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ABSTRACT
The photon diffusion equation is solved making use of the Born series for the Robin boundary condition. We develop a general theory
for arbitrary domains with smooth enough boundaries and explore the convergence. The proposed Born series is validated by numerical
calculation in the three-dimensional half space. It is shown that in this case, the Born series converges regardless the value of the impedance
term in the Robin boundary condition.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095179

I. INTRODUCTION
Diffusion is often seen in different subfields of science and engineering. In particular, light propagation in turbid media such as biological

tissue is governed by the diffusion equation except near sources and boundaries.11 There are scattering and absorption in the medium, and
they are characterized by the diffusion and absorption coefficients in the diffusion equation or the photon diffusion equation emphasizing the
existence of the absorption term. In addition to its importance in natural science, diffusion in random media has been utilized in medicine.21

Diffuse optical tomography (DOT) is a near-infrared version of X-ray computed tomography,5 for which inverse problems are to determine,
from boundary measurements, the diffusion coefficient and the absorption coefficient.1,3 Brain activity has been investigated by near-infrared
spectroscopy from boundary measurements of diffuse light.10

At the depth of about ten times the transport mean free path, the energy density of light, which is governed by the Maxwell equations,
starts to obey the diffusion equation via the mesoscopic regime of the radiative transport equation.19,22 Therefore, for highly scattering media
such as biological tissue, the diffusion regime becomes dominant. Hence, it is common to assume that the diffusion regime spans the whole
domain including the boundary. Then, the energy density of light in the medium is obtained as the solution to the photon diffusion equation
with the Robin boundary condition.

In this paper, we consider the Born sequence for the Robin boundary condition and derive the solution to the diffusion equation as a
series. The convergence of the Born series is tested when the spatial domain is a three dimensional half space. More precisely, for a diffusion
equation with a homogeneous diffusion coefficient and an absorption coefficient given in the half space over some finite time interval with the
Robin boundary condition, we tested the convergence of the Born series for the Poisson kernel when we treat the Robin boundary condition as
a perturbation of the Neumann boundary condition. A striking result given later in Sec. V (see Remark V.2) is that this Born series converges
even when the homogeneous impedance term of the Robin boundary condition is not small.

The rest of this paper is organized as follows. In Sec. II, we will discuss the efficiency of the so-called extrapolated boundary condition,
which has been used in the study of optical tomography. This boundary condition was introduced to give an approximate solution in a concise
way for the initial boundary value problem for the aforementioned diffusion equation with the Robin boundary condition. We show that the
efficiency of this boundary condition is limited, which led us to our study given in this paper. Section III is devoted to a general study of
the Born approximation. Then, based on this general study, we define in Sec. IV the Born approximation for the Poisson kernel in the half
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space and a slab domain over some finite time interval. Furthermore, we discuss its convergence of the Born approximation for the Poisson
kernel in the half space over some finite time interval in Sec. V. In Sec. VI, we tested the numerical performance of the Born approxima-
tion for the Poisson kernel in the half space over some finite time interval. The last section is for concluding remarks. Appendixes A–C
give some supplementary arguments and facts that are better to be separated from the main part of this paper to clarify the points of
arguments.

II. ANALYTICAL SOLUTION AND EXTRAPOLATED BOUNDARY
Let us consider the domain Ω = R3

+, where R3
+ = {x ∈ R3; x3 > 0}. The boundary, i.e., the x1-x2 plane, is denoted by ∂Ω. We will find an

expression for u that satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)u = 0, (x, t) ∈ ΩT ,

γ∂νu + βu = δ(x1 − y1)δ(x2 − y2)δ(t − s), (x, t) ∈ ∂ΩT ,

u = 0, x ∈ Ω, t = 0,

(1)

where in the Robin boundary condition, ∂ν = ν.∇ with ν as the unit normal of ∂Ω directed into the exterior of Ω.
Considerable efforts have been paid to derive concise solution formulae for the diffusion equation.2,8,14 Among such efforts, the extrap-

olated boundary is a fudged-up boundary (Chap. 5 in the book by Duderstadt and Hamilton6) placed in an infinite medium obtained by
removing the true boundary. Although it is not easy to mathematically justify the validity of the extrapolated boundary condition, this
boundary condition has been successfully used for light propagation in biological tissue.4,12,17,19

The diffusion equation with the extrapolated boundary condition is described as the following initial value problem for uEBC(x, t):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)uEBC = δ(x1 − y1)δ(x2 − y2)[δ(x3) − δ(x3 + 2ℓ)]δ(t − s),

(x, t) ∈ R3 × (0, T),

uEBC = 0, x ∈ R3, t = 0.

(2)

Here, the ratio ℓ = γ/β is called the extrapolation distance. uEBC restricted to Ω will be considered to approximate the solution u of (1). When
ℓ is close to 0, the boundary ∂Ω is almost purely absorbing, and the purely reflecting boundary is achieved in the limit ℓ→∞. We remark
that sometimes the source is placed inside the medium with the source term given by δ(x1 − y1)δ(x2 − y2)[δ(x3 − d) − δ(x3 + 2ℓ − d)]δ(t − s),
where d is about the transport mean free path.17

We briefly examine the performance of approximating u by uEBC(x, t) restricting toΩ. In Appendix A, we explicitly calculate the solution
to (1) in the half space. We put

y1 = y2 = s = 0. (3)

Then, the exact solution to (1) at x1 = x2 = 0 for x3 > 0, t ≥ 0 is given by

u(x, t) = u(x3, t) = 2e−bt

4πγt

⎡⎢⎢⎢⎢⎢⎣

e−
x2

3
4γt

√
4πγt

− β
2γ

e
β
γ (x3+βt)erfc

⎛
⎝

x3 + 2βt√
4γt

⎞
⎠

⎤⎥⎥⎥⎥⎥⎦
, (4)

where the complementary error function erfc(ξ), ξ ∈ R, is defined as

erfc(ξ) = 2√
π∫

∞

ξ
e−s2

ds.

Furthermore, we obtain

uEBC(x3, t) = e−bt

(4πγt)3/2
(e−

x2
3

4γt − e−
(x3+2γ/β)2

4γt ). (5)

Let us numerically compare u and the restriction of uEBC to Ω. First of all noticing erfc(ξ) = 1
√
π e−ξ

2
(ξ−1 + O(ξ−3)) for large ξ, we have
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FIG. 1. The energy density u is plotted at x3 = 20 mm as a function of t for, from the left to right, β = 0.002 mm/ps, = 0.005 mm/ps, and = 0.015 mm/ps, respectively. In
each panel, u(x3, t) and uEBC(x3, t) are compared.

∣uEBC(x3, t) − u(x3, t)
u(x3, t)

∣ =
1 + e−

x3+γ/β
βt − β

γ

√
4γt(ξ−1 + O(ξ−3))

2 − β
γ

√
γt
π (ξ−1 + O(ξ−3))

,

where ξ = (x3 + 2βt)/
√

4γt. Therefore, we obtain limx3→∞∣(uEBC − u)/u∣ = 1/2 ≠ 0 although limt→∞∣(uEBC − u)/u∣ = limβ→∞∣(uEBC − u)/u∣
= 0.

Next, we set
γ = 0.06 mm2/ps, b = 0.001 ps−1, T = 4 ns, x3 = 20 mm. (6)

In Fig. 1, we compare u(x3, t) in (4) and uEBC(x3, t) in (5). When β is small, the agreement is not good. As β becomes larger, uEBC approaches
the exact solution u(x3, t).

III. GENERAL THEORY FOR BORN SERIES
In this section, a general scheme is given to define the Born series for the initial boundary value problem for the diffusion equation with

the Robin boundary condition. The impedance term [i.e., βu in (1)] in the Robin boundary condition is considered as a perturbation for the
Born series.

Throughout this section, letΩ be a domain inRn (n = 2, 3) and ∂Ω be the boundary ofΩwhich is of C2 class. For simplicity of description,
we only describe our scheme for n = 3. We define

ΩT = Ω × (0, T), ∂ΩT = ∂Ω × (0, T), T > 0.

Let γ = (γij) and b be the diffusion coefficient and the absorption coefficient that are bounded measurable in Ω, i.e., γ, b ∈ L∞(Ω). We assume
that there exists a positive constant δ such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b ≥ δ,
3

∑
i,j=1

γij(x)ξiξj ≥ δ
3

∑
i=1
ξ2

i for any ξ = (ξ1, ξ2, ξ3) ∈ R3 (7)

almost everywhere in Ω. Now, we consider the following initial boundary value problem for the diffusion equation for the energy density
u(x, t):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t −∇ ⋅ γ∇ + b)u = f , (x, t) ∈ ΩT ,

γ∂νu + βu = g, (x, t) ∈ ∂ΩT ,

u = 0, x ∈ Ω, t = 0,

(8)

where f = f (x, t) is the internal source, g = g(x, t) is the boundary source, and β is a positive bounded measurable function on ∂Ω, i.e.,
β ∈ L∞(∂Ω). For the simplicity of description, we assume γ = γ(x)I with scalar function γ(x) ∈ L∞(Ω) abusing the notation γ and the 3 × 3
identity matrix I.

Remark III.1. We can include the incident beam h(x) in the initial condition of (8). By Duhamel’s principle, however, it can reduce to
the case h = 0.
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In order to give the definition of the weak solution to (8), we first introduce L2-Sobolev spaces and related function spaces. Let H1(Ω)
be the real L2 Sobolev space of order 1 in Ω, and we denote its dual space by H1(Ω)∗. Similarly, we let H1/2(∂Ω) be the real L2 Sobolev
space of order 1/2 on ∂Ω and denote its dual space by H−1/2(∂Ω). Define the trace operator Λ : H1(Ω) ∋ ψ ↦ ψ∣

∂Ω ∈ H1/2(∂Ω). Here, we
can consider Λψ ∈ H−1/2(∂Ω) because H1/2(∂Ω) ⊂ H−1/2(∂Ω). We will use the pairings ⟨., .⟩Ω and ⟨., .⟩∂Ω for the pairs (H1(Ω), H1(Ω)∗) and
(H1/2(∂Ω), H−1/2(∂Ω)), respectively. Furthermore, for any real Hilbert space E, L2((0, T); E) denotes the set of all E valued L2 functions over
the time interval (0, T). We will denote its norm by ∥⋅∥L2((0,T);E). Throughout the paper, W((0, T)) denotes the space defined as

W((0, T)) ∶= {u = u(t) ∶= u(⋅, t) ∈ L2((0, T); H1(Ω));∂tu ∈ L2((0, T); H1(Ω)∗)},

equipped with the norm

∥u∥2
W((0,T)) ∶= ∫

T

0
(∥u(t)∥2

H1(Ω) + ∥∂tu(t)∥2
H1(Ω)∗) dt.

We define the weak solution u to (8) as follows.

Definition III.2. Let f = f (t) ∶= f (., t) ∈ L2((0, T); H1(Ω)) and g = g(t) ∶= g(., t) ∈ L2((0, T); H−1/2(∂Ω)). Then, u ∈W((0, T)) is called the
weak solution to (8) if it satisfies u(0) = 0 and

∫
T

0
{⟨∂tu,φ(t)⟩Ω + ⟨γ∇u(t),∇φ(t)⟩Ω + ⟨bu(t),φ(t)⟩Ω + ⟨βΛu(t),Λφ(t)⟩∂Ω}dt

= ∫
T

0
⟨ f (t),φ(t)⟩Ω dt + ∫

T

0
⟨g(t),Λφ(t)⟩∂Ω dt

(9)

for any φ = φ(t) ∶= φ(., t) ∈ Z((0, T)) ∶= {φ,∂tφ ∈ L2((0, T); H1(Ω)),φ(T) = 0}.

A. Operators A, A0

Let us consider the following sesquilinear forms:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(v,w) ∶= ∫
Ω

(γ∇v ⋅ ∇w + bvw) + ∫
∂Ω
βvw,

a0(v,w) ∶= ∫
Ω

(γ∇v ⋅ ∇w + bvw),
(10)

where v,w ∈ H1(Ω). By using γ, b ∈ L∞(Ω), (7), and the positivity of β ∈ L∞(∂Ω), we can show that a(v,w), a0(v,w) are bounded, symmetric,
and positive bilinear forms.20 That is,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣a(v,w)∣, ∣a0(v,w)∣ ≤ C1∥v∥H1(Ω)∥w∥H1(Ω) (bounded),

a(v,w) = a(w, v), a0(v,w) = a0(w, v) (symmetric),

a(v, v), a0(v, v) ≥ C2∥v∥2
H1(Ω) (positive)

(11)

for any v,w ∈ H1(Ω) with some positive constants C1, C2 independent of v,w. Here, we denoted the H1(Ω) norm of v ∈ H1(Ω) by ∥v∥H1(Ω). For
v ∈ H1(Ω) and v0 ∈ H1(Ω), letΨ ∈ H1(Ω)∗ andΨ0 ∈ H1(Ω)∗ be such that for any ϕ ∈ H1(Ω),Ψ(ϕ) = a(v,ϕ) andΨ0(ϕ) = a0(v0,ϕ), respectively.
Then, define A and A0 by Av = Ψ and A0v0 = Ψ0, respectively. From the properties (11), we see that A and A0 are isomorphisms from
H1(Ω) to H1(Ω)∗.20

Now, we define F = F(t) ∈ L2((0, T); H1(Ω)∗) by

⟨F(t),w⟩Ω = ⟨ f (t),w⟩Ω + ⟨g(t),Λw⟩∂Ω, a.e. t ∈ (0, T) (12)

for any w ∈ H1(Ω). It is easy to show that the norm ∥F∥L2((0,T);H1(Ω)∗) of F has the estimate

∥F∥L2((0,T);H1(Ω)∗) ≤ C(∥ f ∥L2((0,T);H1(Ω)∗) + ∥g∥L2((0,T);H−1/2(∂Ω))) (13)

with some general constant C > 0.
Since
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∫
T

0
⟨∂tu(t),φ(t)⟩Ω dt + ∫

T

0
⟨u(t),∂tφ(t)⟩Ω dt = ⟨u(T),φ(T)⟩Ω − ⟨u(0),φ(0)⟩Ω

for any u = u(t) ∶= u(., t) ∈W((0, T)) and φ = φ(t) ∶= φ(., t) ∈ L2((0, T); H1(Ω)) such that ∂tφ ∈ L2((0, T); H1(Ω)), the weak solution u = u(t)
∶= u(., t) to (8) in Definition III.2 is equivalent to u ∈W((0, T)) that satisfies

∂tu + Au = F in L2((0, T); H1(Ω)∗), u(0) = 0 in H1(Ω)∗. (14)

Similarly, the definition of the weak solution u = u(t) ∶= u(., t) to (8) with β = 0 is equivalent to the definition given by

∂tu + A0u = F in L2((0, T); H1(Ω)∗), u(0) = 0 in H1(Ω)∗. (15)

The fundamental theorem for the well-posedness of the weak solution to either (8) or (8) with β = 0 is as follows.

Theorem III.3 (Theorem 26.1 of Ref. 20). Let f ∈ L2((0, T); H1(Ω)∗) and g ∈ L2((0, T); H−1/2(∂Ω)). Then, there exists a unique solution
u = u(t) ∶= u(., t) ∈W((0, T)) to either (8) or (8) with β = 0. Furthermore, it satisfies u ∈ C0([0, T]; L2(Ω)) and the estimate

∥u∥W((0,T)) ≤ C(∥ f ∥L2((0,T);H1(Ω)∗) + ∥g∥L2((0,T);H−1/2(∂Ω))) (16)

with some general constant C > 0.

Based on this theorem, we will define the solution operator S0 as follows.

Definition III.4. Define the Green operator S0 and Poisson operator P0 of (15) by S0 f = u and P0 g = u, where u ∈W((0, T)) is the solution
to (15) with g = 0 and f = 0, respectively.

We note by (16) that

∥S0 f ∥W((0,T)) ≤ C∥ f ∥L2((0,T);H1(Ω)∗)

holds for a general constant C > 0.

B. Born sequence
Let B be an operator B : L2((0, T); H1(Ω))→ L2((0, T); H1(Ω)∗) defined by

∫
T

0
⟨Bv(t),w(t)⟩Ω dt = ∫

T

0
⟨βΛv(t),Λw(t)⟩∂Ω dt

for v = v(t) ∶= v(⋅, t), w = w(t) ∶= w(⋅, t) ∈ L2((0, T); H1(Ω)).
(17)

Observe that by using the boundedness of the trace operator Λ : H1(Ω)→ H1/2(∂Ω), we have for any v,w ∈ H1(Ω),

∣⟨βΛv,Λw⟩∂Ω∣ ≤ C∥β∥L∞(∂Ω)∥v∥H1(Ω)∥w∥H1(Ω) (18)

with some general constant C > 0. This immediately implies the estimate for the norm ∥B∥ of B,

∥B∥ ≤ C∥β∥L∞(∂Ω). (19)

Now, we define a Born sequence un, n ∈ Z+ ∶= N ∪ {0} that satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt

u0 + A0u0 = F,

u0∣t=0
= 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt

un + A0un = −Bun−1 + F,

un∣t=0
= 0

(20)

for n ∈ N.
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C. Convergence
In this subsection, we will prove the convergence of the Born sequence un, n ∈ Z+. To see this, define vn(n = 0, 1, 2, . . .) by

⎧⎪⎪⎨⎪⎪⎩

vn ∶= un − un−1 = −S0Bvn−1, n = 1, 2, ⋅ ⋅ ⋅ ,

v0 = u0.
(21)

Then, we have
∥vn∥W((0,T)) = ∥S0Bvn−1∥W((0,T))

≤ C∥Bvn−1∥L2((0,T);H1(Ω)∗)

≤ C∥B∥∥vn−1∥W((0,T))

≤ C∥β∥L∞(∂Ω)∥vn−1∥W((0,T)), n = 1, 2, ⋅ ⋅ ⋅

with some general constants C > 0 which may be different line by line. Therefore, the Born series

u0 + (u1 − u0) + (u2 − u1) + ⋅ ⋅ ⋅ + (un+1 − un) + ⋅ ⋅ ⋅ ,

and hence, the Born sequence un, n = 0, 1, 2, . . . converges to a unique u ∈W(0, T) if C∥β∥L∞(∂Ω) < 1. From (20) and the boundedness of the
operators A0, B, this implies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt

u + A0u = −Bu + F,

u∣
t=0
= 0.

(22)

By Au − A0u = Bu and the uniqueness of the weak solution to (8), u is the weak solution to (8).
In the rest of this section, by using the above arguments that we have given so far in this section, we will give the existence of Green

function for (8) with g = 0 and Poisson kernel for (8) with f = 0, respectively. We also give the convergence of their associated Born sequences
to the Schwartz kernels. The Green function and Poisson kernel are the Schwartz kernels9 of the operators mapping S : L2((0, T); H1(Ω)∗)
∋ f ↦ u ∈ L2((0, T); H1(Ω)) of (8) with g = 0 and P : L2((0, T); H−1/2(∂Ω)) ∋ g ↦ u ∈ L2((0, T); H1(Ω)) of (8) with f = 0. We refer to S and P
as the Green operator and Poisson operator for (8), respectively.

The Poisson operator P can be given as limϵ→+0Sϵ, where Sϵ is the Green operator for (8) with homogeneous boundary condition and
f = g ⊗ δ∂Ωϵ . Here, δ∂Ωϵ is the Dirac delta function supported on ∂Ωϵ and ∂Ωϵ is the boundary of Ωϵ = {x ∈ Ω : dist(x,∂Ω) > ϵ} with the
distance dist(x,∂Ω) between x and ∂Ω. More precisely, Sϵ consists of Sϵ+ and Sϵ− defined over Ωϵ and Ω/Ωϵ with the homogeneous boundary
condition (γ∂ν + β)Sϵ− = 0 over ∂Ω and the transmission boundary condition

Sϵ+ − Sϵ− = 0, γ(∂νSϵ+ − ∂νSϵ−) = I

over ∂Ωϵ with the identity operator I on L2((0, T); H−1/2(∂Ωϵ)) (although the situation is slightly different from here, it is essentially the
same as in the work of Nakamura-Wang15). Also, limϵ→+0Sϵ means that for every g ∈ L2((0, T); H−1/2(∂Ω)), limϵ→+0Sϵ(g ⊗ δ∂Ωϵ ) exists in
L2((0, T); H1(Ω)). Hence, it is enough to consider the existence of the Green function and its Born approximation.

We first show that S, (−S0B)jS, j = 0, 1, 2, ⋅ ⋅ ⋅ have Schwartz kernels in the space of distribution D′(ΩT ×ΩT) defined in ΩT ×ΩT . By
Theorem III.3, each of these is a continuous linear map from L2((0, T); H1(Ω)∗) to L2((0, T); H1(Ω)). We refer to this as the L2-type con-
tinuity. Based on this, we will show that they have Schwartz kernels. Since the further arguments are the same for each of these maps, we
only confine our argument to S. What we need to show is that S : C∞0 (ΩT)→ D′(ΩT) is linear and continuous, where D′(Ω) is the space
of distribution defined in ΩT . We refer to this as the distribution-type continuity. Since the linearity of S is clear, we only need to show
the continuity of S. In order to see this, let φℓ ∈ C∞0 (ΩT), ℓ = 1, 2, . . . be a sequence such that supp φℓ ⊂ K, ℓ = 1, 2, . . . for a compact set
K ⊂ ΩT and for each m ∈ Z+, ∂αt,xφℓ, ∣α∣ ≤ m go to zero uniformly in ΩT as ℓ→∞, where ∂αt,x = ∂α0

t ∂α1
x1 ⋅ ⋅ ⋅∂

α3
x3 , α = (α0,α1,α2,α3),

∣α∣ = α0 + α1 + α2 + α3, supp φℓ denotes the support of φℓ, and C∞0 (ΩT) is the set of all smooth functions with supports in ΩT . We denote
this as φℓ ⇒ 0(ℓ→∞) and denote by D(ΩT) the topological vector space C∞0 (ΩT) equipped with the topology induced by the convergence of
sequence φℓ ⇒ 0(ℓ→∞). Then, φℓ ⇒ 0(ℓ→∞) implies φℓ → 0, ℓ→∞ in L2((0, T); H1(Ω)∗), and hence, we have that by the L2-type conti-
nuity of S, Sφℓ → 0, ℓ→∞ in L2((0, T); H1(Ω)). This immediately gives us the distribution-type continuity of S described as follows: for any
fixed ψ ∈ C∞0 (ΩT),

⟨Sφℓ,ψ⟩ = ∫
ΩT

(Sφℓ)(x, t)ψ(x, t) dx dt → 0, ℓ→∞,

where ⟨Sφℓ,ψ⟩ denotes the pairing between Sφℓ ∈ D′(ΩT) and ψ ∈ C∞0 (ΩT). Then, by the Schwartz kernel theorem, S has its unique Schwartz
kernel H(x, t; y, s) ∈ D′(ΩT ×ΩT) such that
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⟨Sφ,ψ⟩ = ⟨H(x, t; y, s),ψ(x, t)⊗ φ(y, s)⟩, φ(y, s), ψ(x, t) ∈ C∞0 (ΩT). (23)

Now, recall (21) and the convergence of the Born sequence un = TnF, n = 0, 1, . . . with Tn ∶= ∑n
j=0(−S0B)jSF, n = 0, 1, ⋅ ⋅ ⋅ , where we take F

given by (12) with g = 0. Then, by (23) and the denseness of the finite linear combinations of the functions of the form ψ(x, t)⊗ φ(y, s), φ, ψ ∈
C∞0 (ΩT) in D(ΩT ×ΩT) which is defined similarly as D(ΩT), the sequence of Schwartz kernels H0

n(x, t; y, s) ∈ D′(ΩT ×ΩT), n = 0, 1, ⋅ ⋅ ⋅ of
Tn, n = 0, 1, . . . converges to H(x, t; s, y) ∈ D′(ΩT ×ΩT) as n→∞.

IV. BORN APPROXIMATION FOR POISSON KERNEL
Let us consider the following initial boundary value problem for u:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)u = 0, (x, t) ∈ ΩT ,

γ∂νu + βu = g, (x, t) ∈ ∂ΩT ,

u = 0, x ∈ Ω, t = 0,

(24)

where Ω is either the half space Ω = R3
+ ∶= {(x1, x2, x3) ∈ R3 : x3 > 0} or slab domain Ω = {(x1, x2, x3) ∈ R3 : 0 < x3 < L}. We assume that γ is

a positive constant and b,β are nonnegative constants. Here, g = g(x1, x2, t) is the boundary source.
We have already shown in Sec. III the existence of Poisson kernel and the convergence of the associated Born series. The aim of this

section is to give an explicit form of the Poisson kernel when Ω is the aforementioned special and simple domains. The half space and slab
domain have been used in DOT. For example, the slab geometry was used for fluorescent DOT16 and DOT for spatially modulated structured
light was developed in the half space.13 In these studies, the time-independent diffusion equation was used.

A. Poisson kernel
Let us begin by considering u0 satisfying the following diffusion equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)u0 = 0, (x, t) ∈ ΩT ,

γ∂νu0 = g, (x, t) ∈ ∂ΩT ,

u0 = 0, x ∈ Ω, t = 0.

(25)

If we have the Poisson kernel G(x, t; y1, y2, s) for (25) which is the Schwartz kernel of the operator P0 given in Definition III.4, then u0(x, t) can
be given as

u0(x, t) = ∫
∂ΩT

G(x, t; y1, y2, s)g(y1, y2, s) dy1dy2ds.

Below, we calculate the Poisson kernel G(x, t; y1, y2, s) in the half space and slab domain.

1. Half space
Let us consider the case of the half space, i.e., Ω = R3

+ and ∂Ω = R2. The Poisson kernel G satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)G = 0, (x, t) ∈ ΩT ,

γ∂νG = δ(x1 − y1)δ(x2 − y2)δ(t − s), (x, t) ∈ ∂ΩT ,

G = 0, x ∈ Ω, t = 0.

(26)

Let us introduce K(x, t; y, s) that satisfies

⎧⎪⎪⎨⎪⎪⎩

(∂t − γΔ + b)K = δ(x − y)δ(t − s), (x, t) ∈ R3 × (0, T),

K = 0, x ∈ R3, t = 0.

We will obtain K(s, t; y, s) by using its Laplace-Fourier transform,
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K̂(x3, y3) = K̂(x3; p, q; y, s) = ∫
∞

0
∫R2

e−pte−i(q1x1+q2x2)K(x, t; y, s) dx1dx2dt.

Then, K̂ has to satisfy

− d2

dx2
3

K̂ + λ2K̂ = e−pse−i(q1y1+q2y2)δ(x3 − y3), x3 ∈ R3,

with

λ =
¿
ÁÁÀb + p

γ
+ q ⋅ q . (27)

The above equation can be solved by the Fourier transform with respect to x3, and we obtain

K̂(x3, y3) = 1
2λγ

e−pse−i(q1y1+q2y2)e−λ∣x3−y3 ∣. (28)

Thus, we have

K(x, t; y, s) = θ(t − s)
e−b(t−s)

[4πγ(t − s)]3/2 e−
(x−y)2

4γ(t−s) , (29)

where θ(t) is the Heaviside step function, i.e., θ = 1 for t ≥ 0 and θ = 0 for t < 0. Finally, from the argument in Appendix B, we see Ĝ = 2K̂ and
obtain

G(x, t; y1, y2, s) = 2K(x, t; y, s)

= θ(t − s) 2e−b(t−s)

[4πγ(t−s)]3/2 e
−

(x1−y1)2+(x2−y2)2+x2
3

4γ(t−s) ,
(30)

where we put y3 = 0.

2. Slab domain
In the case of the slab domain of width L, we set Ω = {x ∈ R3; 0 < x3 < L}. The Poisson kernel G satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)G = 0, (x, t) ∈ ΩT ,

γ∂νG = δ(x1 − y1)δ(x2 − y2)δ(t − s), x3 = 0, (x1, x2) ∈ R2, t ∈ (0, T),

∂νG = 0, x3 = L, (x1, x2) ∈ R2, t ∈ (0, T),

G = 0, x ∈ Ω, t = 0.

Using an argument similar to Appendix B, we can move the boundary source to the source term in the diffusion equation as
(∂t − γΔ + b)G = f (x3)δ(x1 − y1)δ(x2 − y2)δ(t − s) with the boundary condition ∂νG = 0 at x3 = 0, L, where f (x3) = δ(x3). Then, we can
extend f (x3) as an even 2L-periodic function by setting F(x3) = f (x3 − 2mL) for 2mL < x3 ≤ (2m + 1)L and F(x3) = f (2(m + 1)L − x3) for
(2m + 1)L ≤ x3 < 2(m + 1)L, where m = 0,±1,±2, . . .. We have

G(x, t; y1, y2, s) = ∫
∞

−∞

K(x, t; y1, y2, ξ, s)F(ξ) dξ

=∑∞m=−∞(∫
(2m+1)L

2mL
+ ∫

2(m+1)L

(2m+1)L
)K(x, t; y1, y2, ξ, s)F(ξ) dξ

=∑∞m=−∞[K(x, t; y1, y2, 2mL, s) + K(x, t; y1, y2, 2(m + 1)L, s)],

where K(x, t; y1, y2, ξ) is given by replacing x3 by x3 − ξ in the previous K(x, t; y, s) with y3 = 0. Thus, in this case, we obtain

G(x, t; y1, y2, s) = 2∑∞m=−∞K(x, t; y1, y2, 2mL, s)

= θ(t − s)
2e−b(t−s)

[4πγ(t − s)]3/2 e−
(x1−y1)2+(x2−y2)2

4γ(t−s) ∑∞m=−∞e−
(x3−2mL)2

4γ(t−s) .
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B. Born sequence and Poisson kernel
Let us consider vj (j = 0, 1, . . .) introduced in (21). The (n + 1)th term vn of the Born series satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)vn = 0, (x, t) ∈ ΩT ,

γ∂νvn = −βvn−1, (x, t) ∈ ∂ΩT ,

vn = 0, x ∈ Ω, t = 0,

for n = 1, 2, . . .. The initial term is given by v0 = u0. Using the Poisson kernel (30), we have

vn(x, t) = −β∫
∂ΩT

G(x, t; y1, y2, s)vn−1(y1, y2, 0, s) dy1dy2ds. (31)

We then compute u as the limit of the Born sequence,

u = lim
n→∞

un, un = v0 + v1 + ⋅ ⋅ ⋅ + vn.

V. HALF SPACE CASE
In this section, we consider the diffusion equation (24) in the half space. That is, we take Ω = R3

+ and ∂Ω = R2. Let

g(x1, x2, t) = δ(x1)δ(x2)δ(t − t0), t0 > 0.

Then, by using the Poisson kernel (30), we have

v0(x, t) = G(x, t; 0, 0, t0),

vn(x, t) = −2β∫
t

0
∫R2

e−b(t−s)

[4πγ(t−s)]3/2 e
−

(x1−y1)2+(x2−y2)2+x2
3

4γ(t−s) vn−1(y1, y2, 0, s) dy1dy2ds.

Let us introduce wn(x3, t) (n = 0, 1, 2, . . .) as

vn(x, t) = e−b(t−t0)

t − t0
e−

x2
1 +x2

2
4γ(t−t0) wn(x3, t).

From the definition of G, we have

w0(x3, t) = θ(t − t0)
1

4(πγ)3/2
√

t − t0
e−

x2
3

4γ(t−t0) .

We have the following recurrence relation for wn (n ≥ 1):

wn(x3, t) = −β√πγ∫
t

0

wn−1(0, s)√
t − s

e−
x2

3
4γ(t−s) ds. (32)

Lemma V.1. From the recurrence relation (32), we can show that

∥wn∥L1((0,T);L∞((0,∞))) ≤
β
2

√
πT
γ
∥wn−1∥L1((0,T);L∞((0,∞))),

where L∞((0,∞)) is the set of all bounded measurable function defined in (0,∞) and L1((0, T); L∞((0,∞))) is the set of all L∞((0,∞)) valued
functions that are integrable over (0, T) with respect to the norm of L∞((0,∞)).

Proof. We note that
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wn(0, t) = −β√πγ∫
t

0

wn−1(0, s)√
t − s

ds.

This relation implies that if wn−1(0, s) does not change the sign, i.e., wn−1(0, s) ≥ 0 for all s ∈ (0, T) or wn−1(0, s) ≤ 0 for all s ∈ (0, T), then
wn(0, t) does not change the sign neither on (0, T). Indeed, we see by induction that the sign of wn(0, t) remains the same on (0, T) for all
n = 0, 1, . . . since w0(0, t) is non-negative on (0, T).

Keeping the above fact in mind, we have

∣wn(0, t)∣ = β
√πγ ∣∫

t

0

wn−1(0, s)√
t − s

ds∣ = β
√πγ∫

t

0

∣wn−1(0, s)∣√
t − s

ds.

Hence,

∫
T

0
∣wn(0, t)∣2

√
T − t dt = β

√πγ∫
T

0
2
√

T − t∫
t

0

∣wn−1(0, s)∣√
t − s

dsdt

= β
√πγ∫

T

0
∣wn−1(0, s)∣∫

T

s

2
√

T − t√
t − s

dtds

= β
√πγ∫

T

0
∣wn−1(0, s)∣π(T − s) ds

≤ β
√

T
√πγ ∫

T

0
∣wn−1(0, s)∣π

√
T − s ds.

Noting that 2
√

T − s= ∫ T
s (1/

√
t − s) dt, we obtain

∫
T

0
∣wn(0, s)∣∫

T

s

1√
t − s

dtds ≤ β
√

T
2

√
π
γ∫

T

0
∣wn−1(0, s)∣∫

T

s

1√
t − s

dtds.

The above integrals can be rewritten as

∫
T

0
∫

t

0

∣wn(0, s)∣√
t − s

dsdt ≤ β
√

T
2

√
π
γ∫

T

0
∫

t

0

∣wn−1(0, s)∣√
t − s

dsdt.

Therefore,

∫
T

0
∣∫

t

0

wn(0, s)√
t − s

ds∣ dt ≤ β
√

T
2

√
π
γ∫

T

0
∣∫

t

0

wn−1(0, s)√
t − s

ds∣ dt.

This means we have

∫
T

0
∥∫

t

0

wn(0, s)√
t − s

e−
x2

3
4γ(t−s) ds∥L∞((0,∞)) dt ≤ β

√
T

2

√
π
γ∫

T

0
∥∫

t

0

wn−1(0, s)√
t − s

e−
x2

3
4γ(t−s) ds∥L∞((0,∞)) dt.

Thus, the proof is complete. □

Thus, the series∑∞n=0wn and∑∞n=0un converge if

β < 2
√ γ

πT
. (33)

As we will see below from the explicit calculation of wn, indeed, the series converges for any β (see Remark V.2).
Explicit expressions of wn(x3, t) are available as follows. For n ≥ 1, the functions wn(x3, t) satisfy
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wn(x3, t)

= (−β)n

4(πγ)(n+3)/2 ∫ t
t0∫

tn
t0
⋅ ⋅ ⋅ ∫ t2

t0

e−x2
3/[4γ(t−tn )]

√

(t−tn)(tn−tn−1)⋅ ⋅ ⋅(t2−t1)(t1−t0)
dt1 ⋅ ⋅ ⋅dtn

= (−β)n(t−t0)(n−1)/2

4(πγ)(n+3)/2

⎡⎢⎢⎢⎢⎣
∏n−1

j=1 ∫
1

0
s

j
2 − 1
√

1−s
ds
⎤⎥⎥⎥⎥⎦
∫ 1

0
s

n
2 − 1
√

1−s
e−x2

3/[4γ(t−t0)(1−s)] ds

= (−β)n(t−t0)(n−1)/2

4(πγ)(n+3)/2 [∏n−1
j=1 B( j

2 , 1
2)]e

−ζ2

∫ ∞0 e−ζ
2ss

n
2 − 1(1 + s)−

n+1
2 ds

= (−β)n(t−t0)(n−1)/2

4(πγ)(n+3)/2
2

⎢
⎢
⎢
⎢
⎢
⎣

n−1
2
⎥
⎥
⎥
⎥
⎥
⎦π
⌊

n
2 ⌋

(n−2)‼

× [B( n
2 , 1

2) 1F1( 1−n
2 , 1

2 ;−ζ2) − 2
√
πζ 1F1(1 − n

2 , 3
2 ;−ζ2)],

(34)

where the floor function ⌊.⌋ is defined such that ⌊x⌋ (x ∈ R) denotes the largest integer that does not exceed x, and double factorials
n!! = n.(n − 2).(n − 4). ⋅ ⋅ ⋅ are defined with (−1)!! = 0!! = 1. Here, ζ = x3/

√
4γ(t − t0), B is the beta function, and1F1 is the Kummer confluent

hypergeometric function of the first kind. See Appendix C for the computation of wn(x3, t). In particular, we have

wn(0, t) = (−β)n(t − t0)(n−1)/2

4(πγ)(n+3)/2

2⌊
n
2 ⌋π⌊

n+1
2 ⌋

(n − 1)‼
.

Finally, we arrive at

u(x, t) = v0(x, t) + v1(x, t) + ⋅ ⋅ ⋅

= e−b(t−t0)

t−t0
e
−

x2
1+x2

2
4γ(t−t0) [w0(x3, t) + w1(x3, t) + ⋅ ⋅ ⋅ ].

(35)

Remark V.2. Due to the double factorial (n − 2)!! in the denominator of each nth term of w0 + w1 + ⋅ ⋅ ⋅ in (34), clearly ∣wn/wn−1∣ < 1 for
sufficiently large n. Therefore, the series∑∞n=0wn, and thus,∑∞n=0vn locally uniformly converge regardless of the value of β.

VI. NUMERICAL CALCULATION
For numerical calculation, we set t0 to be zero [cf. (3)] and also set x1 = x2 = 0. Then, the nth Born approximation for (35) is written as

un(x3, t) = e−bt

t

n

∑
j=0

wj(x3, t). (36)

FIG. 2. The energy density u is plotted at x3 = 20 mm as a function of t for β = 0.002 mm/ps. (Left) From the top, u0(x3, t), u(x3, t), and u1(x3, t) are shown. (Right) We plot
u5(x3, t) and u(x3, t). The two curves are almost identical.
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FIG. 3. The energy density u is plotted at x3 = 20 mm as a function of t for β = 0.005 mm/ps. (Left) From the top, u0(x3, t), u(x3, t), and u1(x3, t) are shown. (Right) We plot
u5(x3, t) and u(x3, t). Two energy densities for u(x3, t) and u5(x3, t) are almost indistinguishable.

Let us compare un(x3, t) in (36) and u(x3, t) in (4) using the parameter values given in (6). As is seen in Fig. 2, n = 1 is already a good
approximation when β = 0.002. In Fig. 3, we set β = 0.005. We see that the energy density from the Born approximation of n = 5 becomes
indistinguishable from the exact solution. In Figs. 4 and 5, we set β = 0.015. Since the value of β is larger, we need to take more terms. We
arrive at the numerically exact result for n = 70.

The left panel of Fig. 5 suggests how the necessary number of terms n can be determined. Since results from different n agree for short
time, we should use n such that curves for terms greater than or equal to n agree until t = T. Although it is not easy to know the optimal n
a priori, we can find such n by trying several n’s.

FIG. 4. The energy density u is plotted at x3 = 20 mm as a function of t for β = 0.015 mm/ps. (Left) From the top, u0(x3, t), u(x3, t), and u1(x3, t) are shown. (Right) From
the top, u(x3, t) and u5(x3, t) are shown.

FIG. 5. Same as Fig. 4 but the 30th through 70th Born approximations are presented. (Left) From the top to the bottom, u30(x3, t), u40(x3, t), u50(x3, t), u60(x3, t), and u(x3, t)
are shown. The curves show an excellent agreement except their tails. (Right) The results for u70(x3, t) and u(x3, t) are shown. The case of n = 70 gives a numerically exact
result.
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Numerical calculation was done by Mathematica using a single Intel Core i5 (2.9 GHz). The computation time for β = 0.002, n = 5, in
Fig. 2 and β = 0.005, n = 5, in Fig. 3 were 0.4 sec, whereas for β = 0.015 in Fig. 5, the cases n = 30, 40, 50, 60, 70 required 2.4, 3.3, 4.8, 6.0, and
7.7 s, respectively. The present formulation is beneficial when the Robin boundary condition with small β is considered. If we suppose that
the diffusion approximation holds on the boundary and assume the diffuse surface reflection, we have β = c/(2A), where c is the speed of light
in the medium and A = (1 + rd)/(1 − rd) with the internal reflection rd.7 Let us suppose the reflective index outside the medium is unity. The
refractive indices n = 1.7, 2.3, and 2.9 correspond to β = 0.016, 0.0053, and 0.0020, respectively.

VII. CONCLUDING REMARKS
In Sec. VI, we considered the half space case and validated our approach of applying the Born series for boundary conditions. The

comparison of Figs. 1 and 2 suggests that the present approach provides an efficient alternative formula for small β when the approximation
with the extrapolated boundary condition does not work well. It is important for our formulation that the solution for the Neumann boundary
condition has a simple explicit form. We explored the Poisson kernel in the half space and slab domain in Sec. IV. Applying the present strategy
to other geometries is an interesting future problem.
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APPENDIX A: EXACT SOLUTIONS

Here, we compute the Poisson kernel for the three space dimensional half space, i.e., we solve (1). See also Refs. 8 and 23.
Define

ϕ ∶= u −G

with G given in (26). Then, ϕ satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)ϕ = 0, x ∈ Ω, t > 0,

γ∂νϕ + βϕ = −βG, x ∈ ∂Ω, t > 0,

ϕ = 0, x ∈ Ω, t = 0.

Recall that λ is given in (27). The Laplace-Fourier transform given by

ϕ̂(x3; p, q; y1, y2, s) = ∫
∞

0
∫R2

e−pte−i(q1x1+q2x2)ϕ(x, t; y1, y2, s) dx1dx2dt

satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− d2

dx2
3
ϕ̂ + λ2ϕ̂ = 0, x3 > 0,

−γ dϕ̂
dx3

+ βϕ̂ = −βĜ, x3 = 0.

On the other hand, we have (28) and Ĝ can be given by

Ĝ(x3; p, q; y1, y2, s) = 1
λγ

e−ps−i(q1y1+q2y2)e−λx3 . (A1)

Here, we used the relation Ĝ = 2K̂ (see Appendix B). Hence,
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ϕ̂(x3) = −β
β + λγ

Ĝ(0)e−λx3 = −β
λγ(β + λγ)

e−pse−i(q1y1+q2y2)e−λx3 . (A2)

Furthermore, from the relation

d
dx3

ϕ̂(x3) = 2β
γ

K̂(x3, 0) +
β
γ
ϕ̂(x3)

which can be readily verified using (28) and (A2), we have

ϕ̂(x3) = −2β
γ ∫

∞

x3

e
β
γ (x3−ξ)K̂(ξ, 0) dξ.

Thus, we arrive at the following solution:

u(x, t) = G(x, t; y1, y2, t0) − 2β
γ ∫
∞

x3
e
β
γ (x3 − ξ)

K(x1, x2, ξ, t; y1, y2, 0, t0) dξ

= θ(t − t0) 2e−b(t−t0)

[4πγ(t−t0)]3/2 e
−

(x1−y1)2+(x2−y2)2+x2
3

4γ(t−t0)

−θ(t − t0) βe−b(t−t0)

4πγ2(t−t0) e
−

(x1−y1)2+(x2−y2)2

4γ(t−t0) e
β
γ (x3 + β(t − t0))

erfc( x3+2β(t−t0)
√

4γ(t−t0)
),

where G is given in (30).

APPENDIX B: AN INTERPRETATION OF TRANSIENT BOUNDARY POINT SOURCE

By using the advantage of the simple geometry for Ω, we will explain more explicitly than given before in Sec. III how the solution u of
(1) with a transient boundary point source can be obtained as a limit of the solution uϵ of the following initial boundary value problem with a
transient point source:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)uϵ = gδ(x3 − ϵ), (x, t) ∈ ΩT ,

γ∂νuϵ + βuϵ = 0, (x, t) ∈ ∂ΩT ,

uϵ = 0, x ∈ Ω, t = 0

with g = δ(x1 − y1)δ(x2 − y2)δ(t − s). We prepare the following Gϵ:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)Gϵ = gδ(x3 − ϵ), (x, t) ∈ ΩT ,

γ∂νGϵ = 0, (x, t) ∈ ∂ΩT ,

Gϵ = 0, x ∈ Ω, t = 0

with the same g as above. Similar to the calculation in Appendix A, let us consider uϵ in the form

ϕϵ = uϵ −Gϵ. (B1)

Here, ϕϵ satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂t − γΔ + b)ϕϵ = 0, (x, t) ∈ ΩT ,

γ∂νϕϵ + βϕϵ = −βGϵ, (x, t) ∈ ∂ΩT ,

ϕϵ = 0, x ∈ Ω, t = 0.

We obtain
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ϕ̂ϵ(x3) = −β
β + λγ

Ĝϵ(0)e−λx3 .

Here,

Ĝϵ(x3) = ∫
∞

0
∫R2

e−pte−i(q1x1+q2x2)Gϵ(x, t; y1, y2, ϵ, s) dx1dx2dt.

We note that
Gϵ(x, t; y1, y2, ϵ, s) = K(x, t; y1, y2, ϵ, s) + K(x, t; y1, y2,−ϵ, s),

where K is given in (29). Therefore, we obtain

Ĝϵ(x3) = 1
2λγ

e−pse−i(q1y1+q2y2)(e−λ∣x3−ϵ∣ + e−λ∣x3+ϵ∣),

where we used (28). In the limit, we have limϵ→0Ĝϵ = Ĝ, which is given in (A1). Thus, we arrive at

ϕ̂ϵ(x3) = −β
λγ(β + λγ)

e−pse−i(q1y1+q2y2)e−λ(x3+ϵ).

We see that limϵ→0ϕ̂ϵ = ϕ̂, which is given in (A2). Thus, we can directly see that the distribution uϵ converges to the distribution u as ϵ→ 0.

APPENDIX C: SPECIAL FUNCTIONS

By using the formulae

B(a,
1
2
)B(a +

1
2

,
1
2
) = π

a
, B(1

2
,

1
2
) = π,

we have

B(1
2

,
1
2
)B(1,

1
2
)B(3

2
,

1
2
) ⋅ ⋅ ⋅B(n − 1

2
,

1
2
) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
n
2 −1π

n
2

(n − 2)‼
(n even),

2
n−1

2 π
n−1

2

(n − 2)‼
(n odd).

Moreover,

B(n
2

,
1
2
) =

Γ( n
2 )Γ(

1
2)

Γ( n+1
2 )

,

where Γ( 1
2 ) =
√
π.

Now, recall that the Kummer confluent hypergeometric function of the first kind is given by

1F1(a, b; z) =M(a, b; z) =
∞

∑
n=0

(a)n

(b)nn!
zn = 1 +

a
b

z +
a(a + 1)

b(b + 1)2!
z2 + ⋅ ⋅ ⋅ .

Then, we have

1F1(0,
1
2

;−z) = 1,

1F1(−
1
2

,
1
2

;−z) = e−z +
√
πz erf(

√
z),

1F1(−1,
1
2

;−z) = 1 + 2z,

1F1(−
3
2

,
1
2

;−z) = (1 + z)e−z +
√
πz(z +

3
2
)erf(
√

z)

and
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1F1(
1
2

,
3
2

;−z) = 1
2

√π
z

erf(
√

z),

1F1(0,
3
2

;−z) = 1,

1F1(−
1
2

,
3
2

;−z) = e−z

2
+
√
πz
2
(1 +

1
2z
)erf(
√

z),

1F1(−1,
3
2

;−z) = 1 +
2
3

z,

where

erf(
√

z) = 2√
π∫

√
z

0
e−t2

dt.

We close this appendix by giving some miscellaneous facts on hypergeometric function and error function that are useful for computing
the Poisson kernel numerically. Besides the hypergeometric function given above explicitly, other hypergeometric functions can be recursively
computed using the following recurrence relation:

1F1(a − 1, b; z) = 2a − b + z
a − b 1F1(a, b; z) − a

a − b 1F1(a + 1, b; z).

The following form is convenient to numerically evaluate the error function:

erf(ξ) = 2√
π

∞

∑
n=0

(−1)nξ2n+1

n!(2n + 1)
= 2√

π
e−ξ

2 ∞

∑
n=0

2nξ2n+1

(2n + 1)‼
.
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