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We consider the radiative transport equation in which the time derivative is replaced
by the Caputo derivative. Such fractional-order derivatives are related to anomalous
transport and anomalous diffusion. In this paper we describe how the time-fractional
radiative transport equation is obtained from continuous-time random walk and see
how the equation is related to the time-fractional diffusion equation in the asymptotic
limit. Then we solve the equation with Legendre-polynomial expansion. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4973441]

I. INTRODUCTION

Anomalous diffusion is often observed in nature.31,33 For example, tracer particles flowing in
an aquifer exhibits anomalous diffusion.1 At the macroscopic scale after multiple scattering takes
place, such anomalous diffusion is governed by fractional diffusion equations.31,32,39 Considering
the fact that the diffusion equation appears in the asymptotic limit of the radiative transport equation
or the linear Boltzmann equation,18 one can expect that at the mesoscopic scale there exist anom-
alous transport phenomena which are described by the fractional radiative transport equation. The
use of the radiative transport equation was proposed for predicting the concentration of radionu-
clides in fractured rock underground.40,41 If this happens, then its fractional version must appear just
like the fractional diffusion equation shows up when the diffusion process takes place in a complex
structure.

Let α ∈ (0,1) and σt,σs ∈ (0,∞) be constants determined by the medium under consideration.
We suppose σt > σs. Let v > 0 be a constant speed. Let u(x, µ, t) (x ∈ R, µ ∈ [−1,1], t ∈ [0,∞)) be
the angular density. We consider the following initial-value problem for the time-fractional radiative
transport equation:




∂α
t u(x, µ, t) + v µ∂xu(x, µ, t) + σtu(x, µ, t) = σs

 1

−1
p(µ, µ′)u(x, µ′, t) dµ′,

u(x, µ,0) = δ(x)δ(µ − µ0),
(1)

where δ(·) is the Dirac delta function and ∂α
t is the Caputo fractional derivative,3 which is defined

by35

∂α
t u(·, ·, t) = 1

Γ(1 − α)
 t

0

∂t′u(·, ·, t ′)
(t − t ′)α dt ′, 0 < α < 1,

with Γ(·) the Gamma function. Indeed, u in (1) is the fundamental solution of the time-fractional
radiative transport equation. We note that recently ∂α

t was redefined more generally using fractional
Sobolev spaces.10 Compared with the Riemann-Liouville derivative, the Caputo derivative is not
singular at t = 0. Thus we can have the same initial condition in (1) and in the corresponding
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equation of the first derivative ∂t. The phase function p(µ, µ′) satisfies 1

−1
p(µ, µ′) dµ′ = 1, ∀µ ∈ [−1,1].

Anomalous transport phenomena are in the transport regime when the distance of interest
is not too large compared to the scattering mean free path v/σs, and as is shown below, the
time-fractional diffusion equation is obtained from (1) in the asymptotic limit. The time-fractional
diffusion equation has been intensively studied. In addition to several examples,31,33 we point out
that the behavior of water transport in granite was successfully reproduced by the random walk
process with a power-law distribution.11 It is proposed that if there are two porosities, the mass
transport in fractured porous aquifer should be governed by the diffusion equation in which both
∂t and ∂α

t appear.6 The Cauchy problem4 and initial-boundary-value problem24,26 were considered
for the time-fractional diffusion equation. The maximum principle was established.23 The technique
of eigenfunction expansion was developed.37 Numerical algorithms for the equation have been
developed.22 Moreover the standard time-fractional diffusion equation was generalized to equations
with multiple Caputo derivatives19,25 and distributed-order equations.16,20 See the recent review by
Jin and Rundell.14

The rest of the paper is organized as follows. In Section II, we obtain the time-fractional
radiative transport equation from continuous-time random walk. In Section III, we see that the
time-fractional diffusion equation emerges from the time-fractional radiative transport equation
when absorption is small, propagation distance is large, and observation time is long. In Sec-
tion IV, we express the solution to the time-fractional radiative transport equation in the form
of Legendre polynomial expansion. In Section V, we numerically compute the solutions of the
time-fractional radiative transport equation and of the time-fractional diffusion equation. Finally in
Section VI, concluding remarks are made. The subtraction of the ballistic term is considered in the
Appendix.

II. CONTINUOUS-TIME RANDOM WALK

We consider the continuous-time random walk whose jump probability density function ϕ(x, t;
µ, µ′) (x ∈ R, t ∈ [0,∞), µ, µ′ ∈ [−1,1]) is given by

ϕ(x, t; µ, µ′) = [ξsδ(x)p(µ, µ′) + (1 − ξt)δ(x − µr)δ(µ − µ′)] w(t), (2)

where ξt ∈ (0,1), ξs ∈ (0, ξt), and r > 0 are some constants. The first term represents scattering
and the second term in the square brackets of (2) is responsible for transport. The waiting time
probability density function w(t) is obtained as

(1 − ξa)w(t) =
 1

−1

 ∞

−∞
ϕ(x, t; µ, µ′) dxdµ′,

where ξa = ξt − ξs > 0 is the probability for absorption. The left-hand side of the above-mentioned
equation shows the probability that the test particle is not absorbed in the medium and makes a jump
after the time t.

Let η(x, µ, t) be the probability density function of just having arrived at position x at time t
in direction µ. Let P(x, µ, t) be the probability density function of being at (x, µ, t) ∈ R × [−1,1] ×
[0,∞). We consider the following continuous-time random walk process:




η(x, µ, t) =
 t

0

 1

−1

 ∞

−∞
η(x ′, µ′, t ′)ϕ(x − x ′, t − t ′; µ, µ′) dx ′dµ′dt ′ + a(x, µ)δ(t),

P(x, µ, t) =
 t

0
η(x, µ, t ′)Φ(t − t ′) dt ′,

where a(x, µ) is the initial value which is a function of x and µ, and Φ(t) is the cumulative
probability of not having moved during t, which is given by

Φ(t) = 1 −
 t

0
w(t ′) dt ′.
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By the Fourier-Laplace transform we have

(LF P)(k, µ, s) =
 ∞

0
e−st

 ∞

−∞
e−ik xP(x, µ, t) dxdt

= (LF η)(k, µ, s)(LΦ)(s),
where

(LΦ)(s) = 1 − (Lw)(s)
s

.

Hence we obtain

(LF η)(k, µ, s) =

ξs

 1

−1
p(µ, µ′)(LF η)(k, µ′, s) dµ′

+ (1 − ξt)(LF η)(k, µ, s)e−iµrk

(Lw)(s) + (F a)(k, µ).

We consider small k and use

e−iµrk ∼ 1 − iµrk .

Thus we arrive at
1 − (Lw)(s)
(Lw)(s)


(LP)(x, µ, s) − 1

s
P(x, µ,0)



= ξs

 1

−1
p(µ, µ′)(LP)(x, µ′, s) dµ′ − [ξt + (1 − ξt)rµ∂x] (LP)(x, µ, s).

Recalling 0 < α < 1, we have35,38

�
L∂α

t f
� (s) = sα (L f ) (s) − sα−1 f (0).

Let us assume that the waiting time probability density function behaves as

(Lw)(s) ∼ 1 − (τs)α, 0 < s ≪ 1
τ
.

We introduce

σt =
ξt
τα

, σs =
ξs
τα

, v =
(1 − ξt)r

τα
.

We asymptotically obtain

∂α
t P(x, µ, t) + v µ∂xP(x, µ, t) + σtP(x, µ, t) = σs

 1

−1
p(µ, µ′)P(x, µ′, t) dµ′.

This is (1).

Remark 2.1. In this section we implemented the effect of absorption in our random walk by
introducing ξa. Such extension of the usual continuous-time random walk is done by Hornung,
Berkowitz, and Barkai,13 and by Henry, Langlands, and Wearne.12 Indeed, we arrive at the same
conclusion by instead writing (2) as

ϕ(x, t; µ, µ′) = [ξsδ(x)p(µ, µ′) + (1 − ξt)δ(x − µr)δ(µ − µ′)] w(t)
1 − ξa

,

with the waiting time probability density function w(t) introduced as

w(t) =
 1

−1

 ∞

−∞
ϕ(x, t; µ, µ′) dxdµ′.

We can then give η(x, µ, t) and P(x, µ, t) as




η(x, µ, t) = (1 − ξa)
 t

0

 1

−1

 ∞

−∞
η(x ′, µ′, t ′)ϕ(x − x ′, t − t ′; µ, µ′) dx ′dµ′dt ′ + a(x, µ)δ(t),

P(x, µ, t) = (1 − ξa)
 t

0
η(x, µ, t ′)Φ(t − t ′) dt ′.

Note that P(x, µ,0) = (1 − ξa)a(x, µ). Thus the relation to the past work12,13 becomes clearer.
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III. DIFFUSION APPROXIMATION

Let us suppose that the ratio ϵ > 0 of the mean free path to the propagation distance is small.
We scale t, x as t → ϵ2/αt and x → ϵ x. Furthermore we scale σa → σa/ϵ

2 assuming σa is small
(recall σa = σt − σs). Although the radiative transport equation (1) has the Caputo derivative, we
obtain the time-fractional diffusion equation by following the standard procedure.2,18,36 In this sec-
tion we assume that p(µ, µ′) = p(µ′, µ). We can write the time-fractional radiative transport equation
as

ϵ2∂α
t u(x, µ, t) + ϵv µ∂xu(x, µ, t) + �ϵ2σa + σs

�
u(x, µ, t) = σs

 1

−1
p(µ, µ′)u(x, µ′, t) dµ′.

We write

u(x, µ, t) = UDA(x, µ, t) + ϵU (1)
DA(x, µ, t) + ϵ2U (2)

DA(x, µ, t) + · · ·.
Let us collect terms of order ϵ0. We obtain

σsUDA(x, µ, t) = σs

 1

−1
p(µ, µ′)UDA(x, µ′, t) dµ′.

The above equation implies that UDA is independent of µ; hereafter we write UDA(x, µ, t) = UDA(x, t).
The terms of order ϵ1 yield

v µ∂xUDA(x, t) + σsU
(1)
DA(x, µ, t) = σs

 1

−1
p(µ, µ′)U (1)

DA(x, µ′, t) dµ′.

We obtain

U (1)
DA(x, µ, t) = −

v

(1 − g)σs
µ∂xUDA(x, t),

where g ∈ (−1,1) satisfies

µg =
 1

−1
µ′p(µ, µ′) dµ′.

By collecting terms of order ϵ2 we have

∂α
t UDA(x, t) + µ∂xU

(1)
DA(x, µ, t) + σaUDA(x, t) + σsU

(2)
DA(x, µ, t)

= σs

 1

−1
p(µ, µ′)U (2)

DA(x, µ′, t) dµ′.

If we integrate the above equation over µ, we obtain

∂α
t UDA(x, t) − D0∂

2
xUDA(x, t) + σaUDA(x, t) = 0, (3)

where

D0 =
v

3(1 − g)σs
. (4)

Thus the time-fractional diffusion equation is obtained in the asymptotic limit of (1).
One remark needs to be made. We have the second derivative for the spatial variable x in (3).

In a similar setting, it is known that the space-fractional diffusion equation is obtained if the phase
function decays with power-law as a function of the speed of propagating particles.29,30

IV. LEGENDRE-POLYNOMIAL EXPANSION

Let us suppose that p(µ, µ′) is given by

p(µ, µ′) = 1
2

L
l=0

βlPl(µ)Pl(µ′),
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where L ≥ 0, and βl (l = 0,1, . . . ,L) are positive constants such as β0 = 1, βl < 2l + 1 for l ≥ 1.
Here, Pl(µ) are the Legendre polynomials recursively given by

(l + 1)Pl+1(µ) = (2l + 1)µPl(µ) − lPl−1(µ), P1(µ) = µ, P0(µ) = 1, µ ∈ [−1,1].
In the time-independent case, an analytical solution of the space-fractional radiative transport equa-
tion was found.15 In this section we solve (1). Let us expand u with Legendre polynomials.

(F u)(k, µ, t) =
∞
l=0

√
2l + 1cl(k, t; µ0)Pl(µ). (5)

We perform the Fourier transform in (1) and substitute (5). We have

�
∂α
t + ivkµ + σt

� ∞
l=0

√
2l + 1cl(k, t; µ0)Pl(µ)

= σs

∞
l=0

√
2l + 1cl(k, t; µ0) βl

2l + 1
Pl(µ)Θ(L − l).

Let us introduce

hl = 2l + 1 − σs

σt
βlΘ(L − l).

Let N (≥ L) be an integer. We take projections with Pl(µ) (l = 0,1, . . . ,N) and obtain

ivkl
√

4l2 − 1
cl−1 +

ivk(l + 1)
4(l + 1)2 − 1

cl+1 + ∂α
t cl +

σthl

2l + 1
cl = 0,

where we used the recurrence relations and orthogonality relations of Legendre polynomials,

µPl(µ) = l + 1
2l + 1

Pl+1(µ) + l
2l + 1

Pl−1(µ) (6)

and  1

−1
Pl(µ)Pl′(µ) dµ =

2
2l + 1

δll′.

The above equation is expressed as

A(k)c(k, t; µ0) + ∂α
t c(k, t; µ0) = 0,

where A(k) is an (N + 1) × (N + 1) matrix and c(k, t; µ0) is an N + 1 dimensional vector defined by

{A(k)}ll′ = ivkl
√

4l2 − 1
δl−1,l′ +

σthl

2l + 1
δl,l′ +

ivk(l + 1)
4(l + 1)2 − 1

δl+1,l′, (7)

{c(k, t; µ0)}l = cl(k, t; µ0). (8)

When the Legendre polynomial expansion is used, tridiagonal matrices such as A(k) appear due to
the three-term recurrence relation (6).7,8,21,34 By taking the Laplace transform we have

(Lc)(k, s; µ0) = (A(k) + sα)−1sα−1c(k,0; µ0),
where we used

(L∂α
t c)(k, s; µ0) = sα(Lc)(k, s; µ0) − sα−1c(k,0; µ0), 0 < α ≤ 1.

Let us recall that the Mittag-Leffler function is given by35

Eα(z) B
∞
n=0

zn

Γ(αn + 1) , z,α ∈ C, ℜα > 0,

and the Laplace transform is obtained as

L {Eα(ztα); s} = sα−1

sα − z
, z, s,α ∈ C, ℜs,ℜα > 0,

����
z

sα
���� < 1.
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Thus we find

c(k, t; µ0) = Eα (−A(k)tα) c(k,0; µ0).
Since δ(µ − µ0) = ∞

l=0
2l+1

2 Pl(µ)Pl(µ0), we obtain

{c(k,0; µ0)}l =
√

2l + 1
2

Pl(µ0).
Let λn(k) and vn(k) be the nth eigenvalue and eigenvector of the matrix A(k). We can write A(k) as

A(k) = Q(k)D(k)Q(k)−1,

where

Q(k) = (v0(k) v1(k) · · · vN(k)) , D(k) = diag(λ0(k), λ1(k), . . . , λN(k)).
We have

{A(k)}i j = �
Q(k)D(k)Q(k)−1	

i j
=

N
n=0

λn(k)v (i)n (k)v ( j)∗n (k),

where v (i)n (k) is the ith component of vn(k). Therefore we can write

{c(k, t; µ0)}l =
N
j=0


2 j + 1

2
Pj(µ0)

N
n=0

v
(l)
n (k)v ( j)∗n (k)Eα (−λn(k)tα) .

Noting (8), Eq. (5) yields

u(x, µ, t) ≈ u(x, µ, t; N)

B
1

2π

 ∞

−∞
eik x

N
l=0

√
2l + 1cl(k, t; µ0)Pl(µ) dk . (9)

Since k appears always as ik, we see

cl(−k, t; µ0) = cl(k, t; µ0)∗.
We obtain

u(x, µ, t; N) =
N
l=0

√
2l + 1
π

Pl(µ)

×
 ∞

0
[cos(k x)ℜcl(k, t; µ0) − sin(k x)ℑcl(k, t; µ0)] dk . (10)

Remark 4.1. Although in this section we directly calculated u in (10), indeed, it is possible to
directly relate u(x, µ, t) to u1(x, µ, t) which is the solution of (1) with α = 1. Let fα(t) be a function
such that

(L fα)(s) = e−s
α
.

For example, we have

f1/2(t) = t−3/2

2
√
π

e−1/(4t).

If we introduce

ϕ(τ, t) = t
ατ1+1/α fα

( t
τ1/α

)
,

we have

(Lϕ)(τ, s) = sα−1e−τs
α
.



013301-7 Manabu Machida J. Math. Phys. 58, 013301 (2017)

Let us consider the Laplace transform of u with respect to s and u1 with respect to sα. Assuming
u(x, µ,0) = u1(x, µ,0), we obtain




sα(Lu)(x, µ, s) − sα−1u(x, µ,0) + v µ∂x(Lu)(x, µ, s) + σt(Lu)(x, µ, x)
= σs

 1

−1
p(µ, µ′)(Lu)(x, µ′, s) dµ′,

sα(Lu1)(x, µ, sα) − u1(x, µ,0) + v µ∂x(Lu1)(x, µ, sα) + σt(Lu1)(x, µ, sα)
= σs

 1

−1
p(µ, µ′)(Lu1)(x, µ′, sα) dµ′.

The above equations imply

(Lu)(x, µ, s) = sα−1(Lu1)(x, µ, sα) =
 ∞

0
u1(x, µ, t)sα−1e−τs

α
dτ.

Therefore u and u1 are related as

u(x, µ, t) =
 ∞

0
u1(x, µ, τ)ϕ(τ, t) dτ.

This means that we can obtain u by integrating u1, which is the solution of the first-order equation.
The solution u is subordinated to the solution u1.17

V. NUMERICAL CALCULATION

The energy density U(x, t) is introduced as

U(x, t) =
 1

−1
u(x, µ, t) dµ.

Each N gives an approximated value of U(x, t) as

U(x, t) ≈ U(x, t; N),
where

U(x, t; N) =
 1

−1
u(x, µ, t; N) dµ.

We note that U(x, t) = U(x, t;∞). Let us calculate U(x, t; N) for the initial condition

U(x,0; N) = δ(x).
From (10) we obtain

U(x, t; N) =
 1

−1

 1

−1
u(x, µ, t; N) dµdµ0

=
1
π

 ∞

−∞
eik x

N
n=0

���v
(0)
n (k)���

2
Eα (−λn(k)tα) dk

=
2
π

N
n=0

 ∞

0

���v
(0)
n (k)���

2

×
(
cos(k x)ℜEα (−λn(k)tα) − sin(k x)ℑEα (−λn(k)tα)

)
dk .

In this section we set

v = 1, σa = 0, L = N = 1

and

σs = 10, g =
β1

3
= 0.9.
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The matrix A(k) in (7) is given by

A(k) = 1
√

3
*
,

0 ik
ik 2kc

+
-
,

where we introduced

kc B

√
3

2
σs(1 − g).

Its eigenvalues and eigenvectors are obtained as

λ(k) = kc√
3
*.
,
1 ±


1 −

(
k
kc

)2+/
-

and

v(k) = 1
√
N

*..
,

ik
√

3
λ(k)

+//
-
, N =




2k2
c

3
*.
,
1 ±


1 −

(
k
kc

)2+/
-
, |k | ≤ kc,

2
3

k2, |k | > kc.

Thus we have

���v
(0)(k)���

2
=




1
2
*.
,
1 ∓


1 −

(
k
kc

)2+/
-
, |k | ≤ kc,

1
2
, |k | > kc.

The energy density is written as

U(x, t; 1) = 1
π

 kc

0
cos(k x)

×

*.
,
1 −


1 −

(
k
kc

)2+/
-

Eα
*
,
−

kc +


k2
c − k2

√
3

tα+
-

+
*.
,
1 +


1 −

(
k
kc

)2+/
-

Eα
*
,
−

kc −


k2
c − k2

√
3

tα+
-


dk

+
2
π

 ∞

kc

cos(k x)ℜEα
*
,
−

kc − i


k2 − k2
c√

3
tα+
-

dk . (11)

In the diffusion approximation the energy density is given as follows. If the initial condition is
given by

UDA(x,0) = δ(x),

FIG. 1. Comparison ofU (x, t) andUDA(x, t) as a function of x, from the left, for t = 0.0001, 0.0025, and 0.01, respectively,
when α = 0.25.
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FIG. 2. Comparison ofU (x, t) andUDA(x, t) as a function of x, from the left, for t = 0.01, 0.05, and 0.1, respectively, when
α = 0.5.

we have27,28

UDA(x, t) = 1
π

 ∞

0
cos(k x)Eα(−D0k2tα) dk (12)

=
1
√

D0
t−

α
2 Mα/2

( |x |
√

D0 tα/2

)
,

where Mα(z) is the M-Wright function defined by

Mα(z) B
∞
n=0

(−1)nzn

n!Γ(−α(n + 1) + 1) .

Equations (11) and (12) are implemented in Fortran. The numerical implementation of the
Mittag-Lifter function relies on the algorithm by Gorenflo, Loutchko, and Luchko.9 Although we
saw in Section III that U(x, t) asymptotically becomes UDA(x, t), they are different in general. In
Figs. 1–3, we plot U(x, t; 1) and UDA(x, t) for α = 0.25, 0.5, and 0.75, respectively. For all the cases,
we see that U(x, t; 1) stays near the source at x = 0 for a relatively long time whereas UDA(x, t)
broadens quickly. When α = 0.75 we can see that U(x, t; 1) has two peaks. Such a double-peak
structure shows up for α > 1 in the case of the fractional diffusion equation.28 This behavior can be
understood from the relation5

Eα(z) + Eα(−z) = 2E2α(z2), z ∈ C.

For sufficiently large k, which corresponds to small x, we asymptotically have35

Eα
*
,
−

kc − i


k2 − k2
c√

3
tα+
-
∼ 1

α
exp


*
,
−

kc − i


k2 − k2
c√

3
tα+
-

1/α
.

Hence in (11) we have

ℜEα
*
,
−

kc − i


k2 − k2
c√

3
tα+
-
∼ 1

2α
exp



(
i

k
√

3
tα

)1/α
+

1
2α

exp


(
−i

k
√

3
tα

)1/α

∼ 1
2

Eα

(
i

k
√

3
tα

)
+

1
2

Eα

(
−i

k
√

3
tα

)

FIG. 3. Comparison of U (x, t) and UDA(x, t) as a function of x, from the left, for t = 0.05, 0.1, and 0.2, respectively, when
α = 0.75.
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= E2α

(
−1

3
k2t2α

)
.

The above calculation implies that the double-peak behavior for the fractional diffusion equation
with α > 1 can be seen for the fractional radiative transport equation with α > 1/2.

VI. CONCLUDING REMARKS

One of the purposes of the present paper is to see the connection between the time-fractional
radiative transport equation and the time-fractional diffusion equation. Roughly speaking, the time-
fractional radiative transport equation of ∂α

t behaves as the time-fractional diffusion equation of ∂α
t

for large x and behaves as the time-fractional diffusion equation of ∂2α
t near x = 0 as is investigated

in Sections III and V.
When u(x, µ, t) in (1) is expressed in the form of the collision expansion, the ballistic term

is singular. If u(x, µ, t) itself is numerically computed, it is desirable to subtract the ballistic term.
In a straightforward manner, we can extend the calculation in Section IV. This calculation is
summarized in the Appendix.

APPENDIX: SUBTRACTION OF THE BALLISTIC TERM

Let us split u(x, µ, t) in (1) into the ballistic and scattered parts as

u(x, µ, t) = ub(x, µ, t) + us(x, µ, t),
where ub(x, µ, t) and us(x, µ, t), respectively, satisfy




∂α
t ub(x, µ, t) + µ∂xub(x, µ, t) + σtub(x, µ, t) = 0,

ub(x, µ,0) = δ(x)δ(µ − µ0)
and




∂α
t us(x, µ, t) + µ∂xus(x, µ, t) + σtus(x, µ, t) = σs

 1

−1
p(µ, µ′)us(x, µ′, t) dµ′

+ S(x, µ, t),
us(x, µ,0) = 0.

Here the source term for us(x, µ, t) is given by

S(x, µ, t; µ0) = σs

 1

−1
p(µ, µ′)ub(x, µ′, t) dµ′.

Noting that

(LF ub)(k, µ, s) = sα−1

sα + ikµ + σt
δ(µ − µ0),

we obtain

ub(x, µ, t) = 1
2π

δ(µ − µ0)
 ∞

−∞
eik xEα [−(ikµ0 + σt)tα] dk

and

(LF S)(k, µ, s; µ0) = σsp(µ, µ0) sα−1

sα + ikµ0 + σt
.

Let us expand us with Legendre polynomials,

(F us)(k, µ, t) =
∞
l=0

√
2l + 1cl(k, t; µ0)Pl(µ). (A1)



013301-11 Manabu Machida J. Math. Phys. 58, 013301 (2017)

For 0 ≤ l ≤ N we obtain

A(k)c(k, t; µ0) + ∂α
t c(k, t; µ0) = w(k, t; µ0),

where w(k, t; µ0) is an N + 1 dimensional vector defined by

{w(k, t; µ0)}l =
√

2l + 1
2

 1

−1
Pl(µ)(F S)(k, µ, t; µ0) dµ.

By taking the Laplace transform we have

(Lc)(k, s; µ0) = (A(k) + sα)−1 �sα−1c(k,0; µ0) + (Lw)(k, s; µ0)� .
Let us express the Laplace transform of w(k, t; µ0) as

(Lw)(k, s; µ0) = sα−1

sα + ikµ0 + σt
b(µ0),

where

{b(µ0)}l = σs βl

2
√

2l + 1
Θ(L − l)Pl(µ0).

Using the relation

(A(k) − sα)−1(Lw)(k, s; µ0)
= (A(k) + ikµ0 + σt)−1

(
sα−1

sα + ikµ0 + σt
− sα−1

sα − A(k)
)

b(µ0),
we find

c(k, t; µ0) = Eα(−A(k)tα)c(k,0; µ0)
+ (A(k) + ikµ0 + σt)−1 [Eα (−(ikµ0 + σt)tα) − Eα (A(k)tα)]b(µ0).
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