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The radiative transport equation in flatland
with separation of variables

Manabu Machida®
Department of Mathematical Sciences, The University of Tokyo, Komaba,
Meguro, Tokyo 153-8914, Japan

(Received 24 November 2015; accepted 6 July 2016; published online 21 July 2016)

The linear Boltzmann equation can be solved with separation of variables in
one dimension, i.e., in three-dimensional space with planar symmetry. In this
method, solutions are given by superpositions of eigenmodes which are sometimes
called singular eigenfunctions. In this paper, we explore the singular-eigenfunction
approach in flatland or two-dimensional space. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958976]

. INTRODUCTION

We consider the radiative transport equation or linear Boltzmann equation in flatland or in two
spatial dimensions. The Green’s function G(p, ¢; @) (p = '(x,y) € R%, 0 < ¢ < 27, 0 < ¢y < 27)
satisfies

2r
(@-V+1)Glp.ps00) =@ / Ple.¢)G(p.¢'s po) d¢’ + 5(p)S (e — ), (1)
0
where © = /(cos ¢, sin ¢) is a unit vector in S, V = ’(%, a%), and @ € (0,1) is the albedo for single
scattering. We have ‘

G(p,p;90) = 0 as |p| — co.

We suppose that the scattering phase function p(p,¢’) € L=(S X S) is nonnegative and is normalized
as

2
/0 ple,¢)dy' = 1.

We assume that p(¢, ¢’) is given by
| &
[0 P— im(p—¢")
ple.¢) = 5 sz_L Bme

1 1<
==+ = > Bmcoslm(e - ¢,
=1

2r m 4
where L >0, 8p=1,-1< B; < 1( >0),and B_,, = B,n. We put
Bm=0 for |m|> L.

The Henyey-Greenstein model?! is obtained by taking the limit L — co and putting 3, = g™l with

aconstantg € (—1,1), where g = j;)zn cos(@ — @ )plp, ") dy’.

The radiative transport equation which depends on one spatial variable in three dimensions
has attracted a lot of attention in linear transport theory. The singular-eigenfunction approach was
explored as early as 1945 by Davison.!! After further efforts such as Van Kampen,*® Davison,'? and
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Wigner,”” Case established a way of finding solutions with separation of variables.®” The method,
called Case’s method,”'* was soon extended to anisotropic scattering.?>-*

On the other hand, the technique of rotated reference frames has existed in transport theory
since 1964.'326 This method did not sound promising even though the idea was interesting. How-
ever, a decade ago, Markel succeeded in constructing an efficient numerical algorithm,** which
is called the method of rotated reference frames,>'%*! to find solutions of the three-dimensional
radiative transport equation by reinventing rotated reference frames.

Recently, the above two, separation of variables and rotated reference frames, were merged and
Case’s method was extended to three spatial variables.>? There, rotated reference frames provide a
tool to reduce three-dimensional equations to one dimension. With this tool, for example, the Fy
method*** was extended to three dimensions.*?

The radiative transport equation is used in various subfields in science and engineering! such
as light propagation in biological tissue,>* clouds, and ocean,**’ seismic waves,*’ light in the
interstellar medium,'?>° neutron transport,9 and remote sensing.23 In these cases, usually three
dimensions are most important. There are, however, cases where two dimensions have particular
interests. Such flatland transport equations appear, for example, in wave scattering in the marginal
ice zone?” and wave transport along a surface with random impedance.”> Sometimes optical tomog-
raphy is considered in flatland.>!'%?%-234 The two-dimensional transport equation is also used for
thermal radiative transfer>* and heat transfer.*” We note that the method of rotated reference frames
was applied to two-dimensional space.?®3"

In this paper, we consider the linear Boltzmann equation or radiative transport equation in
flatland. Let ¢ denote the cosine of ¢,

U= CoS ¢, ¢ € [0,27).

Let us introduce polynomials 7y,,(z) (z € C) which satisfy the following three-term recurrence
relation:

20 Y (V) = Yma1(V) = Ym-1(v) = 0, 2)
with initial terms
=1L  »n)=~0-a).
Here,
hy =1 —@Bp,.
We have
Ym(=v) = (=D"ym(),  y-m(¥) = ym(¥).
The function g(z, ¢) is given by

L
80 @) = 142 )" Buym(v)cos mg. (3)
m=1
We introduce
2
A(z)=1—ﬁ/ 8E9) 4, e\ [-L1L. (4)
2r Jo z—p

Suppose A(z) has M = M(L,w, 8,,) positive roots. Let v; (j =0,...,M — 1) be positive roots

which satisfy A(v;) = 0. We further introduce

@y / 7 g (v,9)
0

Av)=1-—P
2r vV—u

where P denotes Cauchy’s principal value. In Sec. II, we will see that singular eigenfunctions in
flatland are obtained as

do, ve(-1,1), 5)

oV p8lie)  N1- V2/l(v)(5(v — ), (6)
2n v—pu 2

¢(v, ) =
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where v = +v; (j =0,...,M — 1) or v € (-1,1). Let us introduce the normalization factor
2v wv\?2
T [(7) g0+ A(v)z] L veL,
N)={ VI=v (7)
(Z7) st g o)
2 g s V d ) .
Here,
cos'!(v), vel[-1,1],
@y = icosh™'(v), v>1, (8)

m+icosh™'(Jv]), v<-LI.

We note that 0 < cos™! v < x for v € [-1,1] and cosh™!(|v]) = In (|v| +Vyv2 - 1) for |v| > 1. Simi-
larly, we use ¢, for the analytically continued angle such that

COS Pivgy =\ | + (V@)% sin g,y = —ivg,

for v,q € R. As is shown in Section V, the Green’s function in flatland is obtained as

—00

M-1
1 . iqy
G(p. ¢ ¢o) = " / e ““[ E P(EV)> P = Pian ;)P (EV)> 0 = Pia 1)
=0

y ! PN

A1+ (v;ig)*N (v))

1
+ / F(EV, 0 = v P(EV, 00 = Pi(avg)
0

— (vq)zN(v) e VIrvaPxly gy | g )

where upper signs are used for x > 0 and lower signs are used for x < 0.

The main purpose of the present paper is to derive (9). We will first consider the one-
dimensional problem in two spatial dimensions with separation of variables in Sections II and III.
Two-dimensional singular eigenfunctions are considered in Section IV. In particular their orthogo-
nality relations are established. Then in Section V, we obtain the Green’s function for the radiative
transport equation in two dimensions by extending the one-dimensional problem to two dimensions
using rotated reference frames. Finally, Section VII is devoted to concluding remarks. In Appendix,
the Fourier-transform method is explained as an alternative approach.

Il. ONE-DIMENSIONAL TRANSPORT THEORY IN FLATLAND
We begin with the one-dimensional homogeneous problem given by
0 2r
(“5 + 1) Y(x.9) =@ /0 ple. W (x.¢)de". (10)

We assume that solutions are given by the following form of separation of variables with separation
constant v:

Un(x.0) = p(v. @)™/
We normalize ¢(v, ¢) as

2r
p(v,p)dp = 1.
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‘We then have

(1= £) s0r0) = 325009 (11)

where

L
gv,p)=1+2 Z B [Ym(v) cos me + 5,,(v) sinme] .

m=1
As is shown below, we have
2
Ym(v) = P(v, @) cosmp dep, (12)
0
2r
sm(v) = o(v,p)sinme de. (13)
0

From (11), we obtain (6). Direct calculation shows that y,,(v) satisfy (2). Since (10) implies
o(v,—p) = ¢(v, ), coeflicients for sinme should be zero. Indeed, s,,(v) = 0 for all m as is shown
below. For a function f(¢) € C, we have

2 b4
frde= [ 1700+ g+ de
/ f(cos™ ) +f(27r—cos ,u) du
1 _
/ f(cos’l,u) + f(n + cos” ,u)
1 _

du,

where we used f()" flo+m)dy = fo f(2n — ¢)de. By using cos™!(—v) = 7 — cos™!(v), we note
that

2n
/ 6(v — w)sin(myp) dp = 0, v eR.
0

If we plug (6) into (13), we obtain

L
() = 0n() + ) Bun(V)su(¥),
n=1

where

2 .
(V) = ?P/ sin mg d @y Z B, P / cos(ne) sin(mep) do,
Vg v—pu

ﬂﬁn SD/ sm(n(p) sin(me) d
V-

However, we see that

27 cos(ny) sin(me) 2 sin[(m + n)e] + sin[(m — n)g]
P ——— " dp=P
0 V—Hu 0 V—u
for all m,n. Hence v,,(v) = 0. Since the L X L matrix whose mn-element is given by 6,,, — Bpn(v)

is invertible, we see that s,,(v) = 0. Therefore we obtain (3) and singular eigenfunctions (6). We
have

de =0,

8o +2m) = g(v.) =g(v,—9),  g(-v.) = g(v, + 7).
When v € (-1, 1), we obtain (5) by integrating (6) over ¢. Note that from (5)
2 _ 2n
A(_V)ﬂ_ﬂp/ Mw:]_ﬂp/ 8050 4= aw).
2r 0 2n 0o V—U

v+ u
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For v ¢ [—1,1] we have
2 2
@V (v, )
1= [T oprap= T2 [T g,
0 TJo VM

Therefore discrete eigenvalues v € C \ [—1, 1] are roots of the function A(v) given in (4). We note
that if v is a discrete eigenvalue, so is —v because A(—v) = A(v). That is, the eigenvalues +v appear
in pairs.

Singular eigenfunctions satisfy the following relations:

¢(V’90 + 2”) = ¢(V7 ‘10) = ¢(V7_90)’ ¢(_Va 90) = ¢(V’<P + 71').

Proposition 2.1 Discrete eigenvalues are real.

Proof. Let mp be a positive integer such that mp > L. We first show that if v satisfies v, z+1(v)
= 0, then this v is an eigenvalue of matrix B, which is the real symmetric matrix defined below.
Hence v € R. Next we show that zeros of 7, ,+1(v) become roots of A(v) as mp — oco. With these
two, the proof is completed.

Let us note that

2 2
1Bl = |Bme'™¢| = / plp.@)e™ dy'| < / ple.¢)dy’ = 1.
0 0

Hence h,,, > 0 for all m. We can rewrite the three-term recurrence relation (2) as

bm ( th—l')/m—l) + bm+l ( 2hm+1’}’m+l) = V( 2hm7m) 5

where
1

2V 1y

Similar to Ref. 18, we consider a tridiagonal (2mpg + 1) X (2mp + 1) matrix B whose elements are
given by

by =

Bmm’ = bmém’,m—l + bm+16m’,m+1

homp-1 Y-mp-

B mp-1

+ b—mB 6m,—m36m’,—m3
h—mB '}’—mB
hm

g+l Ymp+l

+ bm3+l 6m,m36m’,m3v

hmB VmB

for —mp < m < mp and —mp < m’ < mp. Therefore if v is a zero of y,, ,+1(v), we see that v is an
eigenvalue of the matrix B whose elements are given by

Bmm’ = bmém’,m—l + bm+16m’,m+1,

for —-mp < m,m’ < mp. Since B is real symmetric, v is real. In particular we can say that v € R even
in the limit mp — 00.342

Next we will explore the connection between roots of A and vy, .1 by repeatedly using the
Christoffel-Darboux formula.'”??

In addition to (2), we introduce

22pm(2) = pm+1(2) = pm—1(2) = 0, (14)
with
pox)=1,  pua=z

Furthermore we define

1 27 cosm
mm:y/ ? do. (15)
T Jo I— M
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We have
22Pn(z) = Pps1(2) = Pu-1(2) = 26mo, (16)
with
Pi(z) = zPy(z) — 1.
Direct calculation of A(z) in (4) shows

L
A@) = 1-32 [P2) +2 ) Bu¥m(DPul)| -

m=1

Let us consider P,,,(z) X (2) — vmu(z) X (16). We have
~2@ 2B Pn(D)Ym(2) = (Pm(2)Yms1(2) = Pt (2)ym(2))

— (Pn1(2)Ym(z) = Pu(2)ym1(2))
- 20m0-

We then take the summation on both sides by ZZfl. As aresult we obtain

A(2) = Prug(2)Ymp+1(2) = Prug1(2)Ymp(2)- (17)
Next, 375, [pm(z) X (16) — P,(2) % (14)] yields
P g(2D)Pmg+1(2) = Prugs1(2)Ppmp(z) = 1. (18)

Moreover we obtain by 3" [y,u(z) X (14) = ppu(2) X (2)],

@28(2,02) = Ymp(DPmp+1(2) = Ymp+1(2)Pmp(2). (19)
By using (17)—(19), we obtain
Pmp+1(DA(Z) = Ping1(2)Pmg(2)Ymg+1(2) = Pmp+1(2) P g41(2)Yim (2)
= Yimp(2) + [Pmp(2)Ymp1(2) = Pimgr1(2)Ymp(2)] P g1 (2)
= 7m3+1(z) - wzg(z, ¢Z)Pm3+1(z)~

Therefore we obtain

Ymp+1(2) Ppp11(2)

A@z) = 22— mrg(z,p) — 2

Pmp+1(2) Pmp+1(2)
However, Pp,,+1(z) vanishes as mp — oo due to the Riemann-Lebesgue lemma. Thus discrete
eigenvalues are zeros of ,, z+1 as mp — oo, O
We suppose there are 2M discrete eigenvalues +v; (j =0,...,M — 1) such that v; > 1 and

A(iVj) =0.

Definition 2.2. Let o denote the set of “eigenvalues,”
oc={veR;ve(-1L1)orv==v;, j=0,1,...,.M -1}
For later calculations, we will prepare some notations. Let ¢, € C be the angle such that
R, €[0,7], cos ¢, =z, ze€C.
When 3z = 0 and we can write z = v € R, we have (8). In particular for v € (-1, 1), we obtain
g(=vpy) =gV —¢y) = g(v.2m — ¢y) = g(v, pv).

In the case that Rz = 0, we have

T el _T_. 2
0= 5 isinh™'(Jz) 3 zln(Sz+,/(Sz)+1).
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Suppose that Iz # 0 and Rz # 0. We obtain
1 2_ AzI2+1 — 2_1
©, :tan_l(sgn(‘Rz)‘ /%)4_ iln( lzP+1+r Sgnz(ﬁz)vlzl +r)’
— 1< r NCY

r= \/(IZI2 +1+2R2)(|z> + 1 -2Rz).

where

Let € be an infinitesimally small positive number. For v € (-1,1) we have
AE(V) = A(v +i€)
. @V
A(v) £ e [8(v.0y) + 8(v. 27 = ¢))]

2
wV
= A(v) £i g, @),
V1 -2

‘We obtain

2iwvy 2iwy L

A+(V) - A_(V) = g(Vs SDV) = 1+2 IBm')/m(V) cos (mﬂov) s
V1-—y2 V1-—y2 n;
and
N _ 2 wy? )
A WA ) = AP + T80

We can estimate the number of discrete eigenvalues as follows:

Proposition 2.3. Suppose N*(v)A~(v) # 0 forv € [-1,1]. Then M < L + 1.

Proof. We prove the statement relying on the argument principle.® Since A(z) is holomorphic
in the whole plane cut between —1 and 1, according to the argument principle, the number of its
roots is given by

1
2M = —Ac arg A(z),
2r

where Ac¢ represents the change around the contour C which encircles the cut on the real axis from
—1to 1. Due to the assumed condition A*(v)A~(v) # 0, we have

1
2M = > [Ac, arg A*(v) + Ac_arg A~ (v)],
Vs
where Ac, changes from 1 to —1 and from —1 to 1, respectively. Noting that
A*(v) = A (-v), arg A*(v) = —arg A*(—-v),

we finally obtain
1
M = =g, arg A*(v),
g

where A, is the change when v goes from 0 to 1. Note that
arg A*(0) = arg A(0) = 0.

We see that M equals one plus the number that A*(v) crosses the real axis as v moves from 0 to 1, or
the number of roots of IA*(v). Since g(v, ¢,) is an even polynomial of degree 2L, there are at most
L zeros on (0, 1). Therefore M < L + 1. O

Remark 2.4. In the case of isotropic scattering (L = 0), A(z) is obtained as
wz

e e
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This A(z) has only two roots z = v (vg > 1), i.e., A(xvg) = 0, and we obtain

1
= —. 20
R )

Thus the largest eigenvalue vy can be explicitly written down in flatland. We note that in three
dimensions with planar symmetry the largest eigenvalue is only obtained as a solution to the
following transcendental equation:”*

1 = wvytanh™(1/v).
In the rest of this section, we explore orthogonality relations for ¢(v, ¢).

Lemma 2.5. Suppose vi,v, € o are different, i.e., vi # v,. Then,
2
| wotner0grdo =0
0

Proof. We consider the following two equations:

(1 - V—) p(vi, @) =

(1 - —) Hrg)= o+ — Z Bun¥m(v2) cos me.

| g

+

59

[\

T

L
Z ﬁm?’m(vl) Cos me,
m=1

We multiply the upper equation by ¢(v», ¢) and the lower equation by ¢ (v, ), integrate over ¢, and
subtract the second equation from the first equation. We obtain

1 1 2
(_ _ _) /0 11, )0(v2,0) dp = 0.

V2 V1

Thus the proof is completed. O
Theorem 2.6. Consider v,v’ € o. Let N (v) be the normalization factor in (7). We have
[ ot 1607010 = N1 ).
Here the Dirac delta function 5(v — v’) is read as the Kronecker delta 6., . for v,v’ ¢ [-1,1].
Proof. According to Lemma 2.5, the integral vanishes for v # v’. Hence it is enough if we show

2
/0 np(v, ) do = N(v).

In the spirit of Ref. 35, we begin by defining

2n ’
, z.¢) 82,
J(z,z)=/ ,Ug( go)g(/ 9 de,
o z-p T-p

for z,z” € C\ [-1,1]. We assume z # z’. We have
2

1
J(z,7) = =
o

, 1 1
ug(z,9)g(z's ) (— - = ) dy
Z—u -

L
L [fo(m BRI WHRACE m(z)fm(z'))],
where

2r
[(2) = / 8z.9) S22 cos mg dep.
0 Z M
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Let us write T',,(z) as

2r
[,0(2) = Tou(2) + / 8, ‘Z) cos my dg, 1)
0
where

2
r,(2) = / 8(z,9) — 8. ¢) 90) g(ﬂ ®) 829) = 8Wh) i

2 _
=2 Z ,B,,/ ’UM cos ny cos my de.
n=1 0

Z

The second term of the right-hand side of (21) is calculated as

/2” g(ﬂ QO) cos me dQD — 2lw / M COS(I’HQD) d/,t

Z—p
A(w) cos (msow)
2w f

= ZAz)cos (mg,).

@

where we chose the contour enmrchng the interval between —1 and 1. Hence we have
_ bis
T(z) = Th(z) + EA(Z) cos (my;) .

Therefore,

Sz = o [F o(2) = To(2) +2Z Bin(¥m(Z)Em(2) = Ym(2)T(2)

[

LT g(z s 2)A(2) — g(Z’Soz’)A(Z’)
@ -z '
On the right-hand side of the above equation, the first part vanishes. The last term can be rewritten
as

8(2, 0 )A(2) — 8(2,9)AZ) _ 8(2' ) — 8(2,02) AGz) -
7=z 7=z

e Z)A(z’) A(z)
-z

8(z,¢) — g(z,soz)A(Z,)

-

Note that

8(Z' ) — 8(z,92) _ Zi B MCOS(H&O )

77—z -z

L

sPz) — P cos(me,r) — cos(m

8(z 902)/ 8(z,¢2) =23 Buyn2) ( 902)/ (mez)
=2 =2

m=1

Let v ¢ [—1,1] be a discrete eigenvalue. We bring z to v and then let z” approach v. We obtain

N — A
lim lim J(z,2") = —g(v,¢y) hm lim A ), ©
Z/—v 2oV (e Tz
dA(v)
=-g(v,py)

That is,
dA(v)

[ wotgrag = (F2) 00 = (22 st

Next we suppose that v,v’ € (—1,1). We need to be careful about changing the order of inte-
grals. Using the Poincare-Bertrand formula,*’
P P 1 ( P P

e )+7r26(v—#)5(V’—,u),
V- v-—u

v—uv—u v-v
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we have
2r , w \2 , 2n v, V/,
/ up(v,@)p(v', ) dgp = (2—) vy / #Pupg(, 9 d
0 u 0 v—u v -pu
2
wv
+ 2200 [ S5
0 0 —H
2 v,
/ ﬂMc?(v—ﬂ)dso
0 Vi—H
2
+ AN /0 160 = W60 — 1) .
Therefore,
2
JRT
) 1 2 o
= lim ,P/ [—g(v V)PV, ) - ] dp
vVi-ov V=V 0

+o(y =" Jim / [ 7Y e @)g(vo0) + ALy )] 5(v — ) de.

The first term on the right-hand side vanishes. The second term on the right-hand side is computed
as

2 2,1,
. wVy , ,
lim 7 [ 2 g, 0)g(v', ) + A(V)A(v )] o(v—pde
\ a4 0

- [(5) s aor| 2

1-v

>

lll. ONE-DIMENSIONAL GREEN’S FUNCTION

Let us consider the Green’s function G(x, ¢; ¢o) which satisfies

a 271- ’ ’ ’
(“E + 1) G(x,¢;¢0) = W/O (e, 0)G(x,¢"; o) dp” + 5(x)6(p — o),

and G(x,¢; ¢o) — 0 as |x| — oo. The completeness of singular eigenfunctions can be shown in the
usual way.*® The Green’s function is given by
M-1

1
Glxugig) = ) Apth () + [ AGWLx ), x>0,
=0

M-1

0
Glrgin) = = 3 Aoy (g~ [ AW 3 <0
=0

with some coefficients A, (j = 0,...,M — 1) and A(v). The jump condition is written as

~ 1
G(0%, ¢;¢0) — G(07, @3 o) = ;6(90 — o).

Hence we have
M-1 1 1
[A47:6050) + 45-0(-v3.0)] + [ 461800 dv = 206 = o)
=0 -1
Using orthogonality relations given in Theorem 2.6, the coefficients A, A(v) are determined as

=V ¢0) A(Y) = $(v.¢0)

A== Ny =N
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Therefore we obtain the one-dimensional Green’s function as

M-1
¢(iyj’§00)¢(ivj’90) “lxl/v; l¢(iv,¢0)¢(iy,¢) ey
G s ; — X VJ X Vd 8
(x, ¢ ¢0) ]Z:(; N e )y V7 S v

where upper signs are used for x > 0 and lower signs are used for x < 0.

IV. TWO-DIMENSIONAL TRANSPORT THEORY IN FLATLAND

To find the Green’s function in (1), we consider the following homogeneous equation,

2n
(@-V+1)ypp)=w /0 Pl W(p.¢) dy'. (22)

We consider rotation of the reference frame for some unit vector k € C? (k - k = 1). By an operator
Ry, we measure angles in the reference frame whose x-axis lies in the direction of k. We have
Rip =@ = ¢p
where ¢y is the angle of kin the laboratory frame. The dot product Q- kis expressed as
Q . R = Rf( M.
We find that the inverse is given by
R'e =0+

Let us assume the angular flux ¢(p, ¢) has the form

(. @) = Rid(v.g)e 07, (23)
where v is the separation constant. We will see that this ¢(v,¢) is the singular eigenfunction
developed in Section II.

By plugging (23) into (22), we obtain

o 1 1 C l4 4 ’
(1 - —) R 9(,) = w/o [g - ,,,Zl Bmcos(mRip = Re ) | Rg s @) dg',  24)

where we used ¢ — ¢’ = R — R ¢’. By inverse rotation Rlzl, (24) reduces to (11). That is,
Ry (v, @) is the singular eigenfunction for v € o measured in the reference frame which is rotated
by ¢

The unit vector K is written as
with angle ¢;. Let us set k as

where ¢ € R and

kx(vg) =\ 1+ (rg.

We will show orthogonality relations for Ry, ¢(v, ¢).

Theorem 4.1. For v,v’ € o and any q € R we have

2r
| R 0010] [Ricry 00".0] d = ExtraN 1600 =),
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Proof. Similar to (24), we have

A

L

Q-k @ [T . ,
_ =" . - = im(p—¢ ) . ’ ’
(1= 25 ) Rt = 7 [ e 000 d

m=—L

For ﬁ] = ﬁ(vlq) and Rz = R(vzq) with a fixed ¢, we have

L
[Re, 60m.00] R (1= 2 0100 = 57 3 Bt R b
2

T
X e MRy, o) dg’,

S—

L
[Rs, 601, 0)| Ry, (1 - %) o0n.¢) = 3 mZL Bue ™™ Ry, 6(1.9)]

2r
X /0 e R, p(v2,¢) dyp’,

where we used 3, Bme™ ¢ ¢) =3 B Mm@~ (B, = B,.). By subtraction and integration
from O to 27, we obtain

2 (Re Rz
[ (5 - ) g 0] i 0] =0

V2
We note that
R u = Q -k = ky(vqg)cos g —ivgsin .
Thus,
(""(ij‘” - ""(VVI“’)) / " cos o [Ry, 600.9)] [Re, 6002.9)] dp = 0
We obtain

2
/0 H [Rf(l ¢(V1"p)] [RR2¢(V27 ‘P)] de =0, V1 # ).

When v = v| = v,, we can calculate the integral as
2 ) 27
/0 Ry (@) dp = /0 [Ri'1] o(v.0)* de

2
= ku(vq) /0 1p(v, @) de
=k (vg)N(v),

where we used ngl u= cos(ﬂlg1 @) = cos(¢ + ¢p) = k(vq) cos @ +ivgsin . Thus the orthogo-
nality relations are proved. O

V. TWO-DIMENSIONAL GREEN’S FUNCTION

Let us consider the radiative transport equation (1). We can write the jump condition as

B 1
G(0", y,¢0:90) = G(0™, y,¢: o) = ;6(14)5(90 - o).
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With the completeness of ¢(v,¢) and plane-wave modes, the Green’s function can be written as a
superposition of ¥,,(p, ¢) in (23). Depending on x we can write

coM-1 1 d
Glpsion = [ [Z A (@ (p.0) + /0 A(v,q)wy(p,go)dv] 4 >0
pa

co M-1

0 d
G(p.¢: p0) = — / > [AA,--(q>w_v_,.<p,<p>+ / 1A(v,q)wv<p,¢>dv] Eox<o.
& g

Here A;.(g), A(v,q) are some coefficients. The jump condition reads

o M-
/ eiq”[z (Aj+(4) Rﬁ(vjq) ¢(vj.) + Aj(q) 7€f((—v,-q) ¢(_Vf"’0))

00 j=0

+/1A(V ) R: (v,)dv dg
-1 4 k(Vq)¢ ¢ 2n

1
= —06(y)o(¢ = ¢o)-
u
By using Theorem 4.1 of orthogonality relations, the coefficients A;.(g), A(v,q) are determined as

Rior ) BV, 60)

) Rf((yq) ¢(V, ‘700)
(q) = — , Yo 77
! kx(vigIN (£v;)

RN G)

(.q)

Therefore the Green’s function is obtained as

k(v jq)lx|/v;

) M-1Re (v, 00)d (v, @)
1 . . o A

G(p.¢: ¢0) = —/ elqy[z k(=vjq) J o)
21 ) o

7=0 lgx(VjQ)N(Vj)
1 N
+ / ﬂk(tvql(p(iv’ ‘,90)¢(i1/, ‘P) e_lgx(vq)‘xl/v dV dq,
0 kx(vg)N (v)

where upper signs are used for x > 0 and lower signs are used for x < 0. The above Green’s
function can be rewritten as (9).

VI. ENERGY DENSITY

Let us calculate the energy density u for an isotropic source 6(p), i.e.,

2r 2
u= /0 /0 G(p, ¢; po) dedypy.

Without loss of generality, we can put y = 0 and assume x > 0. Using (9), we obtain

oo | M-l _f (vig)x/v; 1 —kx(vg)x/v
1 g | q
u(x)=—/ ) +/ v dg
2 Joo | 53 k(i N () Jo k(v N (v)
‘We note that

——dg=- —dt = - —d
o ke(vq) vJo VIl+12 vJi Vs2-1
where K is the modified Bessel function of the second kind of order zero. Hence we have

= Ko(x/v;)) 1 Ko(x/v)
jzz(l) ViN (v}) +/0 YN (v) v (25)

oo e—lgx(vq)x/v 2 ® o= 1+12x /v 2 oo e—sx/v 2 X
| -a)
— 4 v

u(x) = l
m
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The expression (25) is the general result. Let us consider the case of isotropic scattering (L = 0).
Since g(v,¢) = 1, we have

2
wz 1 wz
A(Z)—l——/ dp=1- , zeC\[-1,1],
2r Jo z—H Vz2-1

2
wv 1 w|v|
/l(v):l——?’/ dp=1- (1
2r Jo v-H av1l -2 1+\/1—v2

where v € (—1,1). Using the above A(z) and A(v), we can calculate N'(v) in (7). We note that M = 1
and the positive root vy such that A(vy) = 0 is given in (20).

1
+ cosh™! ) s

VIl. CONCLUDING REMARKS

We have obtained the Green’s function for the radiative transport equation in flatland with
separation of variables. As an alternative way, the Green’s function can also be found with the
Fourier transform. This calculation is summarized in the Appendix. Assuming the completeness of
singular eigenfunctions in the presence of boundaries, the Green’s function is given as a superpo-
sition of singular eigenfunctions, and the coefficients A;.(q), A(v,q) in Sec. V are determined from
the boundary conditions. If we consider the present extension of Case’s method, i.e., the separation
of variables developed in this paper, in the planar geometry, we need the half-range completeness
to express the Green’s function as a superposition of singular eigenfunctions. Moreover we need
to establish the half-range orthogonality relations to calculate A;.(g), A(v,q). It is another impor-
tant future work to develop the separation of variables for the time-dependent radiative transport
equation.

APPENDIX: FOURIER TRANSFORM

We will find an alternative expression of the Green’s function (AS5) by using the Fourier
transform.'>16
Let us introduce the Fourier transform as

Gk, ¢; ¢o) = / . e ®PG(p, p; o) dp.
R

By introducing
G(k) = / [Rie™™] G(k, @5 o) dg, (A1)
0
we can write (1) as
T & :
(1+ik- Q) Glkpign) = 7 > Bu[Rie™] Gulk) +6(¢ ~ o). (A2)
d m=—L

Note that P,,,(z) in (15) can be written as

2 eimcp
P =5 [ e
s - U

Hereafter we set

|~

We then have

G(k) = wz Z B Pun=(2)Gn(k) + — QOR ke /%, ljl < L. (A3)
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Hence
S z y
Z [5jm - wzﬁmpm—j(Z)] Gu(k) = —————Rj e,
m=-L Z— k- QO
for |j| < L. Thus, by using (A2), G(K,¢; @) can be expressed using matrices as
- z oz .
Gk, ¢; = —F—F0(p— + — - R
(k. ¢: ¢0) -k O (¢ = ¢0) mr k@ kO
L
x 3 Pk )W - wzL()W] ™ PGk, o). (Ad)
m=—L

Here,
{L(2)}jm = Pm-j(2), W}t = Bumbjm, {P(k, @)} = e "R,
‘We note that
e’ _ike
—0 — Wp)é ! pd = -
/RZ FRAAC P k-0

Therefore we obtain the first alternative expression,
e P
G(p,¢; o) = 76(900 — ©p)0(¢ — ¥o)

w / gik~p M(k’ ‘)0’ ‘)00) dk (AS)
R2

+ A 2 A A 9
(2n)3 (1 +ik- Q)1 +ik - Q)
where
L
MK, ¢, 00) = ) Pk @)W - mzL(2)W]'P(K,¢0).
m=—L
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