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ABSTRACT
In linear transport theory, 3D equations reduce to 1D equations by
means of rotated reference frames. In this paper, we illustrate how
the technique works and 3D transport theories are obtained.

1. Introduction

In linear transport theory, 3D equations reduce to 1D equations with rotated ref-
erence frames when the angular flux has the structure of separation of variables.
Although the technique can be used for anisotropic scattering in the presence of
boundaries, calculation becomes complicated in such general cases and sometimes
the essence is buried in straightforward but lengthy and tedious calculations. In
this paper, aiming at elucidating how rotated reference frames help construct linear
transport theory in three dimensions, we will consider the case of isotropic scatter-
ing in an infinite medium.

To the best of the author’s knowledge, rotated reference frames were first intro-
duced in transport theory by Dede (1964) in the context of the PN method, and
then Kobayashi (1977) expanded Dede’s calculation. Forty years after Dede’s find-
ing, Markel (2004) devised an efficient numerical algorithm of computing solutions
to the 3D transport equation by reinventing rotated reference frames. The method
is called the method of rotated reference frames. A lot of numerical calculations
(Panasyuk et al., 2006; Xu and Patterson, 2006a,b; Machida et al., 2010; Liemert
and Kienle, 2011a,b,c, 2012a,b,c,d,e, 2013a,b,c, 2015) done during the last decade
have proved the usefulness and efficiency of this method. It was then found that
the technique of rotated reference frames is not merely for the particular numerical
method but is a tool to build bridges between 3D transport theory and 1D trans-
port theory. Case’s method (Case, 1960; Mika, 1961; McCormick and Kuščer, 1966;
Case and Zweifel, 1967) was extended to three dimensions (Machida, 2014), and
the FN method (Siewert, 1978; Siewert and Benoist, 1979) was also extended to three
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dimensions (Machida, 2015). Recently, the angular flux of the 3D transport equation
with anisotropic scattering was computed using the Fourier transform by making
use of rotated reference frames (Machida, 2016). The technique of rotated reference
frames is also applied to optical tomography (Schotland andMarkel, 2007; Machida
et al., 2016; Machida, in press).

There have beenmany attempts to construct multi-dimensional transport theory
especially since Case’s method (1960) of singular eigenfunctions appeared. In addi-
tion to trials of direct extension of the singular-eigenfunction approach (Williams,
1967; Kaper, 1969; Case and Hazeltine, 1970; Gibbs, 1969; Cannon, 1973; Pom-
raning, 1996), there were approaches based on the integral transform (Bareiss and
Abu-Shumays, 1967;Williams, 1968; Schreiner et al., 1969; Garrettson and Leonard,
1970; Leonard, 1971; Lam and Leonard, 1971, 1973; Williams, 1982). However,
the efforts of extending the singular-eigenfunction approach ended up with formal
complicated calculations and could not arrive at useful formulas.

Let us consider the following transport equation in a 3D infinite medium:(
�̂ · ∇ + 1

)
ψ(r, �̂) = �

4π

∫
S2
ψ(r, �̂) d�̂ + S(r, �̂), (1)

where r ∈ R
3, �̂ ∈ S

2, and � ∈ (0, 1) is the albedo for single scattering. Here,
ψ(r, �̂) is the angular flux and S(r, �̂) is the source term. The unit vector �̂ has the
polar angle θ and azimuthal angle ϕ. We letμ denote the cosine of θ , i.e.,μ = cos θ .

Let k̂ ∈ C
3 be a unit vector. For a function f (�̂), we introduce an operator Rk̂

such thatRk̂ f (�̂) is the value of f in which �̂ is measured in the reference frame
whose z-axis lies in the direction of k̂. For example, when f (�̂) = μ, we have

Rk̂ μ = k̂ · �̂.

Such reference frames which are rotated in directions of given unit vectors k̂ are
called rotated reference frames. We define spherical harmonics by

Ylm(�̂) =
√
2l + 1
4π

(l − m)!
(l + m)!

Pm
l (μ)e

imϕ,

where Pm
l (μ) are associated Legendre polynomials. We have the following calcula-

tion for spherical harmonics:

Rk̂Ylm(�̂) =
l∑

m′=−l

Dl
m′m
(
ϕk̂, θk̂, 0

)
Ylm′ (�̂),

where θk̂ and ϕk̂ are the polar and azimuthal angles of k̂ in the laboratory
frame, and Dl

m′m are Wigner’s D-matrices (Varshalovich et al., 1988). The function
Dl

m′m(α, β, γ ), where α, β, γ are called the Euler angles, expresses rotation of the
reference frame. If we set α = ϕk̂, β = θk̂, and γ = 0, we can rotate the labora-
tory frame to the reference frame whose z-axis lies in the direction of k̂. That is,
by Dl

m′m(ϕk̂, θk̂, 0), the reference frame is rotated about the original z-axis by ϕk̂
and then about the new x-axis by θk̂. As a result, the new z-axis coincides with k̂. If
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γ is non-zero, we further rotate the reference frame about the resulting z-axis by the
angle γ . We note that if we rotate the obtained rotated reference frame about the x-
axis by −θk̂ and then rotate it on the x–y plane by −ϕk̂, the reference frame returns
to the laboratory frame. The rotated reference frame also comes back to the labora-
tory frame by the following successive rotations: the rotation about the new z-axis
or the vector k̂ by π , the rotation about the flipped x-axis by θk̂, and the rotation on
the x–y plane by π − ϕk̂. From the above consideration, we have

Ylm(�̂) =
l∑

m′=−l

Dl
m′m
(
0,−θk̂,−ϕk̂

)Rk̂Ylm′ (�̂)

=
l∑

m′=−l

Dl
m′m
(
π, θk̂, π − ϕk̂

)Rk̂Ylm′ (�̂).

It is possible to write Dl
m′m(α, β, γ ) = e−im′αdlm′m(β)e

−imγ , where dlm′m(β) are
called Wigner’s d-matrices. We have

dlm′m(β) = ξm′m

√
s!(s + m1 + m2)!
(s + m1)!(s + m2)!

(
1 − cosβ

2

)m1/2 (1 + cosβ
2

)m2/2

×P(m1,m2)
s (cosβ),

where ξm′m = 1 form ≥ m′, (−1)m−m′ form < m′,m1 = |m′ − m|,m2 = |m′ + m|,
s = l − (m1 + m2)/2, and the Jacobi polynomials P(m1,m2)

s (μ) are given by

P(m1,m2)
s (μ) = 1

2s

s∑
j=0

(s + m1)!
(s − j)!(m1 + j)!

(s + m2)!
j!(s + m2 − j)!

(μ− 1) j(μ+ 1)s− j.

We note that dlm′m(β) = (−1)m′−mdl−m′,−m(β) = (−1)m′−mdlmm′ (β) and

d000(β) = 1, d100(β) = cosβ, d110(β) = −1√
2
sinβ, d11±1(β) = 1 ± cosβ

2
.

2. Case’s method in three dimensions

For a unit vector k̂, we assume the following separated solutions with separation
parameter ν:

ψν(r, �̂; k̂) = �ν(�̂; k̂)e−k̂·r/ν, (2)

where the unknown function�ν(�̂; k̂) is normalized as
1
2π

∫
S2
�ν(�̂; k̂) d�̂ = 1.

We plug the above ψν(r, �̂; k̂) into the homogeneous equation(
�̂ · ∇ + 1

)
ψ(r, �̂) = �

4π

∫
S2
ψ(r, �̂) d�̂,
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and obtain (
1 − k̂ · �̂

ν

)
�ν(�̂; k̂) = �

2
. (3)

Let us express�ν(�̂; k̂) as
�ν(�̂; k̂) = Rk̂ φ(ν, μ),

where ∫ 1

−1
φ(ν, μ) dμ = 1.

We will see below that φ(ν, μ) is independent of ϕ. Then, Equation (3) is written
as (

1 − Rk̂ μ

ν

)
Rk̂ φ(ν, μ) = �

2
. (4)

Since the right-hand side of Equation (4) is a scalar, by operatingR−1
k̂
, Equation (4)

reduces to (
1 − μ

ν

)
φ(ν, μ) = �

2
. (5)

The above Equation (5) is the equation appearing in 1D transport theory (Case,
1960; Case and Zweifel, 1967). This is different from the pseudo-problem approach
(Williams, 1967, 1968, 1982) and the coefficients in the corresponding 1D transport
equation remains constant. That is, in one dimension, Equation (5) is derived from
the following equation:(

μ
∂

∂z
+ 1
)
ψ(z, μ) = �

2

∫ 1

−1
ψ(z, μ) dμ,

where

ψ(z, μ) = φ(ν, μ)e−z/ν.

Therefore, it turns out that φ(ν, μ) are singular eigenfunctions (Case, 1960), which
are obtained as

φ(ν, μ) = �ν

2
P 1
ν − μ

+ λ(ν)δ(ν − μ),

where

λ(ν) = 1 − �ν

2
P
∫ 1

−1

1
ν − μ

dμ = 1 −�ν tanh−1(ν).

The separation constant ν takes values in (−1, 1) in addition to ±ν0, where ν0 > 1
is the positive root of�(ν) such that�(ν0) = 0. Here, the function�(w) is defined
for w ∈ C \ [−1, 1] as

�(w) = 1 − �w

2

∫ 1

−1

1
w − μ

dμ. (6)
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Thus, ν0 is given as the positive solution to the transcendental equation

1 −�ν0 tanh−1
(
1
ν0

)
= 0.

When � is near 1, which is typical for light propagating in biological tissue, ν0 is
approximately calculated as Case and Zweifel (1967)

ν0 ≈ 1√
3(1 −�)

.

Now, we return to eigenmodes (2) in three dimensions. We obtain

ψν(r, �̂; k̂) = Rk̂ φ(ν, μ)e
−k̂·r/ν = φ(ν, k̂ · �̂)e−k̂·r/ν. (7)

The angular flux in Equation (1) is given by a superposition of eigenmodes
ψν(r, �̂; k̂).

So far, k̂ ∈ C
3 has been arbitrary as long as k̂ · k̂ = 1 is satisfied. Let us write k̂ =

(k̂x, k̂y, k̂z)T . We see that k̂ · k̂ = 1 cannot be achieved if �k̂x = �k̂y = �k̂z = 0.
Therefore, at least one component of k̂ must have a non-zero real part. Hereafter,
we consider k̂ of the following form, so that the Green’s function (10) is given as
plane-wave decomposition:

k̂(ν, q) =
( −iνq

k̂z(νq)

)
,

where q ∈ R
2, q = |q|, and k̂z(νq) = √1+(νq)2. Below, the Green’s function (10)

is given as a superposition of all possible k̂ and ν. It turns out that the above form of
k̂(ν, q) is enough to construct a complete set (Panasyuk et al., 2006; Kim, 2004). The
present formulation is similar to the pseudo-problem approach (Williams, 1967,
1968, 1982) in the sense that Fourier transform is taken for the 2D position vec-
tor ρ. However, as is seen below, the structure of the Green’s function (10) becomes
much simpler thanks to the use of rotated reference frames. The angles θk̂ and ϕk̂
are introduced as

k̂(ν, q) =

⎛
⎜⎝
sin θk̂ cosϕk̂
sin θk̂ sinϕk̂

cos θk̂

⎞
⎟⎠ .

We see that cos θk̂ = k̂z(νq). Moreover, we have sin θk̂ =
√
1 − cos2 θk̂ = i|νq| by

choosing the branch cut on the positive real axis, i.e., we have 0 ≤ 
√
z for any

z ∈ C. We can write the vector q as

q = q

(
cosϕq
sinϕq

)
.
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We have ϕk̂ = ϕq + π (ν > 0) and ϕk̂ = ϕq (ν < 0). We can rotate the reference
frame using k̂. For this k̂, we have

Rk̂(ν,q) μ =
√
4π
3

Rk̂(ν,q)Y10(�̂)

=
√
4π
3

1∑
m′=−1

D1
m′0(ϕk̂, θk̂, 0)Y1m′ (�̂)

=
1∑

m′=−1

d1m′0(θk̂)

√
(1 − m′)!
(1 + m′)!

Pm′
1 (μ)e

im′(ϕ−ϕk̂ )

= cos θk̂ cos θ −
√
1 − cos2 θk̂ sin θ cos(ϕ − ϕk̂)

= k̂z(νq)μ− iνq
√
1 − μ2 cos(ϕ − ϕq),

where we used P−1
1 (μ) = 1

2 sin θ , P1(μ) = cos θ , P1
1 (μ) = − sin θ , d100(θk̂) =

cos θk̂, and d1±10(θk̂) = ± 1√
2
sin θk̂. Similarly, we obtain

R−1
k̂(ν,q)

μ =
√
4π
3

R−1
k̂(ν,q)

Y10(�̂)

=
√
4π
3

1∑
m′=−1

D1
m′0(0,−θk̂,−ϕk̂)Y1m′ (�̂)

=
√
4π
3

1∑
m′=−1

D1
m′0(π, θk̂, π − ϕk̂)Y1m′ (�̂)

=
1∑

m′=−1

(−1)m
′
d1m′0(θk̂)

√
(1 − m′)!
(1 + m′)!

Pm′
1 (μ)e

im′ϕ

= cos θk̂ cos θ +
√
1 − cos2 θk̂ sin θ cosϕ

= k̂z(νq)μ− i|νq|
√
1 − μ2 cosϕ.

Theorem 2.1 (Orthogonality relations (Machida, 2014, 2015)). For 3D singular
eigenfunctions, we have∫

S2
μ
[
Rk̂(ν,q) φ(ν, μ)

] [
Rk̂(ν ′,q) φ(ν

′, μ)
]
d�̂ = 2π k̂z(νq)N (ν)δνν ′ .

Here, the Kronecker delta δνν ′ is read as the Dirac delta function δ(ν − ν ′) when ν, ν ′

are in the continuous spectrum (−1, 1). The normalization factor N (ν) is from 1D
transport theory and given by

N (ν) =
⎧⎨
⎩

�
2 ν

3 ( �
ν2−1 − 1

ν2

)
, ν = ±ν0,

ν
[(
1 −�ν tanh−1(ν)

)2 + (�πν2

)2]
, ν ∈ (−1, 1).
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Proof. For fixed q, we consider two eigenvalues ν1 and ν2. Correspondingly, we write
k̂1 = k̂(ν1, q) and k̂2 = k̂(ν2, q). We multiply Equation (3) for ν1 by Rk̂2

φ(ν2, μ)

and multiply Equation (3) for ν2 byRk̂1
φ(ν1, μ). We have

[
Rk̂2

φ(ν2, μ)
](

1 − k̂1 · �̂

ν1

)
Rk̂1

φ(ν1, μ) = �

2
Rk̂2

φ(ν2, μ),

[
Rk̂1

φ(ν1, μ)
](

1 − k̂2 · �̂

ν2

)
Rk̂2

φ(ν2, μ) = �

2
Rk̂1

φ(ν1, μ).

By integrating both sides and subtracting the latter from former, we obtain∫
S2

(Rk̂2
μ

ν2
−

Rk̂1
μ

ν1

)[
Rk̂1

φ(ν1, μ)
] [

Rk̂2
φ(ν2, μ)

]
d�̂ = 0.

Therefore,∫
S2
μ
[
Rk̂1

φ(ν1, μ)
] [

Rk̂2
φ(ν2, μ)

]
d�̂ = 0, ν1 �= ν2.

When ν1 = ν2 = ν, we have∫
S2
μ
[Rk̂ φ(ν, μ)

]2 d�̂ =
∫
S2

[
R−1

k̂
μ
]
φ(ν, μ)2 d�̂

= 2π k̂z(νq)
∫ 1

−1
μφ(ν, μ)2 dμ.

The proof is completed by noticing N (ν) = ∫ 1
−1 μφ(ν, μ)

2 dμ (Case and Zweifel,
1967). �

By using 3D singular eigenfunctions, let us compute the Green’s function. When
the source term in Equation (1) is given by

S(r, �̂) = δ(r)δ(�̂ − �̂0), (8)

the angular flux becomes the Green’s function:

G(r, �̂; �̂0) = ψ(r, �̂). (9)

With some coefficients a±(q), Aν (q), we can write G(r, �̂; �̂0) in terms of the
eigenmodes ψν in Equation (7) as

G(r, �̂; �̂0) = 1
(2π)2

∫
R2

[
a+(q)ψν0

(
r, �̂; k̂(ν0, q)

)

+ a−(q)ψ−ν0
(
r, �̂; k̂(−ν0, q)

)

+
∫ 1

−1
Aν (q)ψν

(
r, �̂; k̂(ν, q)

)
dν
]
dq.
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Since the Green’s function vanishes at infinity, particularly G(r, �̂; �̂0) → 0 as
|z| → ∞, we can write G(r, �̂; �̂0) as

G(r, �̂; �̂0)

=

⎧⎪⎨
⎪⎩

1
(2π)2

∫
R2

[
a+(q)ψν0 (r, �̂; k̂)+ ∫ 1

0 Aν (q)ψν(r, �̂; k̂) dν
]
dq, z > 0,

−1
(2π)2

∫
R2

[
a−(q)ψ−ν0 (r, �̂; k̂)+ ∫ 0

−1 Aν (q)ψν(r, �̂; k̂) dν
]
dq, z < 0,

where coefficients a±(q),Aν (q) are determined below.We letρ ∈ R
2 be the position

vector in the plane perpendicular to the z-axis, i.e., r = (ρ, z) and ρ = (x, y). The
jump condition is written as

G(ρ, 0+, �̂; �̂0)− G(ρ, 0−, �̂; �̂0) = 1
μ
δ(ρ)δ(�̂ − �̂0).

Let us multiply e−iq·ρ on both sides of the above-mentioned jump condition and
integrate both sides over ρ. As a result, we obtain

a+(q)Rk̂(ν0,q)
φ(ν0, μ)+ a−(q)Rk̂(−ν0,q) φ(−ν0, μ)

+
∫ 1

−1
Aν (q)Rk̂(ν,q) φ(ν, μ) dν = 1

μ
δ(�̂ − �̂0).

By using the orthogonality relations in Theorem 2.1, we can determine the coeffi-
cients as

a±(q) = 1

2π k̂z(ν0q)N (±ν0)
Rk̂(±ν0,q) φ(±ν0, μ0),

Aν (q) = 1

2π k̂z(νq)N (ν)
Rk̂(ν,q) φ(ν, μ0).

We note that

Rk̂(ν,q) φ(ν, μ) = φ
(
ν, k̂(ν, q) · �̂

)
.

Finally, the Green’s function is obtained as Machida (2014)

G(r, �̂; �̂0) = 1
(2π)3

∫
R2

eiq·ρ

×
[

1

k̂z(ν0q)N (ν0)
φ
(
±ν0, k̂(±ν0, q) · �̂

)
φ
(
±ν0, k̂(±ν0, q) · �̂0

)
e∓k̂z (ν0q)z/ν0

+
∫ 1

0

1

k̂z(νq)N (ν)
φ
(
±ν, k̂(±ν, q) · �̂

)
φ
(
±ν, k̂(±ν, q) · �̂0

)
e∓k̂z (νq)z/ν dν

]
dq,

(10)

where upper signs are used for z > 0 and lower signs are chosen for z < 0. We can
readily extend Equation (10) to the case of anisotropic scattering (Machida, 2014).

The right-hand side of Equation (10) has the form of plane-wave decomposition.
The fact implies thatRk̂ φ are complete if φ form a complete set in the 1D transport
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theory (Panasyuk et al., 2006; Kim, 2004). The structure of the right-hand side of
Equation (10) is similar to Williams (1967) and Garrettson and Leonard (1970) in
the sense that Fourier transforms are used in the (x, y) directions and the depen-
dence of the integrand on z is exponentially decaying.

Let us consider the energy densityU (ρ, z) for an isotropic point source 1
4π δ(r),

i.e.,

U (ρ, z) = 1
4π

∫
S2

∫
S2
G(r, �̂; �̂0) d�̂d�̂0.

It is worth mentioning that the singular eigenfunctions do not appear in U (ρ, z).
We have

U (ρ, z) = 1
8π2

∫
R2

eiq·ρ
[

e∓k̂z(ν0q)z/ν0

k̂z(ν0q)N (ν0)
+
∫ 1

0

e∓k̂z(νq)z/ν

k̂z(νq)N (ν)
dν

]
dq.

Let us suppose z > 0. We note that for ν > 0
∫
R2

eiq·ρ
e−k̂z(νq)z/ν

k̂z(νq)
dq = 2π

ν

∫ ∞

0
J0(qρ)

e−z
√
(1/ν2)+q2√

(1/ν2)+ q2
q dq

= 2π
ν2

∫ ∞

0
J0
(ρ
ν
u
)
e−(z/ν)

√
u2+1 u√

u2 + 1
du

= 2π
ν2

1√
(ρ/ν)2 + (z/ν)2

e−
√
(ρ/ν)2+(z/ν)2,

where J0 is the Bessel function of the zeroth order and we used u = νq. Thus, we
obtain

U (ρ, z) = 1
4πr

[
e−r/ν0

ν0N (ν0) +
∫ 1

0

e−r/ν

νN (ν) dν
]
, (11)

where r = √ρ2 + z2. In some special cases such as the aboveU (ρ, z), it is possible
to arrive at the same expressionwithout introducing the 3D singular eigenfunctions.
Indeed, in Ganapol and Kornreich (1995), Ganapol and Kornreich obtained exactly
the same formula (11) using the Fourier transform and pseudo-problem. InGanapol
and Kornreich (1995),

∫
S2
G(r, �̂; ẑ) d�̂ and the case of an isotropic line source are

also calculated.

3. Ganapol’s Fourier-transform approach

Alternative expressions of theGreen’s function (10) can be obtainedwith the Fourier
transform. We obtain (Ishimaru, 1978)

G(r, �̂; �̂0) = 1
r2
e−rδ

(
�̂ − r

r

)
δ(�̂ − �̂0)

+ �

2(2π)4

∫
R3

eik·r
[
1 − �

k tan−1(k)
]−1

(1 + ik · �̂)(1 + ik · �̂0)
dk, (12)
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where r = |r| and k = |k|. The extension of Equation (12) to anisotropic scatter-
ing is also possible by using rotated reference frames (Machida, 2016). Cassell and
Williams proposed an alternative expression of the Green’s function (12) by sep-
arating the once-collided term in addition to the uncollided term. This expres-
sion is more useful for benchmarking purposes (Cassell and Williams, 2000). In
one dimension, Ganapol has developed an alternative Fourier-transform approach
(Ganapol, 2000, 2015), which is different from the conventional derivation that
yields the 1D version of Equation (12). The new formula is potentially more suit-
able for numerical calculation. Here, we compute the 3D Green’s function using
Ganapol’s approach.

In this section, we use the source term (8). The angular flux or the Green’s func-
tion is then symmetric about the azimuthal angle. Using the Fourier transform of
the Green’s function

G̃(k, �̂; �̂0) =
∫
R3

e−ik·rG(r, �̂; �̂0) dr,

in the Fourier space, the transport equation is written as(
1 + ik · �̂

)
G̃(k, �̂; �̂0) = �

4π

∫
S2
G̃(k, �̂; �̂0) d�̂ + δ(�̂ − �̂0). (13)

Note that

G(r, �̂; �̂0) = 1
(2π)3

∫
R3

G̃(k, �̂; �̂0)eik·r dk,

has the structure of separation of variables in the sense that G̃ depends on �̂ and r
exists only in eik·r. Keeping in mind the notation (9), let us define

ψ̃l(k) =
∫
S2

[Rk̂ Pl(μ)
]
G̃(k, �̂; �̂0) d�̂. (14)

We will use a new variable

z = i
k
.

Noting the recurrence relation

(2l + 1)μPl(μ) = (l + 1)Pl+1(μ)+ lPl−1(μ),

we obtain

zhlψ̃l(k)− (l + 1)ψ̃l+1(k)− lψ̃l−1(k) = zSl(k̂), (15)

where

hl = 2l + 1 −�δl0,

and

Sl(k̂) = (2l + 1)Rk̂ Pl(μ0) = (2l + 1)Pl(k̂ · �̂0).
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Chandrasekhar polynomials of the first and second kinds are defined as

zhlgl(z)− (l + 1)gl+1(z)− lgl−1(z) = 0, g0(z) = 1, g1(z) = z(1 −�),

and

zhlρl(z)− (l + 1)ρl+1(z)− lρl−1(z) = 0, ρ0(z) = 0, ρ1(z) = z.

We can express ψ̃l as

ψ̃l = a(z)gl(z)+ b(z)ρl(z)+ (1 − δl0) z
l∑

j=1

αl, j(z)S j. (16)

By setting l = 0 in Equation (16), we first notice that

a(z) = ψ̃0.

By plugging Equation (16) into Equation (15), we have

− [b(z)ρ1(z)+ zα1,1(z)S1
] = z.

Suppose l > 0. Let us impose

zhlαl, j − (l + 1)αl+1, j − lαl−1, j = 0. (17)

By substituting Equation (16) for ψ̃l in Equation (15), we obtain

zhlαl,lSl − (l + 1)
(
αl+1,lSl + αl+1,l+1Sl+1

) = Sl .

The left-hand side of the above equation can be rewritten as

LHS = −(l + 1)αl+1,l+1Sl+1 + lαl−1,lSl .

Hence, we can put

αl−1,l = 1
l
, αl+1,l+1 = 0. (18)

Thus, we find

b(z) = −1.

To find αl, j(z), let us plug the expression αl, j = ujgl + v jρl into αl,l = 0 and
αl−1,l = 1/l. We obtain

ul = ρl

l[gl−1ρl − glρl−1]
, vl = −gl

l[gl−1ρl − glρl−1]
.

We subtract ρl[zhlgl − (l + 1)gl+1 − lgl−1] = 0 from gl[zhlρl − (l + 1)ρl+1 −
lρl−1] = 0, and obtain

(l + 1)
[
gl(z)ρl+1(z)− gl+1(z)ρl(z)

] = l
[
gl−1(z)ρl(z)− gl(z)ρl−1(z)

]
= (l − 1)

[
gl−2(z)ρl−1(z)− gl−1(z)ρl−2(z)

]
= g0(z)ρ1(z)− g1(z)ρ0(z) = z.
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Thus, we obtain

zαl, j(z) = ρ j(z)gl(z)− g j(z)ρl(z).

Finally, Equation (16) becomes

ψ̃l = gl(z)ψ̃0 − χl(k), (19)

where

χl(k) = (1 − δl0)

l∑
j=1

[
ρl(z)g j(z)− gl(z)ρ j(z)

]
S j(k̂)+ ρl(z)

=
l∑

j=0

[
ρl(z)g j(z)− gl(z)ρ j(z)

]
S j(k̂). (20)

To find the initial term ψ̃0, we return to Equation (13). We obtain

G̃(k, �̂; �̂0) = �

4π
ψ̃0(k)

1 + ik · �̂
+ 1

1 + ik · �̂
δ(�̂ − �̂0).

Thus, we have

ψ̃l(k) = �

2
ψ̃0(k)

∫ 1

−1

Pl(μ)
1 + ikμ

dμ+ 1

1 + ik · �̂0
Pl(k̂ · �̂0).

Setting l = 0, we have

[1 −�L0(z)] ψ̃0(k) = 1

1 + ik · �̂0
,

where

Ll(z) = 1
2

∫ 1

−1

Pl(μ)
1 + ikμ

dμ = z
2

∫ 1

−1

Pl(μ)
z − μ

dμ = zQl(z).

Here, Ql(z) is the Legendre function of the second kind which has a branch cut on
[−1, 1]. We obtain

ψ̃0(k) = 1
�(z)

z

z − k̂ · �̂0
, (21)

where we used

1 −�L0(z) = 1 −� zQ0(z) = 1 − � z
2

ln
z + 1
z − 1

= 1 −� z tanh−1
(
1
z

)
= �(z).

The function �(z) is defined in Equation (6). We can calculate ψ̃l(k) using Equa-
tions (19) and (21).

Equation (14) implies that the Fourier transform of the angular flux is given by

ψ̃ (k, �̂) =
∞∑
l=0

2l + 1
4π

ψ̃l(k)Rk̂ Pl(μ). (22)
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When the above equation is rewritten using Equation (19), the dependence of ψ̃0

becomes evident as

ψ̃ (k, �̂) = φk̂(z, �̂)ψ̃0(k)− Tk̂(z, �̂),

where

φk̂(z, �̂) =
∞∑
l=0

2l + 1
4π

gl(z)Rk̂ Pl(μ),

Tk̂(z, �̂) =
∞∑
l=0

2l + 1
4π

χl(k)Rk̂ Pl(μ).

Now, we return to the real space from the Fourier space by inverting ψ̃ (k, �̂).
From Equations (19), (21), and (22), we obtain

ψ(r, �̂) = 1
(2π)3

∫
R3

eik·rψ̃ (k, �̂) dk

= 1
(2π)3

∫
R3

eik·r
∞∑
l=0

√
2l + 1
4π

[
Rk̂Yl0(�̂)

]

×
[
gl(z)ψ̃0(k)− χl(k)

]
dk. (23)

Moreover from (23), we have

ψ(r, �̂) = 1
(2π)3

∞∑
l=0

l∑
m=−l

√
2l + 1
4π

Ylm(�̂)

×
∫
R3

eik·re−imϕk̂dlm0(θk̂)
[
gl(z)ψ̃0(k)− χl(k)

]
dk

= 1
(2π)3

∞∑
l=0

l∑
m=−l

Ylm(�̂)
∫
R3

eik·re−imϕk̂κlm(k) dk, (24)

where

κlm(k) =
√
2l + 1
4π

dlm0(θk̂)

[
gl(z)
�(z)

z

z − k̂ · �̂0
− χl(k)

]
.

We can obtain the Green’s function (24) with this approach also in the case of
anisotropic scattering (Machida, 2016).

4. Concluding remarks

Using the simple case of isotropic scattering in a 3D infinite medium, we have
seen how the angular flux is obtained with rotated reference frames. In one dimen-
sion, the solution by the singular-eigenfunction approach can be derived from the
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Fourier-transform approach (Ganapol, 2000, 2015). It is an interesting future prob-
lem to show the equivalence of Equations (10) and (24).
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