

0
e−t ′/τq(t − t ′)dt ′. (12)

Equation (11) can be rewritten as

Um(rd , t; rs )=

M
∫ t

0
Q(s )

∫ t−s

0
f1(ρd , ρ s , t − s , t ′; x1, x2, y1, y2)

× f2(t − s , t ′; z1, z2)dt ′ds ,
(13)

where

f1(ρd , ρ s , t, s ; x1, x2, y1, y2)=

e−µa c t

43π2 D2t
√
(t − s )s

e−
(xd−xs )2+(yd−ys )2

4Dc t

× [ f3(xd , xs, t, s; x2)− f3(xd , xs, t, s; x1)]

× [ f3(yd , y s, t, s; y2)− f3(yd , y s, t, s; y1)] , (14)

and

f2(t, s ; z1, z2)=

∫ z2

z1

g (0, z′; t − s )g (z′, 0; s )dz′. (15)

Here, we define

f3(xd , xs , t, s ; x )=

erf

(√
t

4Dc (t − s )s

(
x −

s xd + (t − s )xs

t

))
. (16)

We can compute Um(rd , t; rs )using (13).

3. IDENTIFICATION OF A CUBOID

The reconstruction of a fluorophore, which in general has dif-
ferent shapes, is considered. In our proposed inversion scheme,
we will reconstruct the fluorophore by identifying a cuboid
n(r). The cuboid is expected to specify the location of the fluo-
rophore. In this way, our FDOT is achieved by using only seven
unknown parameters: M, x1, x2, y1, y2, z1, z2. Although the
number of unknown parameters is significantly fewer than other
methods that use voxels, the original linear inverse problem of
reconstructing n(r) from Um in (11) becomes nonlinear. The
reconstruction will be done with the LM method. Even though
there are only seven parameters, the choice of initial guesses is
important. For the sake of robust reconstruction, we propose
to obtain a set of good initial guesses for the seven parameters
by narrowing the region of interest according to three steps
described below.

Let NSD be the number of source–detector pairs. The
positions of each source and detector are denoted by ri

s , ri
d

(i = 1, . . . , NSD). At each detector, light is measured at Nt

temporal points.
We first look for a rough location of the target projected to

the x−y plane or a region of interest 0 on the boundary, under
which the target is likely to be embedded, by observing

Ii =

∫ T

0
U exp

m (ri
d , t; ri

s )dt, i = 1, . . . , NSD. (17)

The observation time T = 3 ns for the numerical experiment in
this section and T = 10 ns for the meat phantom experiment in
Section 4. We call this step of setting 0 the topography process.
By using Ii with large values, we set the region0.

Then we assume a cubic target whose location and size are
determined by four parameters x0, y0, z0, l , such that
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x1 = x0 −
l
2
, x2 = x0 +

l
2
, y1 = y0 −

l
2
, y2 = y0 +

l
2
,

z1 = z0 −
l
2
, z2 = z0 +

l
2

.

(18)

Choosing the initial guess for x0, y0 inside 0, we solve the
inverse problem of determining x0, y0, z0, l , M by the LM
method. We note that the choice of M is not strict compared
with other parameters. The obtained cubic is denoted by

acubic
∗
= (x ′0, y ′0, z′0, l ′, M′). (19)

We refer to this step as the cubic tomography. Since we have only
five parameters instead of seven, there is a good stability for the
inverse problem in this step.

Finally, with the obtained values acubic
∗

as the initial guess
acuboid

0 , we solve the inverse problem of determining a cuboid
target. In this way, we can identify �c for n(r) by obtaining
reconstructed values:

acuboid
∗
= (x ∗1 , x ∗2 , y ∗1 , y ∗2 , z∗1, z∗2, M∗). (20)

This last step is called the cuboid tomography. The algorithm is
summarized as follows.

Step 1. (Topography process) Find0 on the boundary.
Step 2. (Cubic tomography) By searching underneath 0,

obtain reconstructed values acubic
∗

.
Step 3. (Cuboid tomography) Find acuboid

∗
, starting with

acubic
∗

.

Below, we will demonstrate our algorithm with a numerical
experiment. We set τ = 0, h(t)= R(t)= δ(t). Let us set an
ellipsoidal target as

{x 2/1.52
+ y 2/32

+ (z− 11)2/1.52
≤ 1}, (21)

where the unit of length is mm, with n(r)= 0.02 mm−1. In the
numerical experiment, 5% noise is added, and

U exp
m =Um(1+ 0.05ε), (22)

where ε is drawn from the standard Gaussian distribution. We
use the following NSD = 32 source–detector pairs pi = (ri

s ; r
i
d )

(i = 1, . . . , NSD) on the boundary:

p4 j−3 = (ξ j , ζ j + 10
√

3; ξ j − 10, ζ j ),

p4 j−2 = (ξ j , ζ j + 10
√

3; ξ j + 10, ζ j ),

p4 j−1 = (ξ j , ζ j − 10
√

3; ξ j − 10, ζ j ),

p4 j = (ξ j , ζ j − 10
√

3; ξ j + 10, ζ j ) (23)

for j = 1, . . . , 8. Here, (ξ1, ζ1)= (−10, 10), (ξ2, ζ2)=

(−10, 0), (ξ3, ζ3)= (−10,−10), (ξ4, ζ4)= (0,−10),
(ξ5, ζ5)= (10,−10), (ξ6, ζ6)= (10, 0), (ξ7, ζ7)= (10, 10),
and (ξ8, ζ8)= (0, 10). We set Nt = 20 and

t i
k = t i

p + (k − 10)1t (k = 1, . . . , Nt), (24)

where 1t = 6.67 ps, and t i
p is the peak time of U exp

m (ri
d , t; ri

s )

(i = 1, . . . , NSD). Thus, we have NSD Nt(= 640)measured val-
ues U exp

m (ri
d , t i

k; r
i
s ) (i = 1, . . . , NSD, k = 1, . . . , Nt ). Let a be a

vector that contains unknown parameters to be reconstructed.
We find a= a∗ by fitting Um to U exp

m using the LM method
implemented on MATLAB [35,36].

(Step 1) We find I4 = I10 = I17 = I27 = 5.9× 10−7, whereas
I1 = I11 = I20 = I26 = 1.0× 10−9. Hence, we can set

0 = {−10< x0 < 10,−10< y0 < 10}. (25)

At this moment, we have no knowledge about the depth at
which the target is embedded. We suppose 0< z0 < 30 together
with 0< l <min(20, 2z0) and 0< M < 10.

(Step 2) We set the initial values of x0, y0 in 0. For example,
we can start from acubic

0 = (x0, y0, z0, l , M)= (2, 2, 5, 4, 0.1).
The reconstructed values are

acubic
∗
= (x ′0, y ′0, z′0, l ′, M′)= (0.0, 0.0, 11.24, 4.089, 0.0086).

(26)

We note that choosing x0, y0 in 0 is important for fast con-
vergence. If we pick a point outside 0 and set (x0, y0)=

(−15,−15), more than 100 iterations are needed, whereas
about 10 iterations are sufficient for x0, y0 ∈ 0.

(Step 3) Now we give the initial guess acuboid
0 from acubic

∗
as

acuboid
0 = (x1, x2, y1, y2, z1, z2, M)

=

(
x ′0 −

l ′

2
, x ′0 +

l ′

2
, y ′0 −

l ′

2
, y ′0 +

l ′

2
,

z′0 −
l ′

2
, z′0 +

l ′

2
, M′

)
. (27)

Then assuming that the target is a cuboid, we obtain
reconstructed values acuboid

∗
as

Fig. 1. Identification of the ellipsoidal target by a cuboid. The
obtained cuboid given by acuboid

∗
(blue) is shown with the ellipsoid

(red).
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Fig. 2. Same as Fig. 1 but cross sections are shown. The cuboid (blue) and ellipsoid (red) are shown, from the left, on the plane at z= 11, on the
x−z plane, and on the y−z plane, respectively.

acuboid
∗
= (x ∗1 , x ∗2 , y ∗1 , y ∗2 , z∗1, z∗2, M∗)

= (−1.074, 1.036,−2.146, 2.166, 9.908, 12.02, 0.029).

(28)

The reconstructed cuboid is shown in Fig. 1 with the ellipsoidal
target. The cuboid (blue) and ellipsoid (red) are shown in two-
dimensional planes in Fig. 2. We see that the center position of
the ellipsoidal target is correctly reconstructed, and the volume
of the target is well recovered by the cuboid. Furthermore, the
reconstructed M∗ is close to the true value 0.02 mm−1.

Figure 2 shows that the reconstructed cuboid is the one that
has the largest area in the ellipse on each projected plane: x−y ,
x−z, or y−z. In the x−y plane, the cross section of the target
is an ellipse of area π(1.5)(3)≈ 14.1. From the inequality√
(x 2/1.52)(y 2/32)≤ 1

2 (x
2/1.52

+ y 2/32)= 1
2 , we see that

p1 = (−5− 10
√

3, 0; −5, 10), p2 = (−5+ 10
√

3, 0; −5, 10), p3 = (−5− 10
√

3, 5; −5, 15), p4 = (−5+ 10
√

3, 5; −5, 15),

p5 = (−10
√

3, 0; 0, 10), p6 = (−10
√

3, 5; 0, 15), p7 = (5− 10
√

3, 5; 5,−5), p8 = (5− 10
√

3, 5; 5, 15),

p9 = (5− 10
√

3, 0; 5, 10), p10 = (5− 10
√

3,−5; 5, 5), p11 = (−10
√

3,−5; 0, 5), p12 = (−10+ 10
√

3, 0; −10, 10),

p13 = (−15+ 10
√

3, 0; −15, 10), p14 = (−15+ 10
√

3, 5; −15,−5), p15 = (−15+ 10
√

3, 5; −15, 15),

p16 = (−10+ 10
√

3, 5; −10, 15),
(29)

the maximum area of the rectangle inside the ellipse is nine,
since the area is (2x )(2y )≤ 4(1.5× 3)/2= 9. The area of
the cross section of the reconstructed cuboid (Fig. 2 (Left))
is (x ∗2 − x ∗1 )(y

∗
1 − y ∗2 )= 9.098. Similarly, in the x−z plane

[Fig. 2 (middle)] and y−z plane [Fig. 2 (right)], the cross sec-
tions of the cuboid have the largest areas in the corresponding
ellipses.

We emphasize that the narrowing process 0→ acubic
0 →

acuboid
0 is essential. If the initial guess acubic

0 for step 2 is used as the
initial guess for the cuboid tomography, the iteration of the LM
method does not converge except for some special cases.

4. BEEF EXPERIMENT

Let us reconstruct a fluorescent tube embedded in beef with our
reconstruction scheme. The tube contains 1 µM ICG solution.

Figure 3 shows how the tube is placed in the meat phantom. The
tube has the shape of a cylinder of length 8 mm and diameter
2 mm. Time-dependent measurements were conducted using
a holder placed on the top of the beef sample as shown in Fig. 3.
Four optical fibers (two are for sources, and the other two are for
detectors) are attached to the holder. The motorized stage on
which the meat phantom is placed changes positions while the
holder is fixed. A near-infrared pulsed laser at 780 nm is used to
excite the fluorescent target. See [37] for the experimental setup.
Since the source–detector separation is 2 cm, we can assume the
half space.

Optical parameters for the meat phantom are µ′s =

0.92 mm−1, µa = 0.023 mm−1. The refractive index is set to
1.37. Moreover, τ = 0.6 ns [38]. By neglecting source–detector
pairs with tiny signals, we can use NSD = 16 source–detector
pairs pi = (ri

s ; r
i
d ) (i = 1, . . . , NSD):

where the unit of coordinates is mm. The background
fluorescence is subtracted from the signal at each source–
detector pair. Since the signal from the source–detector pair
p0 = (−15− 10

√
3, 5; −15, 15) contains little contribution

from the target fluorescence, we used the emission light from
p0 as the background fluorescence. Sources and detectors are
shown in Fig. 4. Red small disks show sources and blue circles
show detectors. The source–detector pairs are denoted by pink
lines. Moreover, the green rectangle shows the position of the
reconstructed tube in (32) projected on the x−y plane. We
set Nt = 20 and 1t = 6.1 ps. At the i th source–detector pair
(i = 1, . . . , NSD), measured times used for reconstruction are
t i
k = t i

p + (k − 11)1t (k = 1, . . . , Nt ), where t i
p is the peak

time of U exp
m (ri

d , t; ri
s ).

Since measured values are large in this region, such
as I5 = 3.3× 104, I6 = 4.0× 104, I12 = 2.9× 104,
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Fig. 3. (Left) A tube of ICG was placed inside the beef. (Middle) The tube was embedded at a depth of about 16 mm. (Right) Boundary measure-
ments were performed using optical fibers attached to a holder on the top of the beef.

y

x

5mm

p2

p4

p5

p7

p8

p10

p16

p11

p9p1

p6p3

p12

p14

p13

p0

p15

Fig. 4. Schematic figure of measurements on the boundary. Red small disks show sources, and blue circles show detectors. The source–detector
pairs are denoted by pink lines. The green rectangle shows the position of the reconstructed tube projected on the x−y plane.

I16 = 3.4× 104, first we set (step 1)

0 = {−10< x < 0, 5< y < 20}. (30)

Although the value of n(r), i.e., M for the cube and cuboid, is
a parameter to be reconstructed, in this beef experiment, M is
determined only up to a constant that comes from the property
of the instrument. We set (x0, y0, z0)= (−5, 10, 7), l = 2, and
obtain (step 2)

(x ′0, y ′0, z′0)= (−4.12, 7.72, 17.25), l ′ = 3.92. (31)

With the above values as the initial guess, we use the iterative
method once again (step 3). The reconstructed values are
obtained as

x ∗1 =−5.16, x ∗2 =−3.11, y ∗1 = 3.83, y ∗2 = 12.03,

z∗1 = 16.05, z∗2 = 16.34.
(32)

The position of the cuboid is what we expected. In particular,
we see that the orientation of the cylinder must be almost par-
allel to the y axis as shown in Fig. 4. Thus, the position of the
fluorescent tube is reconstructed with the proposed numerical
scheme.

The exact position of the embedded tube in beef is not
known. If the tube is parallel to the y axis as the green rect-
angle in Fig. 4, the reconstructed diameter of the tube is
x ∗2 − x ∗1 = 2.05 mm, and the reconstructed length of the
tube is y ∗2 − y ∗1 = 8.2 mm, where the true diameter and length
are 2 mm and 8 mm, respectively. The reconstructed depth
position is estimated as (z∗1 + z∗2)/2= 16.2 mm, which is
consistent with the depth shown in Fig. 3 (middle). Compared
with these reconstructed values, the reconstructed thickness
z∗2 − z∗1 = 0.29 mm is different from the diameter of the tube.
In light of the fact that the ellipsoid is correctly reconstructed in
Section 3, the reason for the short reconstructed thickness may
be attributed to experimental conditions such as the number
and positions of source–detector pairs and measurement noise.

5. LONG-TIME BEHAVIOR

The measured emission light Um has information on the flu-
orophore target. Let us investigate the long-time behavior of
Um . We will see below that the fluorescence lifetime τ can be
estimated by the long-time behavior of Um .

For simplicity, we consider a point target

n(r)= δ(r− rc ). (33)
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That is, �c is a point rc . According to (11), the emission light
Um(rd , t; rs ) can be calculated as

Um(rd , t; rs )=
1

16(πD)3c

∫ t

0
Q(t − s )e−µa c s

×

∫ s

0
ξ(s , s ′)e ζ(s ,s

′)ds ′ds . (34)

Here we introduced

ξ(s , s ′)=
1

[(s − s ′)s ′]3/2

×

[
1− β

√
πDc (s − s ′)W

(
zc + 2βDc (s − s ′)√

4Dc (s − s ′)

)]

×

[
1− β

√
πDc s ′W

(
zc + 2βDc s ′
√

4Dc s ′

)]
,

(35)

and

ζ(s , s ′)=−
|rs − rc |

2

4Dc (s − s ′)
−
|rd − rc |

2

4Dc s ′
, (36)

where we write

erfc(x )= e−x2
W(x ). (37)

We note that W(x )∼ 1/(x
√
π) for large x , and

min
t∈(0,T)

zc + 2βDc t
√

4Dc t
=
√

2βzc . (38)

Let us suppose

zc �
1

2β
. (39)

Using the method of steepest descent, we obtain

Um(rd , t; rs )≈

z2
c

8(πD)5/2
√

c

(|rs − rc | + |rd − rc |)
3

|rs − rc ||rd − rc |

×

∫ t

0
Q(t − s )

e−µa c s

s 3/2
exp

(
−
(|rs − rc | + |rd − rc |)

2

4Dc s

)

×
1

C0zc + 2βDc |rs − rc |s
1

C0zc + 2βDc |rd − rc |s
ds ,

(40)

where C0 = |rs − rc | + |rd − rc |. Below, we put h(t)= R(t)=
δ(t) for simplicity.

We note that

Q(t)=
D
τ

e−t/τ . (41)

By considering large t , we assume the following relations:

t� τ, τ �
zc

2βDc
. (42)

Since we are interested in the long-time behavior of
Um(rd , t; rs ), we take the Laplace transform for t and take
only small values of the Laplace variable into account. Then for
large t , we have

Um(rd , t; rs )∝ exp

[
−

1

τ

(
t −
|rs − rc | + |rd − rc |

2c
√
µa D

)]
.

(43)
Therefore, we obtain

τ =

(
−
∂

∂t
ln Um(rd , t; rs )

)−1

. (44)

In Sections 3 and 4, we have developed the reconstruction
algorithm using a pre-determined fluorescence lifetime, which
is not always known a priori. Kumar et al. pointed out that the
fluorescence lifetime can be estimated from the asymptotic
behavior of the temporal profile of the emission light [39,40].
Here, we showed that their formula also holds true in the
presence of the boundary.

6. CONCLUSION

By giving up the reconstruction of the detailed shape of the
target, we can estimate the position of the target by reconstruct-
ing only several unknown parameters. Even for these several
parameters, the LM method is not stable or converges slowly
unless good initial guesses are used [41,42]. Thus, the proposed
procedure of narrowing target domains as 0→ acubic

0 → acuboid
0

is important for the iterative method to work.
In general, the fluorescence lifetime is also an unknown

parameter. By the analysis in Section 5, we found that the life-
time can be estimated by observing the long-time behavior
of Um(rd , t; rs ) in the case of a point fluorophore. Kumar
et al. obtained the formula (44) for an infinite homogeneous
medium, and its validity was checked by Monte Carlo simu-
lation [39]. This has been developed as the asymptotic time
domain approach, in which resolution below the point spread
function can be obtained [40,43]. In this paper, the formula
(44) was derived in the presence of the boundary.

In Ref. [44], the domain is assumed to contain simply con-
nected subdomains with constant optical parameters. In this
paper, the cuboid target with constant optical parameters freely
moves in the domain during the search process. The computa-
tional advantage of assuming a cuboid is that the solution Um is
obtained in a simple expression, as shown in (13).

The proposed algorithm was developed in the half-space. The
ideas of assuming a simple shape for the target and of decreasing
the number of unknown parameters step by step can be applied
to more general cases where the diffusion equation must be
numerically solved by the finite difference method or finite
element method [45]. In addition, the use of the LM method
is not essential; the proposed algorithm also works with other
iterative schemes such as the conjugate gradient method and the
damped Gauss–Newton method.

In this paper, the algorithm was formulated assuming a single
target. The generalization of the method for multiple targets is
straightforward, at least if the number of targets is known.
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