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Abstract: Near-infrared spectroscopy (NIRS) including diffuse optical tomography is an imaging
modality which makes use of diffuse light propagation in random media. When optical properties
of a random medium are investigated from boundary measurements of reflected or transmitted
light, iterative inversion schemes such as the Levenberg–Marquardt algorithm are known to fail
when initial guesses are not close enough to the true value of the coefficient to be reconstructed.
In this paper, we investigate how this weakness of iterative schemes is overcome using Markov chain
Monte Carlo. Using time-resolved measurements performed against a polyurethane-based phantom,
we present a case that the Levenberg–Marquardt algorithm fails to work but the proposed hybrid
method works well. Then, with a toy model of diffuse optical tomography we illustrate that the
Levenberg–Marquardt method fails when it is trapped by a local minimum but the hybrid method
can escape from local minima by using the Metropolis–Hastings Markov chain Monte Carlo algorithm
until it reaches the valley of the global minimum. The proposed hybrid scheme can be applied to
different inverse problems in NIRS which are solved iteratively. We find that for both numerical and
phantom experiments, optical properties such as the absorption and reduced scattering coefficients
can be retrieved without being trapped by a local minimum when Monte Carlo simulation is run
only about 100 steps before switching to an iterative method. The hybrid method is compared with
simulated annealing. Although the Metropolis–Hastings MCMC arrives at the steady state at about
10,000 Monte Carlo steps, in the hybrid method the Monte Carlo simulation can be stopped way
before the burn-in time.

Keywords: near-infrared spectroscopy; diffuse light; inverse problems; optical tomography

1. Introduction

In near-infrared spectroscopy (NIRS), we estimate optical properties of biological tissue by solving
inverse diffuse problems [1,2]. Such inverse problems are commonly solved by means of iterative
methods. In the case of a homogeneous medium, absorption and reduced scattering coefficients of
the medium can be obtained with iterative methods such as the Levenberg–Marquardt algorithm
[3,4] from time-resolved measurements (for example, see the review article [5]). Neuroimaging for
the human brain by NIRS through the neurovascular coupling has been developed and is called
functional NIRS (fNIRS) [6–9]. Since the region of interest on the head can be small, it is possible to
assume a simple geometry of the half space. Quantitative measurements of inter-regional differences
in neuronal activity requires accurate estimates of optical properties.
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In Ref. [10], the Nelder–Mead simplex method was used to retrieve optical parameters in layered
tissue. Heterogeneity of optical properties can be obtained by diffuse optical tomography [1,11,12].
Iterative numerical schemes are used to minimize the cost function when solving these inverse
problems. A gradient-based approach [13] was used to detect breast cancer [14]. The brain activity
of a newborn infant was investigated [15] with diffuse optical tomography by TOAST (temporal
optical absorption and scattering tomography) [16,17], in which iterative algorithms such as the
nonlinear conjugate gradients, damped Gauss–Newton method, and Levenberg–Marquardt method
are implemented. Diffuse optical tomography was performed on human lower legs and a forearm with
the algebraic reconstruction algorithm in the framework of the modified generalized pulse spectrum
technique [18]. See Refs. [19,20] for numerical techniques for diffuse optical tomography. For these
iterative numerical schemes to work, it is important to choose a good initial guess for the initial value
of the iteration.

Solving inverse problems by the Bayesian approach has been sought as an alternative way.
In Ref. [21], a novel use of the Bayesian approach was considered to take modeling error into
account. The Bayesian inversion with the Metropolis–Hastings Markov chain Monte Carlo was
used in Refs. [22,23]. The Bayesian approach was used to determine optical parameters of the human
head [24]. Although the Markov chain Monte Carlo (MCMC) approach is in principle able to escape
from local minima, it is computationally time consuming. Hence, despite the above-mentioned efforts,
the use of Monte Carlo for inverse problems in NIRS has been extremely limited.

In this paper, we shed light on Markov chain Monte Carlo once again by combining it with
an iterative scheme, and investigate the use of it in NIRS. In particular, we test a hybrid numerical
scheme of Markov chain Monte Carlo and an iterative method. In the proposed hybrid scheme,
the Markov chain Monte Carlo algorithm is first used to provide an initial guess using jumps in the
landscape of the cost function, and then an iterative method is used after the initial large fluctuation.
Thus, the proposed method realizes a fast reconstruction while, in the beginning, obtained values
at Monte Carlo steps jump around in the landscape of the cost function. The MCMC simulation
is necessary only for the first 100 steps. Then the hybrid method starts to use an iterative scheme
and reconstructs optical properties by searching the global minimum. The computation time of the
iterative scheme is negligible compared with that of the Monte Carlo simulation. Since the Monte
Carlo simulation can be stopped way before the burn-in time for the hybrid method, the proposed
scheme is at least ten times faster than simulated annealing, which is implemented by the naive use of
the Metropolis–Hastings Markov chain Monte Carlo.

The rest of the paper is organized as follows. We develop diffusion theory in Section 2.
A polyurethane-based phantom and numerical phantom are also described in Section 2. Section 3 is
devoted to experimental and numerical results. Finally, discussion is given in Section 4.

2. Materials and Methods

2.1. Diffusion Theory

2.1.1. Diffuse Light in Three Dimensions

Let us suppose that a random medium occupies the three-dimensional half space. We assume
that the random medium is characterized by the diffusion coefficient D and absorption coefficient
µa. We have D = 1/(3µ′s), where µ′s is the reduced scattering coefficient. Position in the half space
(−∞ < x < ∞, −∞ < y < ∞, 0 < z < ∞) is denoted by r = (ρ, z), ρ = (x, y). Let t denote time. Let c
be the speed of light in the medium. We assume an incident beam on the boundary at the origin in the
x-y plane. The energy density u of light in the medium obeys the following diffusion equation.(

1
c

∂

∂t
− D∆ + µa

)
u(r, t) = 0, (1)



Appl. Sci. 2019, 9, 3500 3 of 17

with the boundary condition

− `
∂

∂z
u(r, t) + u(r, t) = δ(x)δ(y)q(t), (2)

and the initial condition u(r, 0) = 0. The right-hand side of the boundary condition is the incident
laser beam which illuminates the medium at the origin (0, 0, 0) with the temporal profile q(t). In the
phantom experiment described below, the incident light enters the phantom in the positive z direction.
The extrapolation distance ` is a nonnegative constant. If we consider the diffuse surface reflection, we
have [25]

` = 2D
1 + rd
1− rd

, (3)

where the internal reflection rd is given by [26] rd = −1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n.
Let us consider the corresponding surface Green’s function Gs(r, t; ρ′, s), which satisfies Equation (1)
and the boundary condition(

−` ∂

∂z
+ 1
)

Gs(r, t; ρ′, s) = δ(x− x′)δ(y− y′)δ(t− s), (4)

together with the initial condition Gs(r, 0; ρ′, s) = 0. We obtain [27–30]

Gs(r, t; ρ′, s) =
cD
`

[
2e−µac(t−s)

(4πDc(t− s))3/2 e−
(x−x′)2+(y−y′)2

4Dc(t−s) e−
z2

4Dc(t−s)

− e−µac(t−s)

4π`Dc(t− s)
e−

(x−x′)2+(y−y′)2
4Dc(t−s) e

z
` e

Dc(t−s)
`2 erfc

(
z + 2Dc(t− s)/`√

4Dc(t− s)

)]
, t > s,

(5)

with Gs(r, t; ρ′, s) = 0 for t ≤ s. The complementary error function is defined by erfc(x) =

(2/
√

π)
∫ ∞

x exp(−t2) dt. Let rd be a point in the x-y plane with |rd| > 0. We obtain

u(rd, t) =
∫ t

0
Gs(rd, t; 0, s)q(s) ds

=
∫ t

0
e−µac(t−s)e−

|rd |
2

4Dc(t−s)
2q(s)

(4πDc(t− s))3/2

[
1−

√
4πDc(t− s)

2`
e

Dc(t−s)
`2 erfc

(√
Dc(t− s)

`

)]
ds.

(6)

This u(rd, t) in Equation (6) is used for the calculation in Section 3.1.

2.1.2. Diffuse Light in Two Dimensions

For the later purpose of a numerical experiment, we here consider light propagation in two
dimensions. Let us suppose that the two-dimensional half space of positive y is occupied with
a random medium in the x-y plane. The energy density u of light at position ρ = (x, y) in the medium
due to the incident beam on the boundary (the x-axis) at ρi

s (i = 1, . . . , Ms) obeys the following
diffusion equation. (

1
c

∂

∂t
− D∆ + µa(ρ)

)
u(ρ, t; ρi

s) = 0, (7)

with the boundary condition

− `
∂

∂y
u(ρ, t; ρi

s) + u(ρ, t; ρi
s) = δ(x− xi

s)δ(t), (8)
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and the initial condition u(ρ, 0; ρi
s) = 0. The incident laser beam on the right-hand side of the

boundary condition was assumed to be a pulse at the position ρi
s = (xi

s, 0). We suppose that the
diffusion coefficient D is a positive constant but µa varies in space.

Below we develop the Rytov approximation. Let us write µa(ρ) ≥ 0 as

µa(ρ) = µa0 + δµa(ρ), (9)

where µa0 is a constant and the perturbation δµa(ρ) spatially varies. We note the relation,

u(ρ, t; ρi
s) = u0(ρ, t; ρi

s)−
∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u(ρ′, s; ρi
s) dx′dy′ds, (10)

where u0(ρ, t; ρi
s) is the solution to the diffusion Equation (7) with the zeroth-order coefficient replaced

by b0. We introduce the Green’s function G(ρ, t; ρ′, s), which satisfies(
1
c

∂

∂t
− D∆ + µa0

)
G = δ(ρ− ρ′)δ(t− s), (11)

with the boundary condition −` ∂G
∂y + G = 0 at y = 0, and the initial condition G = 0 at t = 0.

The above relation (10) can be directly verified. By recursive substitution, we obtain u as

u(ρ, t; ρi
s) = u0(ρ, t; ρi

s)−
∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u0(ρ
′, s; ρi

s) dx′dy′ds + O((δµa)
2). (12)

By neglecting higher-order terms assuming that δµa is small, we arrive at the (first) Born
approximation [31], in which u is given by

u(ρ, t; ρi
s) = u0(ρ, t; ρi

s)− c
∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u0(ρ
′, s; ρi

s) dx′dy′ds. (13)

We note that the Green’s function is obtained as [27–30]

G(ρ, t; ρ′, s) =
e−µa0c(t−s)

4πD(t− s)
e−

(x−x′)2
4Dc(t−s)

[
e−

(y−y′)2
4Dc(t−s) + e−

(y+y′)2
4Dc(t−s)

−
√

4πDc(t− s)
`

e−
(y+y′)2

4Dc(t−s) e

(
y+y′+2Dc(t−s)/`√

4Dc(t−s)

)2

erfc

(
y + y′ + 2Dc(t− s)/`√

4Dc(t− s)

)]
,

(14)

for t > s, and otherwise G(ρ, t; ρ′, s) = 0. Moreover, we obtain

u0(ρ, t; ρi
s) =

e−µa0ct

2πDt
e−

(x−xi
s)

2+y2
4Dct

[
1−
√

πDct
`

e
(

y+2Dct/`√
4Dct

)2

erfc
(

y + 2Dct/`√
4Dct

)]
. (15)

The above expression of u0 is similar to the formula in Equation (6) but does not have a time integral
because in this case we assumed the delta function δ(t) for the incident beam.

To obtain the expression of the Rytov approximation, we introduce ψ0, ψ1 as [31]

u0 = eψ0 , u = eψ0+ψ1 . (16)
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By plugging the above expressions of u, u0 into the Born approximation and neglecting terms of
O((δµa)2), we obtain

eψ1 = 1− e−ψ0

∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u0(ρ
′, s; ρi

s) dx′dy′ds

= exp
[
−e−ψ0

∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u0(ρ
′, s; ρi

s) dx′dy′ds
]

.
(17)

The (first) Rytov approximation is thus derived as

u(ρ, t; ρi
s) = u0(ρ, t; ρi

s) exp

[
− 1

u0(ρ, t; ρi
s)

∫ t

0

∫ ∞

0

∫ ∞

−∞
G(ρ, t; ρ′, s)δµa(ρ

′)u0(ρ
′, s; ρi

s) dx′dy′ds

]
. (18)

Let us define

g(y, t; y′, s) =
1

4πD(t− s)
e−

(y+y′)2
4Dc(t−s)

[
1 + e

(y+y′)2−(y−y′)2
4Dc(t−s) −

√
4πDc(t− s)

`

× e

(
y+y′

2
√

Dc(t−s)
+

√
Dc(t−s)

`

)2

erfc

(
y + y′

2
√

Dc(t− s)
+

√
Dc(t− s)

`

)]
.

(19)

Then we have∫ t

0
G(ρ, t; ρ′, s)u0(ρ

′, s) ds = e−µa0ct
∫ t

0
e−

(x−x′)2
4Dc(t−s) e−

(x′−xi
s)

2
4Dcs g(y, t; y′, s)g(y′, s; 0, 0) ds. (20)

Therefore, Equation (18) can be rewritten as

u(ρ, t; ρi
s) = u0(ρ, t; ρi

s) exp

[
− e−µa0ct

u0(ρ, t; ρi
s)

∫ ∞

0

∫ ∞

−∞
δµa(ρ

′)

×
(∫ t

0
e−

(x−x′)2
4Dc(t−s) e−

(x′−xi
s)

2
4Dcs g(y, t; y′, s)g(y′, s; 0, 0) ds

)
dx′dy′

]
.

(21)

This expression (21) is used to compute the forward data in Section 3.2.

2.2. Inverse Problems by an Iterative Scheme

We suppose that on the surface of a two- or three-dimensional random medium, for each source
at ρi

s or ri
s (i = 1, . . . , Ms) exiting light is detected at ρ

j
d or rj

d (j = 1, . . . , Md) and is measured at times
tk (k = 1, . . . , Mt). Let yijk be measured data whereas u is a solution to the diffusion equation. Let us
suppose that u depends on a vector a which contains unknown parameters. We wish to reconstruct a.
In Section 3.1, a = (µa, D), and a is a scalar (a one-dimensional vector) in Section 3.2. For example,
in the former case the solution u depends on a since the calculated value of u depends on µa, D.

Let us introduce vectors U and F(a) of dimension Ms Md Mt as

{U}ijk = yijk, {F(a)}ijk = u(ρj
d, tk; ρi

s; a) or u(rj
d, tk; ri

s; a), (22)

where we wrote u(ρj
d, tk; ρi

s) = u(ρj
d, tk; ρi

s; a) and u(rj
d, tk; ri

s) = u(rj
d, tk; ri

s; a) emphasizing that u
depends on a. We find optimal a by minimizing ‖U− F(a)‖2

2. Here we particularly consider the
Levenberg–Marquardt method [3,4], i.e., the reconstructed value a∗ = limk→∞ ak is computed by the
iteration given by

ak+1 = ak +
[

F′(ak)
T F′(ak) + λI

]−1
F′(ak)

T (U− F(ak)) , (23)



Appl. Sci. 2019, 9, 3500 6 of 17

where F′(a) is the Jacobian matrix, which contains derivatives of F(a) with respect to a, and the
parameter λ is nonnegative. By modifying the original algorithm according to Ref. [32], our algorithm
of the Levenberg–Marquardt method, which we call Algorithm 1, is described below.

Algorithm 1: Levenberg–Marquardt (LM)
1. Set k = 0 and λ = 1.
2. Calculate F(ak) and F′(ak).
3. Calculate S(ak) = dTd, where d = U− F(ak).
4. Prepare A = F′(ak)

T F′(ak) and v = F′(ak)
Td.

5. Find δ from (A + λI)δ = −v.
6. Obtain S(ak + δ) and R = S(ak)−S(ak+δ)

−δT(2v+Aδ)
.

7. If R < 0.25, then set ν = 10 (αc < 0.1), ν = 1/αc (0.1 ≤ αc ≤ 0.5), or ν = 2 (αc > 0.5), where

αc =
[
2− (S(ak + δ)− S(ak)) /δTv

]−1. If R < 0.25 and λ = 0, set λ = 1/‖A−1‖ and ν = ν/2.

In the case of R < 0.25, we set λ = νλ. If R > 0.75, then we set λ = λ/2. If R > 0.75 and

λ < 1/‖A−1‖, set λ = 0. Otherwise when 0.25 ≤ R ≤ 0.75, no update for λ.
8. If S(ak + δ) ≥ S(ak), then return to Step 5.
9. If S(ak + δ) < S(ak), set ak+1 = ak + δ. Then put k + 1→ k and go back to Step 2. Repeat the

above procedure until one of the stopping criteria ‖δ‖ < 10−4 and S < 10−14 is fulfilled.

2.3. Inverse Problems by Markov Chain Monte Carlo

For simplicity in this section, we describe the Metropolis–Hastings Markov chain Monte Carlo
algorithm (MH-MCMC) assuming a is the scalar appearing in Section 3.2. The extension of the
derivation to the general case of vector a is straightforward.

Suppose that the coefficient µa is unknown and µa depends on a parameter a. We will reconstruct
a within the framework of the Bayesian inversion algorithm [33,34], i.e., we will find the probability
distribution π(a|U) of a for measured data U. Let fprior(a) be the prior probability density and
π(U|a) be the likelihood density or the conditional probability density of U for a. Then the joint
probability density π(a, U) of a, U is given by π(a, U) = π(U|a) fprior(a). According to the Bayes
formula, the conditional probability density π(a|U) is given by

π(a|U) =
L(U|a) fprior(a)∫ ∞

−∞ L(U|a) fprior(a) da
, (24)

where L(U|a) is a function proportional to π(U|a). Assuming Gaussian noise, we put

L(U|a) = e
− 1

2σ2
e
‖U−F(a)‖2

2 . (25)

In this paper, we simply set fprior(a) = 1, i.e., we can say fprior(a) ∝ 1[amin,amax](a) and the interval
[amin, amax] is large enough so that all a’s appearing in the Markov chain fall into this interval. Here,
1A(a) is the indicator function defined as 1A(a) = 1 for a ∈ A and = 0 for a /∈ A. General
uniform distributions can be used for fprior(a) if we use the prior-reversible proposal that satisfies
fprior(a)q(a′|a) = fprior(a′)q(a|a′) (see below for the proposal distribution q(a′|a)) [35]. Another
possible choice of fprior(a) is a Gaussian distribution, which turns out to be the Tikhonov regularization
term in the cost function.
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Using the Metropolis–Hastings algorithm, we can evaluate π(a|U) even when the normalization
factor is not known and only the relation π(a|U) ∝ L(U|a) fprior(a) is available [33,34]. We can find
π(a|U) using a sequence p1, p2, . . . as

π(a|U) = lim
k→∞

pk(a), (26)

where pk+1(a) is obtained from pk(a) (Markov chain) as

pk+1(a′) =
∫ ∞

−∞
K(a′, a)pk(a) da. (27)

For all a, a′, the transition kernel satisfies

K(a′, a) ≥ 0,
∫ ∞

−∞
K(a′, a) da′ = 1. (28)

Let us write K(a′, a) as
K(a′, a) = α(a′, a)q(a′|a) + r(a)δ(a′ − a), (29)

where q(a′|a) is the proposal distribution and

r(a) = 1−
∫ ∞

−∞
α(a′, a)q(a′|a) da′. (30)

In the Metropolis–Hastings algorithm we set α(a′, a) = min {1, π(a′|U)q(a|a′)/[π(a|U)q(a′|a)]}.
With this choice of α(a′, a), the detailed balance is satisfied and K(a, a′)π(a′|U) = K(a′, a)π(a|U).
A common choice of q(a′|a) is the normal distribution, i.e., q(·|a) = N (a, ε2) with the mean a and the
standard deviation ε > 0. We note that q(a′|a) = q(a|a′) in this case. We have

∫ ∞

−∞
h(a)π(a|U) da = lim

kmax→∞

1
kmax

kmax

∑
k=1

h(ak), (31)

where ak ∼ pk(·) and h is an arbitrary continuous bounded function.
Simulated annealing [36] is a type of the Metropolis–Hastings MCMC algorithm in which the

temperature σe decreases during the simulation. The algorithm is summarized below as Algorithm 2.
In this paper we consider two temperatures.

Algorithm 2: Two-temperature simulated annealing (SA)
1. Set large σe as a high temperature.
2. Generate a′ ∼ q(·|ak) = N (ak, ε2) with ε > 0 for given ak.
3. Calculate α(a′, ak) = min {1, π(a′|U)/π(ak|U)}.
4. Update ak as ak+1 = a′ with probability α(a′, ak) but otherwise set ak+1 = ak.
5. Continue while k ≤ kb.
6. Then decrease σe to a smaller value as a low temperature, and continue to update ak.

Now we propose an MCMC-iterative hybrid method by combining Algorithms 1 with the
Metropolis–Hastings Markov chain Monte Carlo. We first run the Markov chain Monte Carlo.
Although the Metropolis–Hastings MCMC eventually gives the correct solution after about 10,000
steps when the chain reaches the steady state, we stop the Monte Carlo simulation way before the
burn-in time. At the kbth Monte Carlo step after initial rapid changes ceases, we record the obtained
reconstructed value akb

and switch to Algorithm 1 with the initial value the recorded akb
. It is important

that kb is chosen after the initial rapid changes although kb can be a significant way from the burn-in
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time. Otherwise, the final reconstructed results are quite robust against the choice of kb. We refer to the
following hybrid algorithm as Algorithm 3.

Algorithm 3: Hybrid
1. Choose an initial guess a0, which is not necessarily close to the global minimum.
2. Generate a′ ∼ q(·|ak) = N (ak, ε2) with ε > 0 for given ak.
3. Calculate α(a′, ak) = min {1, π(a′|U)/π(ak|U)}.
4. Update ak as ak+1 = a′ with probability α(a′, ak) but otherwise set ak+1 = ak.
5. Obtain a reconstructed akb

.
6. Switch to Algorithm 1 with the initial guess akb

.

We close this subsection by the Gelman-Rubin convergence diagnostic, which uses the intra-chain
variance and inter-chain variance [37,38]. We run MMC different chains with different initial values.
Let am

k denote the kth value in the mth chain (k = 1, . . . , kb, m = 1, . . . , MMC). We discard the first
ka − 1 steps before the initial rapid changes cease. Then we compute the following intra-chain average
and variance.

ām =
1

kb − ka + 1

kb

∑
k=ka

am
k , σ2

m =
1

kb − ka

kb

∑
k=ka

(am
k − ām)

2. (32)

Next we compute the inter-chain mean and variance.

ā =
1

MMC

MMC

∑
m=1

ām, B =
kb − ka + 1
MMC − 1

MMC

∑
m=1

(ām − ā)2. (33)

Now we introduce
V̂ =

kb − ka

kb − ka + 1
W +

1
kb − ka + 1

B, (34)

where W = 1
MMC

∑MMC
m=1 σ2

m. This is an unbiased estimator of the true variance. But W is also an unbiased

estimate of the true variance if the chains converge. Therefore, we have
√

V̂/W ≈ 1 if converged.
Below, we will see that we can choose kb for which

√
V̂/W is not close to 1. In this paper, we set

MMC = 10.

2.4. TRS Measurements of a Polyurethane-Based Phantom

In this section, we consider time-resolved measurements for a phantom. The solid phantom
(biomimic optical phantom) is made of polyurethane to simulate biological tissues (INO, Quebec,
QC, Canada). The absorption coefficient and reduced scattering coefficient are µa = 0.0209 mm−1

and µ′s = 0.853 mm−1 at wavelength 800 nm. The refractive index of the phantom is n = 1.51.
The measurements were performed by the TRS (time-resolved spectroscopy) instrument (TRS-80,
Hamamatsu Photonics K.K., Hamamatsu, Japan). Two optical fibers from TRS-80 are attached on
the top of the phantom with the separation 13 mm (Ms = Md = 1). The phantom is illuminated
by near-infrared light of the wavelength 760 nm through one optical fiber and the reflected light is
detected by the other optical fiber. The time interval of the measured data is 10 ps and we used the data
from t1 = 2.00 ns to tMt = 8.00 ns (Mt = 601). Measured counts, i.e., the number of photons, are shown
in Figure 1. The upper panel of Figure 1 shows the instrument response function (IRF), which is given
as a property of the experimental device. The measured reflected light is shown in the lower panel of
Figure 1. The function q(tk) is the instrument response function divided by the maximum value of
the measured reflected light. The peak of q is at 2.56 ns. {U}11k = y11k is the measured reflected light
normalized by its maximum value. In the lower panel of Figure 1, t1 and tMt are marked by vertical
dashed lines. The size of the phantom is large enough that we can assume the three-dimensional half
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space. Then the energy density of the detected light is computed by Equation (6). The parameter ` is
obtained from Equation (3).
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Figure 1. Measured data from TRS-80. The instrument response function and measured reflected
light are shown in the upper and lower panels, respectively. In the lower panel, the dashed lines show
t1 = 2.00 ns and tMt = 8.00 ns (Mt = 601).

2.5. Numerical Phantom

To examine when the iterative scheme fails by being trapped by a local minimum and how the
Markov chain Monte Carlo is capable of escaping from such local minima, a toy model is devised
which is simple enough to explicitly understand the structure of the cost function but is complicated
enough that the cost function has one local minimum and one global minimum.

We consider diffuse optical tomography in the two-dimensional space. In our toy model we
suppose that the diffusion coefficient D is constant everywhere in the medium but there is absorption
inhomogeneity and the absorption coefficient δµa is unknown. Moreover, we assume that δµa(ρ) is
given by

δµa(ρ) = η fa(x)δ(y− y0), (35)

where η, y0 are given positive constants. Here, fa(x) is given by

fa(x) =
[

a3 + 3
(

1 +
tanh x2

10

)
a2
] (

1− tanh x2
)

, (36)

where a > 1.1 is a constant. Thus, a is the parameter to be reconstructed in our toy inverse problem.
As is shown in Figure 2, the function fa(x) has one peak at x = 0 and the maximum value is
fa(0) = a2(a + 3), fa monotonically decays for |x| > 0, and fa → 0 as |x| → ∞.

Now we describe how the forward data is computed. The unit of length and unit of time are
taken to be mm and ps, respectively. On the x-axis, we place two sources (Ms = 2) at ρ1

s = (−20, 0),
ρ2

s = (20, 0) and three detectors (Md = 3) at ρ1
d = (−40, 0), ρ2

d = (0, 0), ρ3
d = (40, 0). We set µ′s = 1,

µa = 0.02, n = 1.37. Suppose that there is absorption inhomogeneity at depth 5. For δµa, we put
η = 300/c, y0 = 5, and

a = 1.5. (37)

To distinguish, hereafter the true value of a is denoted by ā. We assume 3% Gaussian noise and give
the measured data as

yijk = u(ρj
d, tk; ρi

s; ā)(1 + eijk), (38)

where eijk ∼ N (0, 0.032). In this numerical experiment, Mt = 500 and tk+1 − tk = t1 = 5
(k = 1, . . . , Mt − 1).
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Figure 2. The function fa(x) in Equation (36) is plotted for a = 1.3, 1.5, and 1.7.

By substituting the form (35) of δb in (21), we can express the energy density as

u(ρj
d, tk; ρi

s; a) = u(ρj
d, tk; ρi

s)

= u0(ρ
j
d, tk; ρi

s) exp

[
− ηe−µa0ctk

u0(ρ
j
d, tk; ρi

s)

∫ tk

0
g(0, tk; y0, s)

× g(y0, s; 0, 0)

∫ ∞

−∞
fa(x′)e

−
(xj

d−x′)2

4Dc(tk−s) e−
(x′−xi

s)
2

4Dcs dx′

 ds

]
,

(39)

where

u0 =
e−µa0ctk

2πDtk e−
(xj

d−xi
s)

2

4Dctk

1−
√

πDctk

`
e

(√
Dctk
`

)2

erfc

(√
Dctk

`

) . (40)

3. Results

3.1. Determination of Optical Properties

Here we consider reconstructions from measured data in the phantom experiment. Let us first
consider initial guesses below.

Case 1: µa = 0.01 mm−1, µ′s = 1.0 mm−1. (41)

In this Case 1, the following µa, µ′s are obtained both by Algorithm 1 (LM) and Algorithm 3 (hybrid).

µa = 0.016 mm−1, µ′s = 0.63 mm−1. (42)

The results for µa and µ′s are shown in Figures 3 and 4, respectively. In Figure 3, reconstructed values
of µa are plotted against the iteration number k. In the top panel of Figure 3, we see that Algorithm 1
(LM) quickly converges. In Algorithms 2 and 3, we set kb = 99. As is seen in the middle panel of
Figure 3, the convergence of Algorithm 2 (SA) is slow. The temperature is decreased from σe = 10−6 to
σe = 10−7 at the kbth Monte Carlo step. Similarly, ε is changed from 0.1 to 0.001. Algorithm 2 returns
the correct values after many Monte Carlo steps; we have

√
V̂/W = 1.02, 1.06 for µa, µ′s, respectively,

when ka = 9000 and kb = 10000. Finally, in the bottom panel of Figure 3, we see that the iteration of
Algorithm 3 (hybrid) immediately converges after we switch from the Metropolis–Hastings MCMC
(σe = 10−6, ε = 0.1) to Algorithm 1 (LM). No convergence of the Monte Carlo chain is required, and we
found

√
V̂/W = 8.6 for µa and = 11.0 for µ′s (ka = 49, kb = 99). A similar behavior is observed for the

reconstruction of µ′s in Figure 4. In the top panel of Figure 4, we find that Algorithm 1 (LM) works best
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and converges after a few iterations, whereas Algorithm 2 (SA) in the middle panel of Figure 4 has slow
convergence and reconstructed values around at kb = 99 are still away from µ′s in (42). By switching
from MH-MCMC to Algorithm 1 (LM) using Algorithm 3 (hybrid), convergence is easily obtained as
shown in the bottom panel of Figure 4.

Now we start the simulation by setting the following initial values.

Case 2: µa = 0.5 mm−1, µ′s = 1.0 mm−1. (43)

In this Case 2, Algorithm 1 (LM) fails and returns µa = 0.068 mm−1 and µ′s = 1.75 mm−1 whereas
Algorithm 3 (hybrid) still gives the correct values. The reconstructed values of µa and µ′s at each
iteration are shown in Figures 5 and 6, respectively. In Figure 5, the vertical axes of the left three panels
are from 0 to 0.6 whereas the vertical axes of the right three panels are from 0 to 0.08. In Figure 6,
the vertical axes of the left three panels are from 0 to 2 while the vertical axes of the right three panels
are from 0 to 1.3. In the top panels of Figure 5, we see that the reconstruction of µa is unsuccessful
by Algorithm 1 (LM). Algorithm 2 (SA) approaches µa in Equation (42) but still deviates from that
value in the middle panels of Figure 5. As shown in the bottom panels of Figure 5, Algorithm 3
(hybrid) converges in a few iterations after switching to Algorithm 1 (LM). In the top panels of Figure 6,
Algorithm 1 (LM) fails to reconstruct µ′s. In the middle panels of Figure 6, reconstructed values by
Algorithm 2 (SA) come close to µ′s in Equation (42) but suffer from slow convergence. In the bottom
panels of Figure 6, we see that Algorithm 3 (hybrid) arrives at µ′s in Equation (42) without any problem.
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Figure 3. Case 1: Reconstructed µa by (top) Algorithm 1, (middle) Algorithm 2, and (bottom)
Algorithm 3. The dashed lines show µa in Equation (42).
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Algorithm 3. The dashed lines show µ′s in Equation (42).
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 0

 0.4

 0.8

 1.2

 1.6

 2

 0  20  40  60  80  100  120

Levenberg-Marquardt

µ
s
’ 
(m

m
-1

)

k

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  20  40  60  80  100  120

simulated annealing

µ
s
’ 
(m

m
-1

)

k

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  20  40  60  80  100  120

hybrid

µ
s
’ 
(m

m
-1

)

k

 0

 0.4

 0.8

 1.2

 0  20  40  60  80  100  120

Levenberg-Marquardt

µ
s
’ 
(m

m
-1

)

k

 0

 0.4

 0.8

 1.2

 0  20  40  60  80  100  120

simulated annealing

µ
s
’ 
(m

m
-1

)

k

 0

 0.4

 0.8

 1.2

 0  20  40  60  80  100  120

hybrid

µ
s
’ 
(m

m
-1

)

k

Figure 6. (Left) Case 2: Reconstructed µ′s by (top) Algorithm 1, (middle) Algorithm 2, and (bottom)
Algorithm 3. The dashed lines show µ′s in Equation (42). (Right) Same as the left panel but the vertical
axes are from 0 to 1.3.

The initial guesses for Case 1 are reasonably close to the values found in Equation (42). However,
we started with initial guesses which are quite different from the above-mentioned values in Case 2.
It is not surprising that Algorithm 1 (LM) does not work for Case 2, but Algorithm 3 (hybrid) can
arrive at the correct values. The numerical calculations were performed on Matlab (i7-8700 CPU, 16 GB
memory). In the hybrid method, the Metropolis–Hastings MCMC does not reach the steady state
at about 100 steps but can be switched to the Levenberg–Marquardt method. For Figures 5 and 6,
the computation time was 5 s. The simulated annealing method returns the correct value after about
10,000 steps, but it takes 8 min. The computation for Algorithm 1 (LM) stopped in 0.5 s.

Below we summarize the reconstructed values on Table 1. Although Algorithm 2 (SA) and
Algorithm 3 (hybrid) return the same results after a long time, the hybrid scheme is about ten times
faster, and moreover there is no need for choosing the low temperature for the latter algorithm.
For Algorithm 3, it is not necessary to wait until the burn-in time, but it is enough if the initial rapid
change ceases. In Section 3.2, we illustrate that Algorithm 3 works once the Monte Carlo simulation
escapes from a local minimum and the algorithm does not require that the calculation reaches the
steady state.
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Table 1. Reconstructed values of µa, µ′s are shown for Case 1 and Case 2. The units of µa, µ′s are both
mm−1. For Algorithm 2, values at 120th Monte Carlo step are shown.

Case 1 (µa, µ′s) Case 2 (µa, µ′s)

initial values (0.01, 1.0) (0.5, 1.0)
Algorithm 1 (LM) (0.016, 0.63) (0.068, 1.75)
Algorithm 2 (SA) (0.032, 1.02) (0.028, 0.92)
Algorithm 3 (hybrid) (0.016, 0.63) (0.016, 0.63)

3.2. Determination of Absorption Inhomogeneity

We perform a numerical experiment of diffuse optical tomography using the toy model. Let us
consider when the iterative scheme fails. We see F′(0) = ∂

∂a u(ρj, tk; ρi; a)
∣∣∣
a=0

= 0. For sufficiently

small ε > 0, we have F′(ε) > 0, F′(−ε) < 0, |F′(±ε)| ' 0, and U − F(±ε) < 0. Therefore, if we start
the iteration from a0 = ε, we obtain

|a1| < ε, |a2| < |a1|, . . . . (44)

Thus, the sequence ak approaches 0 and can never arrive at ā (= 1.5).
Let us consider how the difference U − F(a) depends on a. We introduce

h(t) =
1
t

exp

(
−

y2
0

4Dct

)[
1−
√

πDct
`

e
(

y0
2
√

Dct
+
√

Dct
`

)2

erfc

(
y0

2
√

Dct
+

√
Dct
`

)]
. (45)

The following form is obtained using Equation (39). By neglecting noise, we have

u(ρj, tk; ρi; ā)− u(ρj, tk; ρi; a)

=
ηe−µa0ctk

(2πD)2

∫ tk

0
h(tk − s)h(s)

∫ ∞

−∞
dā(a, x′)

(
1− tanh x′2

)
e
−

(xj
d−x′)2

4Dc(tk−s) e−
(x′−xi

s)
2

4Dcs dx′

 ds,
(46)

where dā(a, x′) = ξ(ā, x′)− ξ(a, x′) with

ξ(a, x′) = a2

[
a + 3

(
1 +

tanh x′2

10

)]
. (47)

For a given x′, the function |dā(a; x′)|2 has one global minimum at a = ā, one local minimum at

a = −2
(

1 + tanh x′2
10

)
, and one local maximum at a = 0. Therefore, the above expression implies

that Algorithm 1 (LM) fails when the initial value a0 is negative and the correct value ā = 1.5 is
reconstructed only for a positive initial guess. Indeed, the computation ends up with −2.05 if we
start the iteration from a0 = −0.1 (see below) or −0.01, and the value 1.68 is obtained when a0 = 0.01.
Figure 7 shows |dā(a, x)|2 for ā = 1.5 and tanh(x2) = 0.5.

In Figure 8, we plot reconstructed values of a against iteration numbers. The initial value is set
to a0 = −0.1. The reconstruction by Algorithm 1 (LM) is shown in the top panel of Figure 8. As we
can predict from Figure 7, Algorithm 1 (LM) converges to the local minimum and can never arrive
at the global minimum. Monte Carlo simulation can jump over the local maximum and approach
the global minimum, but keeps fluctuating as shown in the middle panel of Figure 8. We initially
set (σe, ε) = (10−6, 0.5) for Algorithms 2 and 3. In Algorithm 2, we set (σe, ε) = (10−7, 0.005) after
the temperature decreases at the kbth Monte Carlo step. In the bottom panel of Figure 8, Algorithm 3
(hybrid) successfully arrives at the global minimum. Using Matlab, the computation time was 17 min
while we needed 3 hr for Algorithm 2 (SA) (1000 steps).
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After the initial time with large jumps, it is found that we can set kb = 99 in our simulation of the
MCMC-iterative hybrid method. The correct value of ā is reconstructed by Algorithm 3 (hybrid) even
when the simulation experiences a local minimum. Starting from akb

= 1.8257, the calculation stops at
a∗ = 1.6841 (a∗ = akb+3). We note that the reconstructed a∗ is not exactly 1.5 due to noise.

When the initial guess a0 = −0.1 lies in the valley of the local minimum (see Figure 7),
the reconstructed a by Algorithm 3 (hybrid) moves to the valley of the global minimum with the
help of Monte Carlo simulation as shown in Figure 8, while the reconstructed a by Algorithm 1 (LM)
falls to the local minimum as the nature of Newton-type iterative methods. For Algorithm 3 (hybrid),
we obtained a∗ = 1.6841. There is a possibility that negative reconstructed values are obtained by
Algorithm 2 (SA) and Algorithm 3 (hybrid) for the first a few iterations if different pseudo-random
numbers are used. These negative reconstructed values, however, will turn positive and the behavior
of reconstructed a by Algorithm 2 (SA) and Algorithm 3 (hybrid) is always more or less similar to the
middle and bottom panels of Figure 8. For the initial guesses of a0 = −0.01 and a0 = 0.01, Algorithm 3
(hybrid) works without any problem and Algorithm 2 (SA) also returns a reasonable result after
a sufficiently large number of iterations (results not shown).
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Figure 8. Reconstructed ā (= 1.5) by (top) Algorithm 1 (LM), (middle) Algorithm 2 (SA), and (bottom)
Algorithm 3 (hybrid) for the initial value a0 = −0.1.

4. Discussion

In this paper, we have proposed a hybrid numerical scheme which uses Markov chain Monte Carlo
in the first step and then uses an iterative method in the second step. We switch from MH-MCMC to
LM by observing proposed parameter values. For the typical jump length of parameters in MH-MCMC,
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ε = 0.1 was used in Section 3.1 and ε = 0.5 was chosen in Section 3.2. Although these values were
set so that the MH-MCMC calculation was efficiently performed, other choices of ε are also possible.
The proposed scheme is quite general and can be applied to different inverse problems in NIRS which
are solved by iterative methods even when the forward problem must be solved fully numerically
with finite difference method or finite element method. It is an interesting future study how the hybrid
scheme can be extended to diffuse optical tomography, which has many unknowns.

More sophisticated algorithms than the Metropolis–Hastings Markov chain Monte Carlo used
in this paper have been proposed to overcome slow convergence. The delayed rejection scheme
reduces the net rejection rate [39]. In the adaptive Metropolis algorithm, parameters in the proposal
distribution are adjusted during Monte Carlo steps [40]. The DRAM algorithm, which combines the
above-mentioned two schemes, was also proposed [41]. Two-level MCMC algorithms [42,43] and
a multi-level MCMC [23] have been investigated to improve the MCMC algorithm. Such Monte
Carlo schemes might improve the first step of our hybrid method by finding the valley of the global
minimum more easily.

Related to the Metropolis–Hastings Markov chain Monte Carlo algorithm, quantum annealing [44]
has been developed in addition to simulated annealing. Aiming at escaping from local minima,
brute-force search and genetic algorithm [45] are also well-known optimization algorithms.
The introduction of these methods in NIRS may be found useful in the future.

For the clinical use of NIRS, it has been recognized from early days that finding absolute values
of the absorption and scattering coefficients is important [2]. In Ref. [15], it is emphasized that the
obtained absolute values highly depend on the starting values of the initial estimate for the study of
the infant brain with their measurement system. By performing Markov chain Monte Carlo before
using standard iterative schemes, we may automatically acquire good initial values. Such clinical
application is a natural next step of our research.
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