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Abstract
The linear Boltzmann equation with constant coefficients in the three-
dimensional infinite space is revisited. It is known that the Green’s function
can be calculated via the Fourier transform in the case of isotropic scattering.
In this paper, we show that the three-dimensional Green’s function can be
computed with the Fourier transform even in the case of arbitrary anisotropic
scattering.
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1. Introduction

We consider the linear Boltzmann equation in three-dimensions, which governs neutron
transport and radiative transfer. If scattering is isotropic, it is well known that the Green’s
function of the monoenergetic neutron transport in a three-dimensional infinite medium can
be obtained using the Fourier transform [I, 11]. In one-dimension, Ganapol developed
Fourier transform techniques and showed that the Green’s function can be found even for
arbitrary anisotropic scattering [5, 8]. In this paper, we will extend Ganapol’s calculation in
one-dimensional transport theory to three-dimensions making use of rotated reference frames
and present the three-dimensional Green’s function for arbitrary anisotropic scattering.

The introduction of rotated reference frames in neutron transport theory goes back to
Dede [3] and Kobayashi [12]. Dede discussed that three-dimensional equations in the Py
method reduce to one-dimensional equations by measuring angles in the reference frame
rotated in the direction of the Fourier vector. Kobayashi’s work is similar to the calculation in
the present paper in the sense that the recurrence relation (15) was derived, however, ;" was
not explicitly obtained as we will do in (20). The first practical way of using rotated reference
frames, which made numerical calculation possible, was found by Markel [15]. Markel
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established an efficient method of computing the specific intensity of light in three-dimen-
sions by expressing the specific intensity in terms of eigenmodes and rotating the reference
frame for each eigenmode [15, 17]. The technique was also applied to inverse transport
problems [18]. Recently, it was found that the use of such rotated reference frames is not
restricted to Legendre polynomials and spherical harmonics. Case’s singular eigenfunctions
were extended to three-dimensions [13]. With this result, the F method [19, 20] was
extended to three-dimensions [14].

Let us write the Green’s function of monoenergetic neutron transport in three-dimen-
sions. The angular flux G (r, §2; €2y) € R (r € R3, Q € S?) obeys

-V + DG, Q) = cf2 P, Q)G ; Q) dQ + 516 — Q).
S

where ¢ (0 <c < 1) is Ehe albedo for single scattering and p(ﬁ, Q/) € R is the phase
function. The unit vector €2 has the polar angle 6 and azimuthal angle ¢. The source placed at
the origin r = 0 emits neutrons in the direction Q. We assume p(ﬂ, Q/) depends only on
Q- Q and write

' L [
p@. 8 =3 3 = Ylm(ﬂ)ylm(ﬂ)——z ZW'"Pz (WP (e,

1= OmfleI T =0 m=—1I
where Bp =1, |G| <2l + 11 =1,2,...,L), and we defined iz = cos and
[ — m)!
wi' = 51—( ) -
I+ m)!
Here Y, (ﬁ) are spherical harmonics given by
A 21 + 1
b () = [ E I peine
(I +m)!
and
P () = (=) (1 — pHy"?— & —Pi (), P"(w)=(— 1)’"( — ) P (),
dup™ (+ m)!

for 0 < m < [. Associated Legendre polynomials P (u) satisfy the following recurrence
relation.

@+ DuP" () = (L — m + D () + (L + m)P" (), (1)
with initial terms
Pr(p) = (—D™@2m — HNA — p?ym/2, Py () = 2m + )uP,' (1),

for0 <m < I.

The first two terms in the collision expansion of the Green’s function contain the Dirac
delta function. In particular the first term Gy (r, €2; €2)) expresses uncollided particles which
travel in the medium without experiencing scattering. We subtract the uncollided part as
follows.

G(r, € Q) = Go(r, ; Q) + ¥(r, ),
where Gy (r, Q: QO) satisfies

-V + DGy, ; Qo) = 62 — Q) (r)



J. Phys. A: Math. Theor. 49 (2016) 175001 M Machida

and ¢ (r, Q) satisfies

€@V + Do @) =c [ p Q) @) + Sep@ Q)6 - Qo).
r

where

. T
r=|r|, F=—.
r

The source term in the transport equation for ¢ (r, ) can be calculated by noting
cfgz 2, O)Gor, Q' Q) dY :cfSz p(LY, Q/)%e*’é(ﬁ/ — 5@ — Q) dY
= 5P Q)5 — ).
where we used
Go(r, Q; Q) = %e"é(ﬂ — 5 — Q).
In this paper we will consider how ¥ (r, ) is obtained.

In the case of isotropic scattering (L = 0), we can compute ¢ (r, ﬂ) with the textbook
way (appendix A) as

¢ —1
) . [t ]
b ) = — [ ek dk.
2Q2m)* JR? (1 + ik - Q)1 + ik - )
The aim of this paper is to extend this result to arbitrary anisotropic scattering.
As the first main result, we obtain ¥ (r, €2) as

by [ e ME000)
2Q2n)* Jw (1 +ik- QU + ik - )

where M (K, Q, QO) is given in (11).
Since the calculation of M (k, €2, €2() involves matrix inversion, we explore an alter-

native expression of ¢ (r, ). As the second main result, we will show that Y (r, Q) is given
by

dk, 2)

00 1
r, Q) = Y (2 ekTe—imei e (K) dk, 3
V) = 3 3 K [ o (K) 3)
where
! I\ -,
i () = - \/ 2 L0 el
wi=—1gm G/ VAT ()

m i -m i - m i
X dfnm’(al%)[gz (;)%q(;’ k) +X; (%)]

Here, d r{1 ,, are Wigner’s d-matrices [22] and g are Chandrasekhar’s polynomials of the first
kind (see section 4) [2, 4]. Below, )(;” and QLl:,"” are given in (21) and (22), respectively.

Suppose that ¢|TZ| is independent of ;. We can write xy, (K) = ky, (k, 1) In this case
we obtain
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1 oo l R 00
YmQ'm k2
> X v @i |

(2m)? 1=0 m=—1
1 . .
x f_ n (eryJ1 — 122 sin Bg)eikrmicosbee—imon e, (ki) dpagdk, 4)

where J,, is the Bessel function of degree m. For example, x;, (k, ﬁ) is independent of ¢y
if Oy = 2.

In what follows, we derive (2) in section 3 and (3) in section 4. In section 5, we compute
the energy density by using (4). The key idea of rotated reference frames is introduced in the
next section.

o(r, Q) =

2. Rotated reference frames

We introduce the operator R : C — C for a unit vector k € C3 k-k=1. By operating
Ri we measure €2 in the reference frame whose z-axis lies in the direction of k [15]. For
example, we have

Q-k= R
If a function f ) € Cis given as

0 1
FE =505 £ Y (),

1=0 m=—1
we have

00 l l . R
Rif () =D > fon D€ "dL, ()Y, (),
=0 m=—1 m'=—1

where 0 and ¢, are the polar and azimuthal angles of k in the laboratory frame. In particular,
we have

! . A
RiYim () = Y e ™%l (0p)Y,, ().

m'=—1

3. Fourier transform

N

We begin by noting that Q-Q = (Rf(fl) . ('RRQ/) and

! L ! A N
@O =3 % zﬁ (R (1R €)1,
0 m=—I[

1=
for an arbitrary unit vector k. The transport equation is written as

L l

@V 4 DGE Q) =cS Y~ (R (€)1
imom=12l+1

x [ IR @)1, @ Q) dfY
SZ

+8m8Q — Q).

By taking projections of the Green’s function with rotated spherical harmonics, we
introduce
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I+ m)!
2+ 1(—m)!

An arbitrary vector k € R3 is given by k (0 < k < co) andk € R (k - k = 1) as

G/"(r) =

e [ IR @G, € Q) d2.
S

k = kk.
With this vector k we perform the Fourier transform as

Gk, 0 Q)= [ ™G, O Qo) ar,
R
G" (k)= fR L e kTG (r) dr.

In the Fourier space we obtain

L 1 m
. A = Ay wl (l + m) 71m' o . A ~m
(1 +ik- Gk, )= CIZZO’”;[ T DN —m)! P [RgYm (D16, (K)

+ 62 — Q).

This is expressed as

L1 o - o
Gk, @)= % Tk ilk ) Z: m; m Al Z i_ Z;' e "2 [RgY (]G] (K)
+1+i.n o)
Q)
By multiplying RY;" (€2) on both sides of (5) and integrating over S2, we obtain
f RV ()1G &, ) afr= £y zlj i C Al it )
:71’\/71'(21/7 (1" —mh!
x fS mmﬂ;(ﬂ)]mm (€)1 d2
RiYp (S0) .
1+ ik - €
We note that
k-Q=kRyu.
We put
i

e=

Let us define
m m

e = % f_ll P (ZM)_PIM (1) i
We note that

i (@) = 20" P/ (2), < (6)

where P/" (z) and Q;" (z) are associated Legendre functions of the first and second kinds
which have a branch cut from —o0 to 1. For m > 0, they satisfy the recurrence relation (1)

5
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with initial terms
Pp(z)=(Qm— )Nz — D2z + D", Pyly() = @Qm + 1)zP) (2)

and

o (2) =

[@m— DR (1 (1= D) " ey 2m)!
) e Q@ = @m0l — o

Let O () be the step function such that © (x) = 1 for x > 0 and © (x) = 0 otherwise. We have

Z

L
G/"(k) = O(L — |m))c >~ wl'Lj (2)G" (k) + e Ry

P} (jtg)e "%, ™
1=|m| = My

We note that the information on the phase function p (Q, Q/) is embedded in wj" in the first
term on the right-hand side of (7). For |m| < j < L, the above equation can be rewritten as

L
> 165 — cwl" L )1G" (k) = ﬁpjm (& - Qp)eimR e im0, (8)
: 0

I=|m|

As we will see below, an exact solution is readily obtained from (5) and (8). We
introduce the following matrices and vectors.

{(L"@)} = Lj (@),
(W™} = wi"éj,
(G"®)}:1=G" k),
Pk, )} = P (k - Q)elmaR e ime,

We then have

[ - cL"@QW"G" (k) = ————P"(k, (),
Z — k- QO
where I is the identity. Using (5), G (k, ) is given by
L
= A Z A A Cc Z D AN ~m
Gk, Q) = —F——0082 — Qo) + ———F— P"(k, Q)W"G" (k).
- k- O 0 47Tz—k~ﬂm;L

Therefore we obtain

G =5 - DS - Q)
r
C . Z Z
R S e1k~r - _ = _
2(27r)4fR3 z—k-Qz-k-Q
L
xS Pk, OIWI — cL"(2) W™ 'P"(k, Q) dk. )
m=—L
Here we used
f s (ﬂ - £)e*k-r dr— — 1 (10)
R r? r 1 +ik-Q

We note that the first term in the above equation is the uncollided term G, (r, Q; flo) in the
collision expansion. The uncollided part is naturally singled out in the present formulation
aiming at the first main result (2). By defining

6
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L
Mk, Q, Q)= > Pk, W — cL"@QW”'P"(k, ©0), (11
m=—L
we obtain (2). If L = 0, we have
1 1 1

Mk, Q, Q) = = — = —— ,
I—cp@ 1-clg(t) 1-jtan ')

where we used (6) and (26).

4. Nonstandard Fourier transform

Let us explore an alternative formulation which is potentially more suitable for numerical
calculation. Similarly to the previous section, we will closely follow [8]. By focusing on the
collided part ¢ (r, £2) we have

Q- V + Dy, Q)—cz Z

1= Omf 121
+ r—ze— p(€2, Q)6 {E — Q).

SR @) [ RV @)1, @) afY

Let us take projections of ¥ (r, Q) with rotated spherical harmonics as

m = LM imep, V¥ (O A A
W = S e € S RV @100, @

In the Fourier space we obtain

(1 + ik - WDk, Q) :Czi;)mzl:_z —477(35: s 8 J_r Z;: e % [R Y ()19, ()
P2, )
1 + ik - Qo (12)
This is expressed as
ik, )= %mlﬁomﬁj J% e Rt 1 )
P2, Q)
Urik- 00 +ik- Q) 13

We obtain

L
PR =OL — Imhe Y wi'Lij (2)

1=|m|

. 1
k iMooy R o P img,
Y (K) + TEOER) kZ " " (pg)e™ ]
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For |m| < j < L, the above equation can be rewritten as

S8 — Wl LD @1 ) = 3 e ) <
il — 1l = - ~ =
el ! : N F DRI 1) z — k- Qg
X P"(k - Qp)emR e m, (14)

As is calculated in appendix C, an expression of ¥ (r, ) similar to (2) is obtained using
(13) and (14). In this case, the first term of ) (r, ﬂ) becomes the once-collided term whereas
the first term of (9) shows uncollided particles. In this section we continue as follows instead
of performing the calculation in appendix C.

Let us look at (12). By using (1) we have

N [P .
Y@ = LD —my @+ [y L),
11 Yim (€2) 4(l+1)2—ll+1’( ) 412_111,( )

)" () — (41— m &) — @+ m)" (k) = 28" (K), 15)

Therefore

for [ > |m| and

where
(L + m)!

h=20+ 1= O = Dewf' —— =20+ 1 = O — Def
Y

and

57 ) = O(L — D cima (R (ng e
Z — k . ﬂ()
! . ! . /
oL~ ) 3 AL, GOR (1)
zZ— QO m'=—1

We introduce Chandrasekhar polynomials of the first and second kinds as

(l + m)g[ml(z) - Zhlg[m(z) + (l +1- m)glljzl(z) =0

@ = m - D gl @ = gD (16)
m.

and

I+ mp" @ —zhp" @) + 1+ 1 —mp], (z) =0

m _ m — 7Z
@ =0 PO = G
where 0 < m < [. We note that
(@) = (- 1)( )|g,(Z) ;@) = (= 1)( ),,()
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We refer to [7] about how to numerically compute Chandrasekhar’s polynomials of the first
and second kinds. Davison used g™ to express the solution to the transport equation [4].
Numerical calculation of g™ was considered in [21]. Indnii pointed out that (16) has two
linearly independent solutions, i.e., g™ and p;" [10]. We can express " as

!

U =a"®)g" (@) + " ®)p @) + (1 = Gz D o RS (K). a7
j=lml+1

By setting [ = |m| in (17), we first notice that

2"m! - -—m

s a (k) = (=1D)"2"m! s

(2m)!¢’” k) = (=D ¥,

for m > 0. By plugging (17) we have
—(m| + 1 = m)[b" K)pp, @) 4 20041 g1 TS )] = 28 (K).

Suppose [/ > m. Let us impose

hals — U+ 1 —myaf,; — (L + myaj',; = 0. (18)

a” (k) =

By substituting (17) for ;" in (15), we obtain

oy — A+ 1 —m)agy " + afiy 8D = "
The left-hand side of the above equation can be rewritten as

lhs = =+ 1 = m)ajy 1S5+ + myai” 5"
Hence we can put

1

m —
=

a;‘:»l,hi*l - O. (19)

Thus we find
b"(k)=— (2m — D 1S (Kk),
b™"k)=—(—1D)"2m)!2m — 1) 11§, K),

m m _m

for m > 0. To find o/} (z), let us plug the expression o}y = uj" g™ + v;" p;" into o}y = 0 and

Lj
o’ ;= 1/(l + m). We obtain

m
Mlm _ pl
(l + m)(g]”llp;n - glmplm_l)
Vlm _glm

A+ mgm e — g )

Since we have the relation (appendix B)

" (" () — g ()" (2)] = LEM! 2
U+ mlg @' @) = " Qe D) = 7= o

we obtain
( — m)!(2|m|)!

i ® =

[0} 28" @) — " @) p)" (D]
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Finally for — < m < [, (17) becomes

-m 8@ - P (@) (I — m)!2m|)!
O = = S+ (L= S )
! ,() = @ M )
x Z [p7 ()" (@) — g/ (@ p]" @]1S]
j=|m|+1
g,'”(z) -m X
@ " @) 0
8m @ 8m| %
where
p;" (@) (I — m)!2|m])!
X kK =g" @)z ——Sm & — 1 = & jm)——
S {plmm(Z) " ).
1
x> [0} (28" (@) g;”(z)pf"(Z)]S,m(k)}- 2D
j=|m|+1
We note that Xl”; |(k) =0.
To find the initial term zZJﬁ,"ﬂ, we set j = |m| in (8) and obtain
L L my m
o m cz Wi Ly (2)
[Omir — cw]" Ly @14, = - :
1:%. P kG S@ml + D@L D)
x P" (k - Qp)emaR e,
For |m| < L, we obtain
Gy = W' Q" )P (@)
m| — Am(z) z% 1% |
o , m (kK
! i P (k- Qo)e™Rge "0 — X (0
J@Iml + DL+ 1) z — k- £ gm@ | 22)

where (appendix B)
g" @)

L
@ =1 = cz 3" 0" @Ry @)
e 8 @)

_ L+ 1 —m! B @)
(L+m! g

We can calculate ;" (k) using (20) and (22).
We note that the Fourier transform of the angular flux is given by

2z+1(17m)
vk ;; (+ m)!

[g" (20" (@) — &" @01 (D]

e 01" (K) R Yim ().



J. Phys. A: Math. Theor. 49 (2016) 175001 M Machida

Using (20) the above equation is rewritten as

Pk )= 3 [0 @ DY@ k) — T E ),

m=—00

. 1 X 2t+1d-m -
of (@ ) =— \ e g™ (D) RiYim (€2),
K gm @ Zl,;,l 4 (I + m)! ! K

. 1 X 2a+1d-—m A
T (z, ) = meo ™ (K) Rz Yim (€2).
m(z, ) %(z)z;ﬂ" pr LR ()R Yim (€2)

Note that the dependence of " in (22) on K is split into z and k. The angular flux is then
given by

where

br, Q) = (2;)3 j}; ek (k, ) dk
_ ! f f T k2eiRE S (90 Gi/k, )3 G/k, K) — TG/, €] dkdk
(2’/T)3 s Jo — k ’ |m| ’ k ’ :
m=—00 (23)
By explicitly writing (23), we obtain (3).
We have

27 ~ . 2r . . . i
f eikrk.feflm’tpf( d@f( —_ f elkr sin 0 sin 03 cos(&pk—pf)elkrcoséf( cos&ieﬂm,’sﬁﬁ d@l}’
0 0
. 2w .
— gikrcos b cos efeflm'pf f gikr sin g sin 0z cos o eflm/’@f( d(Pf(,
0

’ . il
=2mi" J,  (kr sin O sin 0 ) ek cosOiccos e =11 05

where we noted the Hansen-Bessel formula:

v/ (.X) =

2w . .
- f elX CcOoS Apeflmtp dSO. (24)
27w Jo

Hence we have (4) if @ﬂl does not depend on .

5. Energy density

We consider the energy density u(r) using (4). Let us assume an isotropic source 6 (r).
Without loss of generality we can set

(Pf.:(), efzo.

We normalize u (r) with the speed of neutrons. We compute u (r) as

u(r):j;2 j; G(r, Q: Q) A€,

1, L S .
= o fo k2 j: el j;  roo (k) d€2 dpg k. (25)
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We note that kg (K) is obtained as

: : - AT 0+
Hoo(k)—{(L+ 1>[g2’+1(i)Q3(%) _gf(%)Q&‘(%)]} ljik(kgl ’
: 0

where
i 1. i/k+1 .
—| = =In‘*——— = —itan" (k). 26
Qo(k) Ry (k) (26)
Noting that
R ~1
f 1 a4y, = 47rtan (k)’
s 1+ ik - Qy k
we obtain
1 c 00 2 sin (kr)[ tan~! (k) ]?
r)= —e "+ dk.
uim =3 ~L+ D j:)

krl:gl(i;rl(;(_)QL (,1—) - gf (;(_)QL-H (,1(—)]
In particular if L = O (isotropic scattering), we have

dk.

2_cfoo sin (kr)[ tan~! (k)
0

u(r) = Le" +
r? kr[l - %tan‘l(k)]

™

This is the expression obtained from the textbook Fourier transform approach shown in
appendix A.

6. Concluding remarks

When aiming at benchmarking [6], the two formulas (2) and (3) derived in the present paper
are useful because solutions to the three-dimensional monoenergetic neutron transport
equation in an infinite medium with anisotropic scattering are analytically obtained. The
solutions do not suffer from statistical errors unlike Monte Carlo simulation.

We have obtained the angular flux for anisotropic scattering by means of the Fourier
transform. The calculation developed here can be compared to the method of rotated reference
frames [15, 17], which uses the Fourier transform and rotated reference frames. It is known
that the method of rotated reference frames has instability when spherical harmonics with
large degrees are used [16]. In the present formulation, decomposition of the angular flux into
eigenmodes is not introduced. In this way, such instability does not arise.
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Appendix A. The case of isotropic scattering

In the isotropic case we can obtain G (r, Q; flo) as follows [1, 11]. The Green’s function
obeys

Q- VG, Q: Q) + G, Q: Q) = 4Lf Gr, Q; Q) dQ + 5@ — Q).
T JS”

We write G in terms of G as

N . A _ / A . U
G Q= [ [ Gotr - ¥, 0 0)

x {4i G, ¥ Q) dOY + 6@ — Q) } ar'dQ’.
T JS

We define

U(r; Q) = J;z G(r, Q; ) QY

1 —r-r']) € e / r—r A !
= —_ —U@’; Qo) +6(@)6| —— — Qo] p dr'.
fu@‘ Ir — r’|2e {47r (r flo) + 0 (lr —r| o

Since the Fourier transform is obtained as

_ 1 c -1 -1
Uk)=————|1 - —tan"' (k)| ,
1 + lk . QQ k
we obtain
. ik-r —1
U ) = —. %f € [1 - £taurl(k)] dk.
@n)y Jr 1 + ik - k

Finally, the Green’s function is written as

A. A A A c .
G(r, Q; Qp) =Gy(r, Q; Q _|_—f eikr
( 0= Gof ) 4r 27y Jw
|

X = ~
(1 + ik - (1 + ik - Q)

[1 - £tanl(k)]1 dk
. .

Let us consider the energy density for the isotropic source § (r). We obtain
um= [ G Q)
S?x§?

A Al A Al c .
= Go(r, ; Q)dQdQ + —— elkr
—_— ) 47 (2m)? ﬁ@

f . 40y
$x82 (1 + ik - Q)(1 + ik - Q)

c 1
[1 — ;tanfl(k)] dk

o0 Qi -1 2
e + 2_cf sin (Ks) [tan—' (k)]
0

2 T r  k—ctan~! (k)

X

X
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Appendix B. Christoffel-Darboux formulas

We consider the following two recurrence relations [8].
zaig" (2) — (I + 1 —=m)q/! () — 1+ mgq" (2) =0,

pbir () — 4+ 1 = myrfy () — 4+ myr” () = 0.

(B.1)
(B.2)

By subtracting ¢" (z)[(I — m)!/(I + m)!] x (B.2) from 1" (1)[(Il — m)!/(l + m)!] x (B.1)

we obtain [9]

(I —m)!

(za; — ub I)(Z—I— !

4" @r" @) + 1 @ ) — 1" @ p) =0,

where
(I —m)!

m[% L@ (W) = ¢ @n" (W]

tlm (Z» /J,) =

Suppose [y > |m| + 1. By taking the summation 250:|m|+1 we obtain

o+ 1 -—m)!_ m . i
et Layy @rifia (o) = 47, @ (o)
( ) m
Z (uby — zay) P~ @ ()
I=|m|+1 I+ m)!
(Iml +1 — m)! ) , i
W[‘h% @1 () = Gy @ (0]
If we set
h=1-1, a=b="Hh q¢"=g" 1"=p"
we obtain
d+m! z
I+ m)g" @p]" (@) — g"(z )] = ——= .
( Ne" @] (@) — g"@p" (@] = = =) @
If we set
m_ &
=L a=h b=2+1 q :g;m, "= Q" Py
[m|
we obtain

Lr+1- m)!P%(Z)
L+m! ghe

[g/" (0" (@) — &" @0/ (2)]

L
= —cz Yy, WY@

I=|m|+1
C(ml 41— m! A @
(ml +m)! gm (@)

(B.3)
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Therefore we have
(L+1—m!Bny®@

(L+m! gl @)

Lo, 8@

=—cz ), wj

Sl 8@

(8" (0" @) — g" (20" 1(2)]

0" @B, @) + 1.

Here we used
m o wo o [@lm)1pEnem
Opmj+1@) = 2lm| + 1)z0p, (2) R ) .

The above relation is derived from (6).

Appendix C. The Fourier transform with ballistic subtraction

We additionally introduce the following matrices and vectors.
1
(8} j1 = ——"3
SN
{B"® 1} =14" ).

Equation (14) can be expressed as

(I — cl*(2)W"] ™ (k) = SI(2)SW™ () —Pm(k, Q).
Z — k . Q()

Using (13), 9" (k) is obtained as
Q, O Ao
_PER) € 2 pa, )W (k).
A+ik- O +ik-Qy) 4rz—k-Q

Therefore we obtain

b(r, ) = ep(L, Qo)f f ere 8 — n€ — rn$) drdr
0 0

2

Dk, Q) =

c . Z Z
+ - elk-l‘ — —~ —~ —~
2(271')4f]R3 z—k-Qz-k-Q
x Pk, QWL — cL"W™]~ 1S () SW™ (2) P (k, ) dk.

We note that the first term in the above equation is the once-collided term in the collision
expansion:

e’ (sin7+sin7p)/sin(7+7)

(once—collided term) = cp (2, 20)O(r — 7 — 7)6 (|l — @l — )

b}

¥ sin 7 sin 7y

where cosT =1 - 2, cosy = I - .

References

[1] Case K M and Zweifel P F 1967 Linear Transport Theory (Reading, MA: Addison-Wesley)

[2] Chandrasekhar S 1960 Radiative Transfer (New York: Dover)

[3] Dede K M 1964 An explicit solution of the one velocity multi-dimensional Boltzmann-equation in
Py approximation Nukleonik 6 267-71



J. Phys. A: Math. Theor. 49 (2016) 175001 M Machida

(4]
(51

(6]
(7]
(8]
[91
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]
(21]

[22]

Davison B 1957 Neutron Transport Theory (Oxford: Oxford University Press)

Gonapol B D 2000 A consistent theory of neutral particle transport in an infinite medium Transp.
Theory Stat. Phys. 29 43—68

Gonapol B D 2008 Analytical Benchmarks for Nuclear Engineering Applications (Case Study in
Neutron Transport Theory) (Paris: OECD Publishing)

Gonapol B D 2014 Chandrasekhar polynomials and the solution to the transport equation in an
infinite medium J. Comput. Theor. Trans. 43 433-73

Ganapol B D 2015 The infinite medium Green’s function of monoenergetic neutron transport
theory via Fourier transform Nucl. Sci. Eng. 180 224-46

Garcia R D M and Siewert C E 1982 On the dispersion function in particle transport theory
J. Appl. Math. Phys. 33 801-6

Inonii E 1970 Orthogonality of a set of polynomials encountered in neutron-transport and
radiative-transfer theories J. Math. Phys. 11 568-77

Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York: Academic)

Kobayashi K 1977 Spherical harmonics solutions of multi-dimensional neutron transport equation
by finite Fourier transformation J. Nucl. Sci. Technol. 14 489-501

Machida M 2014 Singular eigenfunctions for the three-dimensional radiative transport equation
J. Opt. Soc. Am. A 31 67-74

Machida M 2015 An Fy method for the radiative transport equation in three-dimensions J. Phys.
A: Math. Theor. 48 325001

Markel V. A 2004 Modified spherical harmonics method for solving the radiative transport
equation Waves Random Media 14 1L.13-9

Markel V A 2012 private communication

Panasyuk G, Schotland J C and Markel V A 2006 Radiative transport equation in rotated reference
frames J. Phys. A: Math. Gen. 39 115-37

Schotland J C and Markel V A 2007 Fourier—Laplace structure of the inverse scattering problem
for the radiative transport equation Inverse Problem Imaging 1 181-8

Siewert C E 1978 The Fy method for solving radiative-transfer problems in plane geometry
Astrophys. Space Sci. 58 131-7

Siewert C E and Benoist P 1979 The F method in neutron-transport theory. Part I: Theory and
applications Nucl. Sci. Eng. 69 156-60

Siewert C E and Garcia R D M 1990 On computing the Chandrasekhar polynomials in high order
and high degree J. Quant. Spectrosc. Radiat. Transfer 43 201-5

Varshalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular
Momentum (Singapore: World Scientific)


http://dx.doi.org/10.1080/00411450008205860
http://dx.doi.org/10.1080/00411450008205860
http://dx.doi.org/10.1080/00411450008205860
http://dx.doi.org/10.1080/23324309.2014.973118
http://dx.doi.org/10.1080/23324309.2014.973118
http://dx.doi.org/10.1080/23324309.2014.973118
http://dx.doi.org/10.1007/BF00944989
http://dx.doi.org/10.1007/BF00944989
http://dx.doi.org/10.1007/BF00944989
http://dx.doi.org/10.1063/1.1665171
http://dx.doi.org/10.1063/1.1665171
http://dx.doi.org/10.1063/1.1665171
http://dx.doi.org/10.1080/18811248.1977.9730792
http://dx.doi.org/10.1080/18811248.1977.9730792
http://dx.doi.org/10.1080/18811248.1977.9730792
http://dx.doi.org/10.1364/JOSAA.31.000067
http://dx.doi.org/10.1364/JOSAA.31.000067
http://dx.doi.org/10.1364/JOSAA.31.000067
http://dx.doi.org/10.1088/1751-8113/48/32/325001
http://dx.doi.org/10.1088/0959-7174/14/1/L02
http://dx.doi.org/10.1088/0959-7174/14/1/L02
http://dx.doi.org/10.1088/0959-7174/14/1/L02
http://dx.doi.org/10.1088/0305-4470/39/1/009
http://dx.doi.org/10.1088/0305-4470/39/1/009
http://dx.doi.org/10.1088/0305-4470/39/1/009
http://dx.doi.org/10.3934/ipi.2007.1.181
http://dx.doi.org/10.3934/ipi.2007.1.181
http://dx.doi.org/10.3934/ipi.2007.1.181
http://dx.doi.org/10.1007/BF00645380
http://dx.doi.org/10.1007/BF00645380
http://dx.doi.org/10.1007/BF00645380
http://dx.doi.org/10.13182/NSE79-1
http://dx.doi.org/10.13182/NSE79-1
http://dx.doi.org/10.13182/NSE79-1
http://dx.doi.org/10.1016/0022-4073(90)90052-8
http://dx.doi.org/10.1016/0022-4073(90)90052-8
http://dx.doi.org/10.1016/0022-4073(90)90052-8

	1. Introduction
	2. Rotated reference frames
	3. Fourier transform
	4. Nonstandard Fourier transform
	5. Energy density
	6. Concluding remarks
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



