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1. INTRODUCTION

The development of tools to probe the structure of highly scat-
tering media such as clouds, colloids, and biological tissue is of
fundamental interest and considerable applied importance.
One such method, known as optical tomography (OT), is a
biomedical imaging modality with unique capabilities to assess
physiological function, such as blood volume and tissue oxy-
genation [1]. In a typical OT experiment, a material medium
is illuminated by a narrow collimated beam and the light that
propagates through the medium is collected by an array of
detectors. In many instruments, the sources and detectors
are coupled to the medium by means of optical fibers and
the number of measurements which can be obtained varies
from 102 − 105 source-detector pairs. More recently, noncontact
imaging systems have been introduced, wherein a scanned
beam and a lens-coupled CCD camera are employed to
replace the aforementioned illumination and detection fiber-
optics [2–4]. Using such a noncontact method, extremely large
datasets of order 107 − 109 measurements can readily be
acquired. The availability of such datasets has been shown
to vastly improve the quality of images in OT [4–6].

The inverse problem of OT is to reconstruct the optical
properties of a highly scattering medium from boundary
measurements. The standard computational approach to this
problem is to minimize a penalized least-squares functional
[1,7–15]. Although such optimization methods are extremely
flexible, they have very high computational cost and are
not well suited to the large datasets of noncontact optical

tomography. Direct reconstruction methods offer an alternative
approach to optimization-based algorithms [16–23]. By direct
reconstruction, we mean the use of inversion formulas and
associated fast algorithms. Such formulas have been derived
for particular experimental geometries, including those with pla-
nar boundaries. To date, these methods have been developed
within the framework of the diffusion approximation (DA)
to the radiative transport equation (RTE). We note that the
DA is accurate when the energy density of the optical field varies
slowly on the scale of the transport mean free path. The DA
breaks down in optically thin layers, near boundaries and in
strongly absorbing media, conditions that are frequently
encountered in biomedical applications.

In this paper, we develop a direct reconstruction method for
the inverse problem in the transport regime. The primary tools
that we exploit are an integral equation formulation of the for-
ward problem [24] and the recently derived plane-wave decom-
position for the Green’s function of the RTE [25–27]. Using
this approach, we show that the linearized inverse problem can
be formulated in terms of the inversion of a suitably defined
Fourier–Laplace transform. We illustrate this result with
numerical simulations and reconstructions of experimental data
obtained from a noncontact OT system.

The remainder of this paper is organized as follows.
In Section 2, we introduce the linearized forward problem
within the accuracy of the Rytov approximation. This is fol-
lowed in Section 3 by the derivation of the Fourier–Laplace
inversion formula for the slab geometry. Numerically simulated
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reconstructions are presented in Section 4. Reconstructions
from experimental data are shown in Section 5. Our conclu-
sions are presented in Section 6. The derivation of the
Green’s function for the RTE with reflecting boundary condi-
tions is given in Appendix A.

2. FORWARD PROBLEM

A. Radiative Transport

The propagation of multiply scattered light in a volume Ω is
taken to be governed by the RTE:

ŝ ·∇I��μa�r��μs�r��I�μs�r�
Z

A�ŝ; ŝ 0�I�r; ŝ 0�d2s 0�S�r; ŝ�:

(1)

Here, I�r; ŝ� denotes the specific intensity at the point r in the
direction ŝ, S is the source, and μa and μs are the absorption and
scattering coefficients of the medium. The phase function A is
normalized so that

R
A�ŝ; ŝ 0�d2s 0 � 1 for all ŝ. The specific

intensity is also assumed to obey the half-range boundary
condition

I�r; ŝ 0� � R�jŝ · ŝ 0j�I�r; ŝ�; n̂ · ŝ 0 < 0 on ∂Ω: (2)

Here, R is the reflection coefficient, n̂ is the outward unit nor-
mal to ∂Ω, and ŝ and ŝ 0 are the incident and reflected
directions at the boundary, respectively. See Appendix A for
further details.

We assume that the scattering coefficient μs is constant
everywhere in the medium but the absorption coefficient μa
varies with position. We thus decompose μa into a constant
part μ̄a and a spatially varying part δμa:

μa�r� � μ̄a � δμa�r�: (3)

The RTE (1) thus becomes

ŝ ·∇I�μt I�δμa�r�I�μs

Z
A�ŝ; ŝ 0�I�r; ŝ 0�d2s 0 �S; (4)

where μt � μ̄a � μs. The solution to Eq. (4) is given by

I�r; ŝ� � I 0�r; ŝ� −
Z

d3r 0d2s 0G�r; ŝ; r 0; ŝ 0�δμa�r 0�I�r 0; ŝ 0�:

(5)

Here, I 0 is the incident-specific intensity, defined as the
solution to Eq. (1) with μa � μ̄a obeying the boundary con-
dition (2). The Green’s function G satisfies the equation

ŝ · ∇rG�r; ŝ; r 0; ŝ 0� � μtG�r; ŝ; r 0; ŝ 0� � (6)

μs

Z
A�ŝ; ŝ 0 0�G�r; ŝ 0 0; r 0; ŝ 0�d2s 0 0 � δ�r − r 0�δ�ŝ − ŝ 0� (7)

and obeys the boundary condition (2). Equation (5) is the ana-
log of the Lippmann–Schwinger equation for the RTE. It can
be linearized by the Rytov approximation [1]:

− ln

�
I�r; ŝ�
I 0�r; ŝ�

�
� 1

I 0�r; ŝ�
Z

d3r 0d2s 0G�r; ŝ; r 0; ŝ 0�δμa�r 0�I0�r 0; ŝ 0�: (8)

It will prove convenient to introduce the data function ϕ,
which is defined by

ϕ � −I 0 ln�I∕I 0�: (9)

It follows from Eq. (8) that ϕ obeys the integral equation

ϕ�r� �
Z

d3r 0d2s 0G�r; ŝ; r 0; ŝ 0�δμa�r 0�I0�r 0; ŝ 0�: (10)

B. Slab Geometry

For the remainder of this paper we consider a three-
dimensional slab-shaped medium, as shown in Fig. 1. The in-
cident field is taken to be generated by a point source oriented
in the inward normal direction located on the z � 0 plane.
Thus I0 � G�r; ŝ; ρs ; 0; ẑ�, where ρs is the transverse coordi-
nate of the source. Light exiting the slab in the outward normal
direction is collected by a point detector that is located on the
plane z � L. The integral equation (10) thus becomes

ϕ�ρs ; ρd � �
Z

d3rd2sG�ρd ; L; ẑ; r; ŝ�G�r; ŝ; ρs ; 0; −ẑ�δμa�r�;

(11)

where ρd is the transverse coordinate of the detector.
To make further progress, we make use of the method of

rotated reference frames to express the Green’s function as
an expansion in two-dimensional plane waves and spherical
harmonics [25–27]. The details are presented in Appendix A,
where it is shown that

G�r; ŝ;r 0; ŝ 0�

�
Z

d2q
�2π�2 e

−iq·�ρ−ρ 0�
X∞
l�0

Xl

m�−l

klm�q;z�Y lm�ŝ�Y �
lm�ŝ 0�; (12)

where r � �ρ; z� and klm is defined in Eq. (A19). Using this
result, we find that Eq. (11) becomes

ϕ�ρs ; ρd � �
Z

d3r
Z

d2q1
�2π�2

Z
d2q2
�2π�2 e

i�q1−q2�·ρe−i�q1·ρs−q2·ρd �

× κ�q1; q2; z�δμa�r�; (13)

where

κ�q1; q2; z� �
X∞
l�0

Xl

m�−l

�−1�mklm�q1; z�k�lm�q2; L − z�: (14)

x

y

z

SOURCES DETECTORS

0 L

Fig. 1. Illustrating the slab geometry.
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3. INVERSE PROBLEM

The inverse problem consists of recovering the absorption δμa
from measurements of the data function ϕ. To proceed, we
assume that the sources and detectors are placed on square lat-
tices with lattice spacings hs and hd , respectively. The positions
of the sources and detectors are given by

ρs � hs�nsx x̂� nsyŷ�; ρd � hd �ndx x̂� ndyŷ�; (15)

where nsx , nsy, ndx , and ndy are integers. We introduce the
Fourier transform of the data function:

ϕ̃�qs ; qd � �
X
ρs ;ρd

ei�qs ·ρs�qd ·ρd �ϕ�ρs ; ρd �: (16)

Here, the vectors qs and qd lie in the first Brillouin zone (FBZ)
of the source and detector lattices:

−
π

hs
≤ q�x�s ; q�y�s ≤

π

hs
; −

π

hd
≤ q�x�d ; q�y�d ≤

π

hd
: (17)

To compute the Fourier transform, we make use of Eq. (13)
and the identityX

ρ

eiq·ρ �
�
2π

h

�
2X

v
δ�q � v�; (18)

where v denotes a reciprocal lattice vector and
q ∈ �− π

h ;
π
h� × �− π

h ;
π
h�. We thus obtain

ϕ̃�qs ; qd � �
1

h2s h2d

X
vs ;vd

Z
dzκ�qs � vs ; −qd � vd ; z�

× fδμa�qs � qd � vs − vd ; z�; (19)

where

fδμa�q; z� � Z
d2ρeiq·ρδμa�ρ; z�: (20)

Next, we perform the change of variables,

qs �
q
2
� p; qd � q

2
− p; (21)

where qs and qd are two-dimensional vectors. We also
assume that δμa is transversely band-limited to the FBZs of
the source-detector lattices (corresponding to the band limit
minf2π∕hs; 2π∕hd g) and therefore put vs � 0 and vd � 0
in Eq. (19), which thus becomes

Φ�q; p� �
Z

L

0

K �q; p; z�fδμa�q; z�dz; (22)

where

Φ�q; p� � h2s h2d ϕ̃
�
q
2
� p;

q
2
− p

�
; (23)

K �q; p; z� � κ

�
p� q

2
; p −

q
2
; z
�
: (24)

For fixed q, Eq. (22) defines a system of one-dimensional
integral equations for the Fourier transform fδμa. Following the
general approach of [23], we construct the pseudoinverse sol-
ution of Eq. (22) and perform an inverse Fourier transform to
obtain the inversion formula:

δμa�ρ; z� �
Z
FBZ

d2q
�2π�2 e

−iq·ρ
X
ν

R�σν�q��
σ2ν�q�

X
p;p 0

hf ν�q�jpi

× K ��q; p 0; z�hp 0jf ν�q�iΦ�q; p�: (25)

Here, f ν and σν are the singular functions and singular values
of the matrix M ,X

p 0
hpjM�q�jp 0ihp 0jf ν�q�i � σ2ν�q�hpjf ν�q�i; (26)

where M is defined by

hpjM�q�jp 0i �
Z

L

0

K �q; p; z�K ��q; p 0; z�dz: (27)

The regularizer R is introduced to limit the effect of
small singular values. Common choices of R include the
Tikhonov regularizer R�σ� � σ2∕�σ2 � ϵ� or the step function
R�σ� � θ�σ − ϵ�, where ϵ > 0. In our computations, both
approaches give similar results.

4. NUMERICAL SIMULATIONS

In this section we report the results of numerical reconstruc-
tions from simulated forward data. The medium to be recon-
structed consists of a set of five point absorbers, as shown in
Fig. 2. The absorbers are assumed to have the same scattering
coefficients and phase functions as the medium in which they
are embedded, but have different absorption coefficients. The
absorption coefficient δμa is given by

δμa�r� � l�2
X5
i�1

δ�r − ri�; (28)

where the positions of the absorbers are �x1; y1; z1� �
�−4l�; 2l�; z0 − l��, �x2; y2; z2� � �−2l�; 4l�; z0 − l��,
�x3; y3; z3� � �0; 0; z0�, �x4; y4; z4� � �2l�; −4l�; z0 � l��,
and �x5; y5; z5� � �4l�; −2l�; z0 � l��. The optical proper-
ties of the background medium are taken to be

μ̄a � 0.05 cm−1; μs � 100 cm−1; g � 0.9: (29)

Note that l� � 1.00 mm in this case. The above values are
typical for biological tissues in the near-IR spectral range. The
data function Φ is calculated according to Eq. (22) for a sample
with prescribed δμa. Gaussian noise with zero mean and a stan-
dard deviation of 1% of the average signal is added to the data
function Φ for each numerical experiment. Reconstructions of

Fig. 2. Illustrating the set of five point absorbers.
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δμa are calculated from Eq. (25) using the step function
regularizer. The sum over l in the Green’s function (12) is trun-
cated at l � lmax � 9.

The source and detector positions are given by Eq. (15) with
−N s ≤ nsx ; nsy ≤ N s and −Nd ≤ ndx; ndy ≤ Nd . We also set
Nd � 120 and N s � 120hd∕hs. The wave vectors q and p
are discretized as

q � 2π
hd �2N FBZ�1� �jx x̂� jyŷ�; −Nq ≤ jx ; jy ≤ Nq;

p � 2π
hd �2N FBZ�1� �kx x̂� kyŷ�; 0 ≤ kx; ky ≤ Np − 1;

(30)

where N FBZ is the number of points in the FBZ. We take
Nq andNp to be much smaller thanN FBZ to control numerical
stability at high frequencies. We have found that N FBZ � 120,
Nq � 28, and Np � 7 are suitable choices. Finally, we note
that numerical integration over z in Eq. (27) is carried out
using Simpson’s rule, with discretionzation zj � j�L − 2l��∕
Nz � l� �j � 0; 1;…; N z�. For L � 10l� and 6l� we take
Nz to be 160 and 80, respectively.

A. Results

Reconstructions of δμa are shown in Figs. 3 and 4. Results are
shown for two different slab thicknesses L � 6l�, 10l�. The
source and detector lattice spacings are hs � 0.2l� and
hd � 0.1l�, respectively. In Fig. 3, we take L � 10l� and
z0 � 5l� in panel (a) and L � 6l� and z0 � 3l� in panel
(b). The regularization parameter is set to be ε∕

ffiffiffiffiffi
l�p

�
10−6 for (a) and ε∕

ffiffiffiffiffi
l�p

� 10−5 for (b). We see that the
absorber is clearly reconstructed in both panels. We will define
the resolution as the full width at half-maximum (FWHM) of

the point spread function of the central absorber. Thus the res-
olution is approximately 2.0l� in (a) and 1.5l� in (b).

B. Computational Complexity

The reconstructed images are obtained in 90 s using a four-cpu
parallel machine of 1.3 GHz Itanium-2 processors. The most
computationally expensive part of the reconstruction is the cal-
culation of the kernel K �q; p; z�, which is obtained from klm.
To compute klm, the Wigner function d l

mM and f �	�
Mn must be

calculated. For each q�0 < q ≤ qmax�, the construction of d l
mM

requires O��lmax � 1��lmax � 2��lmax � 3�� floating point op-
erations and the calculation of f �	�

Mn requires O��lmax � 1�6�
floating point operations. Therefore, when q is approximated
by nq discrete points, the computation of klm requires
O�Nznql 8max� floating point operations. Thus the computation
of K requires O�N 2

qN 2
pN zl 2max� floating point operations.

5. EXPERIMENTAL RESULTS

A. Experimental Setup

We have tested the reconstruction algorithm with experimental
data using a previously described noncontact OT system [4].
The source is a continuous-wave stabilized diode laser operating
at a wavelength of 785 nm with an output power of 6 mW.
The sample chamber is a rectangular box, constructed of clear
acrylic, of depth 1 cm with square faces of area 15 cm × 15 cm.
The chamber is filled with a scattering medium in which the
objects to be imaged are placed. The medium consists of a 1%
solution of Intralipid in water. The beam is scanned by a pair of
mirrors on one face of the sample and the transmitted beam is
imaged onto a CCD.

Fig. 3. Reconstructed δμa�x; y � 0; z � z0�∕max�δμa�x; 0; z0��
are shown as a function of x∕l�. The following cases are considered:
L � 10l� and z0 � 5l� (top) and L � 6l� and z0 � 3l� (bottom).

Fig. 4. Tomographic reconstruction of δμa for five point absorbers
in a slab with L � 6l� and for z0 � L∕2. The function shown by the
color scale is δμa�r�∕maxr�δμa�r��. The field of view in each panel is
16l� × 16l�.
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A tomographic dataset is acquired by raster scanning the
beam over a 29 × 29 square lattice with a lattice spacing
of 3.21 mm. This yields 841 source positions within a
9 cm × 9 cm area centered on the optical axis. For each source,
a 397 × 397 pixel region of interest is read out from the CCD.
This results in 157,609 detectors arranged in a square lattice
with an effective lattice spacing equivalent to 0.36 mm. Thus
a dataset of 1.3 × 108 source-detector pairs is acquired.

B. Two Rods

In this section, we show the reconstruction of a pair of black
metal rods. The rods have a diameter of 3 mm and are sus-
pended in the midplane of the sample chamber. The optical
properties of the background medium are

μ̄a � 0.02 cm−1; μs � 20 cm−1; g � 0.65;

k � 0.02h−1d ; l � 20hd ; (31)

where k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cμa∕D

p
and hd � 0.36 mm is the lattice spacing

on the detector plane. These parameters yield a transport mean
free path of l� � 1.4 mm.

Initially, we set the separation of the rods to be 3 mm and
take lmax � 9. In Fig. 5, tomographic images are displayed with
a slice separation of 1 mm. It can be seen that in the central
slice, which is equidistant from the source and the detector
planes, that the rods are well resolved. The shallower and
deeper slices show that the rods remain well resolved but with
a smaller diameter, as expected. Figure 6 shows a plot of the
reconstruction along the line passing through the centers of
both rods in the central slice. The distance between the peaks
is 5.8 mm, which slightly underestimates the center-to-center
separation of the rods. The FWHM of the peaks is 2.3 mm,
which underestimates the diameter of the rods.

In a second experiment, we set the separation between the
rods to be 2 mm. In this case the reconstructed image is poorly
resolved. The lower panel in Fig. 6 shows a two-dimensional
plot in the central slice. It is important to note that the recon-
structed contrast is not expected to be quantitative owing to the
strong absorption in the interior of the metal rods. However, as
previously noted, the shape of the rods is recovered well.

C. Lemon and Lotus Root Slices

In a final set of experiments, a lemon or lotus root slice of thick-
ness approximately 4 mm is placed in the center of the sample
chamber. The background medium consists of 0.7% Intralipid
plus 0.07% India ink, with optical properties

μ̄a � 0.4 cm−1; μs � 20 cm−1; g � 0.65;

k � 0.13h−1d ; l � 20hd : (32)

Fig. 5. Reconstructions of two rods with 3 mm spacing. The field
of view is 6 cm × 6 cm. The number above each panel shows the
distance from the source plane.

Fig. 6. Reconstructed δμa∕μ̄a of the metal rods with (top) 3 mm
spacing and (bottom) 2 mm spacing along the x-axis in the central
plane at y � 0 and z � 5 mm.

Fig. 7. RTE reconstructions of a lemon slice. The field of view is
9 cm × 9 cm. The number above each panel shows the distance from
the source plane.
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Reconstructions of the lemon and lotus root are shown in
Figs. 7 and 8, respectively. A number of structural features of
the lemon, including the endocarp, mesocarp, central column
and septa, are readily visualized. Likewise, root tubes of varying
diameter are observable.

6. DISCUSSION

In summary, we have investigated the inverse problem of
optical tomography in the radiative transport regime. We have
developed and tested a fast image reconstruction algorithm that
is applicable to the large datasets of noncontact optical tomog-
raphy. Our results are illustrated by numerical simulations and
reconstructions from experimental data in model systems.

We conclude with several remarks. First, the spatial resolu-
tion of the reconstructed images in numerical simulations is
clearly superior to that obtained in experiments. There are a
number of contributing factors that explain this finding.
These include the finite size of the source and detector grids,
the presence of shot noise in the detected light, and noise in the
CCD array. We have also not accounted for systematic errors
associated with nonidealities in the optical system, such as
reflections from the lens surface. Second, the reconstructions
we have performed are carried out within a linearization of
the RTE. It may be expected that a nonlinear reconstruction
may overcome some of the above limitations, particularly with
respect to quantitative recovery of the absorption. One possible
approach to this problem is inversion of the Born series, which
has been carried out for the case of the DA [20–22]. Inversion
of the linearized forward problem is the first step in this pro-
cedure, which can be carried out by the method developed
herein. Finally, detailed comparisons of our results with recon-
structions carried out within the diffusion approximation will
be the subject of future research. It will be important to under-
stand the role of systematic errors as well as experimental noise
in controlling the resolution of reconstructed images. Some dis-
cussion of these points has been provided in [4,5].

APPENDIX A: GREEN’S FUNCTION
FOR THE RTE

In this appendix, we outline the calculation of the Green’s func-
tion for the RTE using the method of rotated reference frames
(MRRF). The MRRF was described in [25–27]. Here we sum-
marize the necessary results for the case of the slab geometry

with reflecting boundaries. We note that the MRRF has also
been extended to the case of reflecting boundaries in the half-
space geometry [28].

We begin by noting that the Green’s function for the RTE in
the slab geometry satisfies the equation

�ŝ ·∇� μt�G�r; ŝ;ρ0;0; ẑ�

� μs

Z
A�ŝ; ŝ 0�G�r; ŝ 0;ρ0;0; ẑ�d2s 0 � δ�ρ − ρ0�δ�z�δ�ŝ − ẑ�;

(A1)

together with the boundary conditions

G�r; ŝr ; ρ0; 0; ẑ� � R�jŝi · ẑj�G�r; ŝi; ρ0; 0; ẑ�;
n̂ · ŝ < 0; z � 0; L: (A2)

The reflection coefficient R is given by [29–34]

R�x� �
(

1
2

h�
x−nx0
x�nx0

�
2 �

�
x0−nx
x0�nx

�
2
i

x ≥ xc;
1 x < xc;

(A3)

where x0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2�1 − x2�

p
, xc �

ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
∕n, and n is the

index of refraction in the slab walls (see Fig. 9). We assume
that the phase function A is given by

A�ŝ; ŝ 0� �
Xlmax

l�0

Xl

m�−l

AlY lm�ŝ�Y �
lm�ŝ 0�; (A4)

where A0 � 1, A1 � g ∈ �0; 1�, and Al ∈ �0; 1� (l � 2; 3;…).
We adopt the Henyey–Greenstein model [35], and set

Al � g l ; l � 0; 1; 2;…: (A5)

In the MRRF [25–28], the specific intensity is given as a
superposition of eigenmodes I ���

μ and I �−�μ , where

I ���
μ �r; ŝ; q� � eiq·ρ−Qμ�q�z

Xlmax

l�0

Xl

m�−l

�−1�mffiffiffiffi
σl

p e−imφq̂ hl jϕμi

× d l
mM �iτ�qλμ��Y lm�ŝ�; (A6)

I �−�μ �r; ŝ; q� � eiq·ρ�Qμ�q�z
Xlmax

l�0

Xl

m�−l

�−1�lffiffiffiffi
σl

p e−imφq̂ hl jϕμi

× d l
m;−M �iτ�qλμ��Y lm�ŝ�; (A7)

Fig. 8. RTE reconstructions of a lotus root slice. The field of view is
9 cm × 9 cm. The number above each panel shows the distance from
the source plane.

Fig. 9. Illustrating the reflecting boundary condition.
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where

Qμ�q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1∕λ2μ

q
: (A8)

Here, λn�M � and jϕn�M�i are eigenvalues and eigenvectors of
matrix B�M � defined by

B�M�l l 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 −M 2

�4l2 − 1�σl−1σl

s
δl 0 ;l−1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�l � 1�2 −M 2

�4�l � 1�2 − 1�σlσl�1

s
δl 0 ;l�1; (A9)

where σl � μ̄a � μs�1 − g l �, l , l 0 � jM j; jM j � 1;…; lmax,
and M � 0;	1;	2;…. Note that we make use of a
multi-index μ � �M; n�, which runs over the set
f�M; n�jλn�M � > 0g. The d l

mM are analytically continued
Wigner’s d -functions, which can be recursively computed [25].
The Green’s function can be expressed as

G�r; ŝ; ρ0; 0; ẑ�

�
X
μ

Z
d2q
�2π�2 e

−iq·ρ0 �f ���
μ �q; n�I ���

μ �r; ŝ; q�

� f �−�
μ �q; n�e−Qμ�q�LI �−�μ �r; ŝ; q��: (A10)

The coefficients f ���
μ �q; n� and f �−�

μ �q; n� are determined
by the boundary conditions and are solutions to the linear
system�

M�����q� M��−��q�
M�−���q� M�−−��q�

��
f ����q; n�
f �−��q; n�

�
�

�
v���

v�−�

�
;

(A11)

where M ≥ 0, m ≥ 0, l � m� 1; m� 3;…,

v���
lm � δm0

X
l 0
B0
l l 0 �∞�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l 0 � 1

4π

r
; v�−�lm � 0; (A12)

and

M����
lm;Mn �

X
l 0
cl 0lm;Mn;M

�−−�
lm;Mn � �−1�M�mM����

lm;Mn; (A13)

M��−�
lm;Mn � �−1�M�mM�−��

lm;Mn;

M�−��
lm;Mn � e−Qμ�q�L

X
l 0
�−1�l 0cl 0lm;Mn;

(A14)

cl 0lm;Mn � �Bm
ll 0 �∞� − �−1�l 0�mBm

ll 0 �n��
1ffiffiffiffiffiffi
σl 0

p hl 0jϕμi

× fd l 0
mM �iτ�qλμ�� � �1 − δM0��−1�Md l 0

m−M �iτ�qλμ��g:
(A15)

Here, Bm
l l 0 �n� is given by

Bm
ll 0 �n� �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2l � 1��2l 0 � 1��l − m�!�l 0 − m�!

�l � m�!�l 0 � m�!

s
(A16)

×
Z

1

0

dxPm
l �x�Pm

l 0 �x�Rn�x�: (A17)

We note that B−m
ll 0 �n� � Bm

l l 0 �n�, and Bm
ll 0 �∞� is defined

by Bm
ll 0 �n� with Rn�x� ≡ 1. We also note that f �	�

−Mn�q; n� �
�−1�Mf �	�

Mn �q; n�. Finally, the Green’s function in the slab
geometry is obtained as [25]

G�r; ŝ; ρ0; 0; ẑ�

≃
Z

d2q
�2π�2 e

−iq·�ρ−ρ0�
Xlmax

l�0

Xl

m�−l

Y lm�ŝ�imklm�q; z�; (A18)

where the functions klm�q; z� are given by

klm�q; z� � �−i�me−imφq
X
M≥0;n

hl jϕn�M �iffiffiffiffi
σl

p × �e−QMn�q�zf ���
Mn �q; n�

� �−1�l�m�Me−QMn�q��L−z�f �−�
Mn�q;n��

× �d l
mM �iτ�qλn�M���

� �1 − δM0��−1�Md l
m;−M �iτ�qλn�M ����; (A19)

with φq the angle of q.
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