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Abstract
We propose a direct reconstruction method for the inverse transport problem
that is based on inversion of the Born series. We characterize the approx-
imation error of the method and illustrate its use in numerical simulations.
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1. Introduction

Optical tomography is a biomedical imaging modality that uses multiply-scattered light to
probe the spatial structure of biological tissue [1, 2]. The corresponding inverse problem is to
reconstruct the optical properties of a highly-scattering medium from boundary measure-
ments. The mathematical formulation of this problem is dictated primarily by spatial scale,
ranging from radiative transport theory at small scales to diffusion theory at the macroscale
[2]. In either case, the inverse problem is both nonlinear and severely ill-posed, which has the
effect of limiting the resolution of reconstructed images.

In radiative transport theory the propagation of multiply-scattered light through a material
medium is formulated in terms of a conservation law that accounts for gains and losses of
electromagnetic energy due to scattering and absorption. Let Ω be a bounded domain in d ,
for d 2 , with a smooth boundary ¶W. The fundamental quantity of interest is the specific
intensity u x,( )q , which is the intensity of light at the point x Î W in the direction d 1q Î - .
The specific intensity obeys the radiative transport equation (RTE)
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u x x u x k u x x, , , , d , , , 1d 1
d 1 ( ) ( )· ( ) ( ) ( ) ( ) ( )
òq q s q q q q q q + = ¢ ¢ ¢ Î W ´ -

-

u x g x x, , , , , 2( ) ( ) ( ) ( )q q q= Î G-

which we have written in its time-independent form. The attenuation coefficient x( )s is
assumed to be nonnegative for all x Î W. In addition, the scattering kernel k ,( )q q¢ is
nonnegative and obeys the reciprocity relation k k, ,( ) ( )q q q q¢ = - ¢ - and is normalized so
that

k , d 1, . 3d 1
d 1 ( ) ( )
ò q q q q¢ ¢ = Î -

-

We also introduce the sets G which are defined by

x n x, : 0 , 4d 1{ }( ) · ( ) ( )q qG = Î ¶W ´  >
-

with n being the outer unit normal to ¶W.
The inverse transport problem is to recover the coefficient σ from knowledge of the

albedo operator g u: ∣Ls G+ , where we assume that the scattering kernel k is known. We
note that in physical terms u ∣G+, corresponds to outgoing measurements of the specific
intensity. There is a considerable body of work on the inverse transport problem [4, 10–
12, 21, 22, 25–30]. If Ls is known, then σ can be reconstructed uniquely. This result follows
from analyzing the singularities of the albedo operator. The singular structure can be used to
recover σ with good stability.

It is important to note that angularly-resolved measurements of the specific intensity are
difficult to obtain in practice. Thus only partial knowledge of Ls is available from experiments.
The inverse problem with angularly-averaged measurements has been analyzed in [5, 6, 16, 17].
It can be seen that the effect of angular averaging is to destroy the singularities that are present
in the albedo operator. This results in severe ill-posedness of the inverse problem. In particular,
it is possible to reconstruct the low-frequency part of σ with logarithmic stability.

In previous work, we have proposed a direct method to solve the inverse problem of
optical tomography that is based on inversion of the Born series [15, 19, 20]. In this approach,
the solution to the inverse problem is expressed as an explicitly computable functional of the
scattering data. In combination with a spectral method for solving the linear inverse problem,
the inverse Born series leads to an image reconstruction algorithm with analyzable error and
stability. The inverse Born series has also been applied to the Calderon problem [3].

To date, the inverse Born series has only been employed to study the simplest inverse
problem in optical tomography, namely the reconstruction of the attenuation coefficient
within the diffusion approximation (DA) to the RTE. While this is an important first step, the
DA breaks down in many situations of practical interest, including those of relatively weak
scattering and strong absorption. Moreover, use of the DA limits the resolution of recon-
structed images to macroscopic scales.

In this paper, we apply the inverse Born series methodology to the inverse transport
problem. We characterize the approximation error of the method and illustrate its use in
numerical simulations. We find that the series appears to converge quite rapidly for low-
contrast objects. As the contrast is increased, the higher order terms systematically improve
the reconstructions until, at sufficiently large contrast, the series diverges.

The remainder of this paper is organized as follows. In section 2, we construct the Born
series for the RTE. We then derive various estimates that are later used to study the con-
vergence of the inverse series. The inversion of the Born series is taken up in section 3, where
we also obtain our main results on the convergence and approximation error of the method.
We consider the Born series and inverse Born series for angularly-averaged measurements in
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section 4. In section 5, we study in detail the case of a slab-shaped medium and present the
results of numerical reconstructions. Our conclusions are presented in section 6. Some details
concerning the slab problem and singular eigenfunctions for the RTE are described in the
appendices.

2. Forward problem

We consider the RTE (1) in a bounded domain. The forward problem is to determine the
specific intensity u for a given attenuation σ. We assume that the attenuation coefficient σ is
of the form

x x1 , 50( ) ( ( )) ( )s s h= +

where the background attenuation 0 ∣s s= ¶W is constant and x 1( )h > - for all x Î W. The
function η is the spatially varying part of the attenuation coefficient; it is assumed to be
supported in a closed ball Ba of radius a, centered at the origin, as shown in figure 1 (left). The
specific intensity u obeys the integral equation

u x u x G x x x u x x

x

, , , ; , , d d ,

, . 6d

0 0

1

d 1
( ) ( )( ) ( ) ( )

( ) ( )
òq q s q q h q q

q

= - ¢ ¢ ¢ ¢ ¢ ¢ ¢

Î W ´
W´
-

-

Here u0 obeys (1) with 0h = and G is the Green’s function for the background medium,
which satisfies the equation

G x x G x x k G x x

x x

G x x x

, ; , , ; , , , ; , d

,

, ; , 0, , .

7

x 0 d 1( ) ( ) ( )
( )

( )

( )·

( )

( )
( )

òq q s q q q q q q q

d d q q

q q q

 ¢ ¢ + ¢ ¢ =  ´  ¢ ¢ 

+ - ¢ - ¢

¢ ¢ = Î G-

-

It is easily seen that u0 is given by the formula

u x G x x n x g x x, , ; , , d d . 8
n

0
0

( ) ( )( ) ∣ · ( )∣ ( )
·ò òq q q q q q= ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

q¶W ¢ <

We note that (8) should not be confused with the collision expansion for the RTE [9].
The integral equation (6) has a unique solution. If we apply fixed point iteration to (6),

beginning with u u0= , we obtain an infinite series for u of the form

Figure 1. Illustrating the inverse transport problem in bounded (left) and unbounded
domains (right).
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u x u x u x u x, , , , , 90 1 2( ) ( ) ( ) ( ) ( )q q q q= + + + 

where

u x G x x u x x x j, , ; , , d d , 0, 1, . 10j j1 0
d 1

( ) ( )( ) ( ) ( )
òq s q q q h q= - ¢ ¢ ¢ ¢ ¢ ¢ ¢ = ¼+

W´ -

We will refer to (9) as the Born series and the approximation to u that results from retaining
only the linear term in the series as the first Born approximation. It will prove useful to
express the Born series as a formal power series in tensor powers of η of the form

K K K , 111 2 3 ( )h h h h h hF = + Ä + Ä Ä + 

where the scattering data u u0F = - . The forward operators Kj are defined as

K f x G x x G x x G x x

G x x u x f x x x x

, 1 , ; , , ; , , ; ,

, ; , , ,..., d d ... d d ,

12

j
j j

j j j j j j j j j

1
0 1 1 1 1 2 2 2 2 3 3

1 1 0 1 1 1

a a

( ) ( ) ( )
( ) ( ) ( )( )( ) ( )

( )

òq s q q q q q q

q q q q q

= - ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

´ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

+

G ´ ´G

- -




where f L B Ba a( )Î ´ ´¥  . We take x,( )q Î G+, which corresponds to measuring the
specific intensity on ¶W in the outgoing direction.

We will require an estimate on the norm of the operator Kj. We introduce the set
B .a a

d 1G = ´ -

Lemma 2.1. The operator

K L B B L:j a a
1( ) ( )⟶´ ´ G¥

+

defined by (12) is bounded and

K ,j
j 1 zx - 

where ξ and ζ are given by

G x x xsup , ; , d d ,
x

0
, a a

( )
( ) òx s q q q= ¢ ¢

¢q¢ ÎG G

u x G x x xd d sup , ; , d d .
x

0 0
,a a

( )
( )ò òz s q q q q= ¢ ¢

¢qG ¢ ÎG G+

Proof. The proof is based on repeated application of the Hölder inequality. We begin by
observing that

K f G x x G x x

G x x u x f x x x x x

, ; , , ; ,

, ; , , , , d d d d d d .

13

j L
j

j j j j j j j j j

0 1 1 1 1 2 2

1 1 0 1 1 1

a a

1

( ) ( ) ( )
( ) ( )

( )

( )  ò òs q q q q

q q q q q q

¢ ¢ ¢ ¢ ¢ ¢

´ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¼ ¢ ¢ ¢ ¢ ¢

G G G ´ ´G

- -

+
+

  




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We thus have

K u x G x x G x x

G x x x x x

d d sup , ; , , ; ,

, ; , d d d d d d . 14

j
j

j j
x

j j j j j j

0 0
,

1 1 1 1 2 2

1 1 1 1 1 1

a
j j a a a

( )
( ) ( )

( )
( )

 ò ò òs q q q q q

q q q q q

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

´ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢qG ÎG G G ´ ´G

- - - -

+

  





Let us define

I G x x G x x

G x x x x x

sup , ; , , ; ,

, ; , d d d ... d d . 15

j
j

x

j j j j j j

1 0
,

1 1 1 1 2 2

1 1 1 1 1 1

j j a a a

( )
( ) ( )

( )
( )

ò òs q q q q

q q q q q

= ¢ ¢ ¢ ¢ ¢ ¢

´ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢q
-

ÎG G G ´ ´G

- - - -

+




We then have

I I . 16j j1 2 ( ) x- -

Note that I1 is given by

I G x x G x x x x

G x x x

sup , ; , , ; , d d d d

sup , ; , d d . 17

x

x

1 0
2

,

0
,

a a

a

( ) ( )

( )
( )

( )

( )



ò

ò

s q q q q q q

xs q q q

= ¢ ¢ ¢ ¢   ¢ ¢

¢ ¢



¢

q

q

 ÎG G ´G

¢ ÎG G

+

+

Thus we obtain

I G x x xsup , ; , d d . 18j
j

x
1

1
0

, a

( )
( )

( ) òx s q q q¢ ¢
¢q

-
-

¢ ÎG G+

Putting everything together we obtain

K , 19j
j 1 ( ) zx - 

which completes the proof. ,

We now consider the forward problem in d for d 2 . The specific intensity u satisfies

u x x u x k u x q x x, , , , d , , , ,

20

d d 1
d 1 ( ) ( )· ( ) ( ) ( ) ( ) ( )

( )

 
òq q s q q q q q q q + = ¢ ¢ ¢ + Î ´ -

-

where q is the source. We measure the specific intensity u on a surface X¶ as shown in
figure 1 (right). Correspondingly, we define x X n x, : 0d 1{( ) · ( ) }q qG = Î ¶ ´ >+

- . The
solution to (20) is given by the Born series (9), where in the definition of the forward operator
Kj, the Green’s function G is replaced by the fundamental solution G0. G0 obeys (7) with the
condition G x x, ; , 00 ( )q q¢ ¢  as x x,∣ ∣ ∣ ∣¢  ¥ for all , d 1q q¢ Î - . We note that u0, the
solution to (20) with 0h = , is now given by

u x G x x q x x, , ; , , d d . 210 0
d d 1

( ) ( )( ) ( )
 òq q q q q= ¢ ¢ ¢ ¢ ¢ ¢

´ -

Remark 2.1. The analysis of the Born series for the case of an infinite medium carries over
directly from section 2. In particular, lemma 2.1 and proposition 2.2 both hold.

The fundamental solution G0 gives an upper bound on the Green’s function G as follows.
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Lemma 2.2 (Case–Zweifel [9]). Let 10s > . Then

G x x x G x x x x, ; , d d , ; , d d , , .d
0

1
d d1 1

( ) ( ) ( ) 
 ò òq q q q q q q¢ ¢ ¢ ¢ ¢ ¢ Î W ´

W´ W´

-
- -

The proof is a consequence of the fact that G G0 - satisfies the RTE with nonnegative
boundary values G G G0 0( )∣- =G- . We see immediately from proposition 2.2 that

, , 220 0 ( ) x x z z

where

G x x xsup , ; , d d , 23
x

0 0
,

0
a a

( )
( )

( )òx s q q q= ¢ ¢
¢q¢ ÎG G

u x G x x xd d sup , ; , d d . 24
x

0 0 0
,

0
a a

( )
( )

( )ò òz s q q q q= ¢ ¢
¢qG ¢ ÎG G+

We thus obtain the following consequence of lemma 2.1, and proposition 2.2.

Proposition 2.1. The operator

K L B B L:j a a
1( ) ( )⟶´ ´ G¥

+

defined by (12) is bounded and

K ,j
j

0 0
1 z x - 

where 0x and 0z are given by (23) and (24), respectively.

For dimension d = 3, we have [14]

G x x
x x

x x

x x

k k k

k
k

, ; ,
e

1

4 2
e

1

i i
1

1
tan d . 25

x x

k x x

0
0

2

3
i

0 0

1

0

1

0

3

( ) ( )

( )( )

∣ ∣ ∣ ∣

( ) · · ∣ ∣
∣ ∣ ( )

∣ ∣

·( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ò

q q
s

d q d q q

p p s q s q s

¢ ¢ =
- ¢

-
- ¢
- ¢

- ¢

+
+ + ¢

-

s- - ¢

- ¢ -
-

Let us evaluate 0x and 0z , defined by (23) and (24), for the ball Ω of radius r (r a> ) and
the isotropic delta-function source q x( )d= at the origin. By putting x 0¢ = ( 0x is inde-
pendent of q¢), we obtain

a k a k a k a

k a

k

k k
d k

1 e 2 sin cos tan

tan
.

26

a

0
0

0
2

0 2

1
0

2

1
0

0 ( )(∣ ∣ ) ∣ ∣ (∣ ∣ )
(∣ ∣ )

∣ ∣
∣ ∣ (∣ ∣ )

∣ ∣

( )

⎡⎣ ⎤⎦
òx

s
s
p

s

s
=

-
+

-
-

s- ¥ -

-

We obtain 0z as

a
k a k a k a

k a

k

k k
d k

r k r k r k r

k r

k

k k
d k

4
1 e 8

sin cos tan

tan

1
1 e

2 sin cos tan

tan
.

27

a

r

0
0

2

0 2

1
0

2

1
0

0
2

2

0 2

1
0

1
0

0

0

( ) ( )
( )

( ) ( )
( )

(∣ ∣ ) ∣ ∣ (∣ ∣ )
(∣ ∣ )

∣ ∣
∣ ∣ ∣ ∣

∣ ∣

(∣ ∣ ) ∣ ∣ (∣ ∣ )
(∣ ∣ )

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
( )

⎡

⎣
⎢⎢

⎡⎣ ⎤⎦ ⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎡⎣ ⎤⎦ ⎤
⎦
⎥⎥

ò

ò

z
p
s

s

s

s p

s

s

= - +
-

-

´ - +
-

-

s

s

-
¥ -

-

-
¥ -

-
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2.1. Convergence of the Born series

As an application of proposition 2.1 we obtain a sufficient condition for the convergence of
the Born series (11).

Proposition 2.2. If the smallness condition 1L Ba( )h x<¥  holds, then the Born series
(11) converges in the L1 norm.

Proof. We majorize the sum

K 28
j

j L1 ( )( )å h hÄ Ä G+
  

by a geometric series

K K 29
j

j L
j

j L B
j

a
1 ( )( ) ( )å åh h hÄ Ä G+ ¥     

, 30
j

j
L B
j1

a
( )( ) åz x h-

¥ 

which converges if 1L Ba( )h x<¥  . ,

3. Inverse problem

The inverse transport problem is to reconstruct the coefficient η everywhere within Ω from
measurements of the scattering data Φ on ( )G W+ . In the case of an infinite medium, Φ is
assumed to be measured on a surface X¶ containing the support of η, as shown in figure 1.
Following [19], we express η as a series in tensor powers of Φ of the form

, 311 2 3 ( )  h = F + F Ä F + F Ä F Ä F + 

where the inverse operators L L:j a
1( ) ( ) G ´ ´ G  G+ +

¥ are given by

K I, 321 1 ( ) =

K , 332 1 2 1 1 ( )   = - Ä

K K K K K . 343 2 1 2 2 2 1 1 3 1 1 1( ) ( )      = - Ä + Ä + Ä Ä

For j 2 , we have

K K . 35j
m

j

m
i i j

i i
1

1

1 1

m

m

1

1 ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟   å å= - Ä Ä Ä Ä

=

-

+ =
 



We will refer to (31) as the inverse Born series.
The operator 1 is the regularized pseudoinverse of K1. It is defined as follows. Consider

the Tikhonov functional T which is given by

T K F , 36L1 1( ) ( ) ( )( )h h f a h= - +G+
 

where F is a convex penalty function and 0a > is a regularization parameter [23]. The
minimizer of T is denoted †h and is referred to as the regularized pseudoinverse solution of
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K1h f= . The operator 1 is defined as the map :1
† f h . Here we take Xh Î , where X is

a smooth and uniformly convex subspace of L ( )W¥ . Since K1 is bounded, it follows that †h
exists and is unique [23, 24].

The inverse Born series for the inverse diffusion problem was analyzed in [19]. It was
shown that if the operators Kj obey certain norm estimates then the inverse Born series
converges. It is important to note that the limit of the inverse Born series does not, in general,
coincide with the coefficient η. We characterize the approximation error as follows.

Theorem 3.1 (Error estimate for the inverse Born series). Suppose that
11 0 0( ) x z< +  and 1L B1 0 0a

( )( ) x zF < +¥  . Let M max ,L Ba
( ( )h= ¥ 

K L B1 1 a
)( ) h ¥  and assume that M 1 0 0( )x z< + . Then the inverse Born series (31)

converges and the following error estimate holds:

C I K ,
j

j

L B
L B

1
1 1

a

a
( )

( )
( ) åh h- F Ä Ä F -

=

¥

¥

¥  

where C C M, , ,0 0 1( )x z=   .

The proof of theorem 3.1 makes use of the norm estimates (2.1) and follows the same
approach as the proof of theorem 3.1 in [19].

Remark 3.1. We emphasize that 1 is the regularized pseudoinverse of K1. As a
consequence, the inverse Born series does not converge to η. However, if η is known a priori
to belong to the subspace on which it is possible to invert K1, then the limit of the series
coincides precisely with η. Further discussion of this point is provided in [19].

3.1. Convergence

We define the radii of convergence

R
1

,
1

. 37( )
x x z

= =
+

Figure 2. The radii of convergence R and  for (26) and (27) with L l10 s= .

Inverse Problems 31 (2015) 095009 M Machida and J C Schotland

8



We will refer to R as the radius of convergence of the Born series and  as the radius of
convergence of the inverse Born series.

Figure 2 illustrates the convergence of the Born and inverse Born series in three-
dimensional space. We plot R and for (26) and (27) with 1.010s = and L l10 s= , where ls
is the scattering length. Note that the unit of length is ls in the RTE (1). We see that R and
decay rapidly as functions of the radius a of the ball Ba.

4. Angularly-averaged measurements

As noted in the introduction, angularly-resolved measurements of the specific intensity are
difficult to obtain in practice. Instead, angularly-averaged intensity measurements of the form

I x nA u x, d 38
n 0

( ) · ( ) ( ) ( )
·ò q q q q=
q >

are often considered. Note that A = 1 for fully-averaged measurements. In the case of an
aperture which selects photons traveling in the outward normal direction, we have
A n( )d q= - .

It is straightforward to modify the Born series to account for the effect of angular
averaging. equation (11) becomes

. 391 2 3 ( )h h h h h hY = + Ä + Ä Ä + K K K

Here the angularly average scattering data Ψ and the operators jK are defined by

x nA x, d , 40
n 0

( ) · ( ) ( ) ( )
·ò q q q qY = F
q >

f x nA K f x x, d , , 41j
n

j
0

( ) ( )( ) · ( ) ( ) ( )
·ò q q q q= Î ¶W
q >

K

where f L B Ba a( )Î ´ ´¥  . The following result is an immediate consequence of the
proof of lemma 2.1 and proposition 2.1.

Proposition 4.1. The operator

L B B L:j a a
1( ) ⟶ ( )´ ´ ¶W¥ K

defined by (41) is bounded and

,j A
j
0

1 z x¥
- K

where 0x is given by (23) and

u x n A G x x xd d sup , ; , d d .A
x

0 0
,a a

( )
( )

∣ · ∣ ( )ò òz s q q q q q q= ¢ ¢
¢qG ¢ ÎG G+

The inverse problem with angularly-averaged measurements is to recover the coefficient η
from measurements of Ψ on ¶W. The inverse of the Born series (39) for the angularly-
averaged scattering data Ψ has the form (31), where the scattering data Φ is replaced by Ψ and
the j are constructed according to (35), with jK taking the place of Kj. It follows from
proposition 4.1 that theorem 3.1 holds.
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5. Slab problem

In this section we consider the slab problem, for which we will implement and test the inverse
Born series reconstruction. The problem is defined in section 5.1 where we also introduce
some useful facts about so-called singular eigenfunctions of the RTE. The corresponding
Born and inverse Born series are then constructed in section 5.2. Our numerical results are
presented in section 5.4.

5.1. Setup

Let us consider a homogeneous slab-shaped medium with attenuation 1s embedded in a
homogeneous infinite medium with attenuation 0s , where 1 0s s> . See figure 3. We suppose
the embedded medium occupies the strip a z a - . We consider an isotropic plane-
parallel source on the planes X¶ of the form

q z z L z L, , 42( ) ( ) ( ) ( )q d d= + + -

where L a> . The specific intensity u z,( )m is assumed to be measured on the planes at
z L L,= - . We also assume that the medium is isotropically scattering, with k 1 4( )p= . In
this setting [7, 13], the RTE (20) becomes

u

z
z u u z q z z

1

2
, d , , , , 1, 1 , 43

1

1 ( )( ) ( ) ( ) ( ) [ ] ( )òm s m m q m
¶
¶

+ = ¢ ¢ + Î -¥ ¥ ´ -
-

where cosm q= , with θ the usual polar angle in spherical coordinates and u 0 as
z∣ ∣  ¥. Here the coefficient σ is given by

z z z
z a a

z a a
1 ,

, ,

0 , ,
1. 440

1
1

1

0
( ) ( ( )) ( )

[ ]
[ ]

( )
⎧⎨⎩s s h h
h

h
s
s

= + =
Î -
Ï -

= -

We note that (43) is invariant under the transformation z z, ,( ) ( )m m - - and hence
u z u z, ,( ) ( )m m- - = . Therefore with this mirror symmetry, we can restrict our attention to
the half-space (z 0> ). The RTE (43) thus becomes

Figure 3. The slab problem in section 5.
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u

z
z u u z z L z

1

2
, d , 0 , 45

1

1 ( )( ) ( ) ( )òm s m m d
¶
¶

+ = ¢ ¢ + - < < ¥
-

u u0, 0, , 46( ) ( ) ( )m m- =

u z z, 0, . 47( ) ( )m   ¥

The Green’s function G z z, ; ,( )m m¢ ¢ corresponding to (45) obeys

G

z
G G z z z z

1

2
, ; , d . 480

1

1 ( ) ( )( ) ( )òm s m m m d d m m
¶
¶

+ =  ¢ ¢  + - ¢ - ¢
-

It is known that the solution to the RTE (45) can be expressed as a superposition of
eigenmodes ,( )f t m , which are known as singular eigenfunctions [8, 9]. Here τ takes either
discrete values 0n ( 10n > ) or lies in the continuous spectrum between 1- and 1. The
construction of the singular eigenfunctions is outlined in the appendix. We can now express
u0 as

u z u z u z u z, , , , , , , d 490 0 0 0 0 0 0
1

1

0( ) ¯ ( ) ( ) ¯ ( ) ( ) ¯ ( ) ( ) ( )òm n f n m n f n m n f n m n= + - - +
-

u z, , , 500¯ ( ) ( ) ( )å t f t m=
tÎGt

where u0¯ are Fourier coefficients and

: , 1, 1 . 510{ }( ) ( )t t n tG = Î =  Î -t

The expansion (49) is referred to as the Case transform [18].

5.2. The Born and inverse Born series

The Born series corresponding to the RTE (43) is of the form

u L u L

K K

, ,

, 52
0

1 2( ) ( )
( ) ≔ ( ) ( )

( ) ( ) ( )
m m m

h m h h m
F -

= + Ä + 

where

u z G z L, , ; , d 530
1

1 ( )( ) ( )òm m m m= ¢ ¢
-

and Φ is the data function, whose dependence on the parameter L is not indicated. The
operator Kj is defined by

K f G L z G z z

G z z G z L f z z z z

1 , ; , , ; ,

, ; , , ; , , , d d d d d , 54

j
j j

j j j j j j j j j

1
0

1

1

1 1 1 1 2 2

1 1 1 1 1

a a

( ) ( ) ( )
( ) ( )( )( ) ( )

( )

ò òm s m m m m

m m m m m m m

= - ¢ ¢ ¢ ¢ ¢ ¢

´ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¼ ¢ ¢ ¢ ¢ ¢ ¢

+

G ´ ´G -

- -







where f L a a0, 0,([ ] [ ])Î ´ ´¥  and a0, 1, 1a [ ] [ ]G = ´ - .
It will prove convenient, for both mathematical and computational reasons, to work with

the Born series expressed in terms of singular eigenfunctions. To proceed, we expand Φ into
singular eigenfunctions f:

, , 55( ) ¯ ( ) ( ) ( )åm t f t mF = F
tÎGt

where ¯ ( )tF are expansion coefficients. We can calculate ¯ ( )tF by using the orthogonality
relations (A.5)–(A.7). Likewise, we introduce the corresponding transformed forward
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operators by K L a a L: 0, 0,j
1¯ ([ ] [ ]) ⟶ ( )´ ´ Gt¥  . The Kj¯ are defined by the relations

K

K z z z z z z

,

, ,..., d d . 56

j

a a

j j j j
0 0

1 1 1( ) ( )( )

( )( ) ( )

¯ ( )ò ò

åh h m f t m

t h h

Ä Ä =

´ ¢ ¢ ¢ ¢ ¢ ¢

t


  

Using the above, we see that the transformed Born series is of the form

K K K . 571 2 3¯ ¯ ¯ ¯ ( )h h h h h hF = + Ä + Ä Ä + 

The inverse problem now consists of recovering the coefficient η from the data F̄. The
inverse of the Born series (57) has the form (31), where the scattering data Φ is replaced by F̄
and the j are constructed according to (35). That is,

, 58

1 2 3

1 2 3
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )

( ) ( ) ( )

  
h h h h= + + +
= F + F Ä F + F Ä F Ä F +




where the inverse operators L L a: 0,j
1¯ ( )⟶ ([ ]) G ´ ´ Gt t

¥ are given by (35) with j̄
taking the place of Kj.

5.3. Reconstruction algorithm

To proceed with numerical reconstructions, we discretize the spatial variable z and the
continuous spectrum ν as

z j
L

N N
1 ,

1
, i ,

1

1
, 59j z z

z
i( ) ( )n= - D D =

-
= D D =

+
n n

n

where j N1, 2, ... , z= and i N1, 2, ... ,= n . We define N N2 2= +t n (the number of
positive and negative continuous eigenvalues, and positive and negative discrete
eigenvalues).

The reconstructed coefficient η, to jth order in the inverse Born series, is calculated from
F̄ using the following forward function K and inverse function . We first calculate the
function K:

K j, ,..., , 60j1( ) ( )j h h=

where j is an integer and , , j1h h¼ are vectors of size Nz. The function returns a vector j of
size Nt. Each element { }j t is given by

K , 61j j
j

1{ }{ } ¯ ¯ ( ) ( )( )j h h t= Ä Ä = Ft
t



where j¯ ( )( ) tF is computed in (A.24).
Next we construct the inverse function . The function has an integer j and j vectors of

size Nt as its arguments and returns the vector η of size Nz:

j, ,..., . 62j1( )¯ ¯ ( )h = F F

The calculation is performed according to the following steps.
Step 1. For each iF̄ ( i j1   ), we compute the linear reconstruction

, 63i i1
¯ ¯ ( )h = F

where ih is a vector of size Nz and the matrix 1̄ is computed by singular value decomposition
as K1 1

¯ ¯ = +. If j = 1, the function returns 1h h= . In what follows, we assume j 1> .

Inverse Problems 31 (2015) 095009 M Machida and J C Schotland

12



Step 2. We form the compositions i i,..., m1[ ] such that i i jm1 + + = . For each m
( m j1 1  - ) and each composition i i,..., m1( ), by recursively using the function in (62),
we compute

m K i K i, , ,..., ,..., , ,..., . 64i m j i jtmp 1 1 1m1( )( )( ) ( )h h h h h= - +

Let 2S denote the sum of tmph for all
j

m
1
1

⎜ ⎟⎛
⎝

⎞
⎠

-
-

compositions.

Step 3. Step 2 is repeated for all m ( m j1 1  - ). Let 1S denote the sum of the results
from step 2:

. 65
m

j

1
1

1

2 ( )åS = S
=

-

Finally, the function returns 1h = S . In particular, if we take the first N terms in the inverse
Born series, the jth reconstructed term j( )h for the scattering data F̄ is calculated as

j, ,..., , 66j ( )¯ ¯ ( )( ) h = F F

where h is approximated as N1 2( ) ( ) ( )h h h+ + + .

5.4. Numerical results

We now discuss numerical tests of the reconstruction scheme developed above. To proceed,
we require the forward data F̄, which can be obtained by solving the RTE using singular
eigenfunctions in the slab geometry. This calculation has been reported in [7, 13].

The parameters in the simulated reconstructions were chosen as follows. Let l1s sm =
denote the scattering coefficient. Together with the absorption coefficients a0m and a1m , we
have 1 a s0 0s m m= + and 1 a s1 1s m m= + . The contrast in absorption is defined by

1
1

. 67a

a

1

0

1 0

0
( )

m
m

h s
s

D = = +
-

In biological tissue 1 20s<  [1]. We put 1.010s = and vary 1h as follows: 0.0021h = ,
0.007, 0.013, 0.019, 0.07, 0.19, which corresponds to 1.0121s = , 1.017, 1.023, 1.029, 1.08,
1.2. The contrast is thus varied over the range 1.2D = , 1.7, 2.3, 2.9, 8.0, 20.

Figure 4. (Left) reconstructions of η to fifth order in the inverse Born series are shown.

(Right) the energy density u z, d
1

1
( )ò m m

-
, computed to fifth order in the Born series, is

compared to the energy density obtained from the exact solution to the forward
problem. In both panels the contrast 1.2D = .
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In the simulations shown below, the source and detector are placed at L l10 s= . In
addition we take a l5 s= , where a is the radius of the ball Ba. The Moore–Penrose inverse of
K1, computed by singular value decomposition, is used to compute K1 1

¯ ¯ = +, consistent with
(36). The number of spatial discretization points is taken to be Nz = 200 and the number of
discretization points of the continuous spectrum is N 51=n . We found that increasing the
number of discretization points did not significantly affect the reconstructions.

Numerical reconstructions of the coefficient η, at various levels of contrast, are shown in
figures 4 through 9. In all cases, the inverse Born series is calculated to fifth order. The

Figure 5. As in figure 4, except that the contrast 1.7D = .

Figure 6. As in figure 4, except that the contrast 2.3D = .

Figure 7. As in figure 4, except that the contrast 2.9D = .
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projection Kproj 1 1h h= is also plotted in each figure. In some sense, the projection is the best
approximation to η that can be expected. Also shown, in each figure, is a comparison of the
exact solution to the forward problem with the Born series computed to fifth order. In
figures 4 and 5 we show low contrast reconstructions with 1.2, 1.7D = . It can be seen that
the series appears to converge rapidly. Next, in figures 6 and 7 we present reconstructions at
intermediate contrast with 2.3, 2.9D = . These values ofΔ are typical in optical tomography.
In this case, the series converges more slowly. Finally, in figures 8 and 9 we show recon-
structions at high contrast with 8, 20D = . Although there is some improvement at fifth order
compared to the linear reconstruction, it is evident that the both the the inverse Born series
and the Born series have not converged.

6. Discussion

In conclusion, we have investigated the inverse Born series for the inverse transport problem.
We have analyzed the approximation error of the series and have conducted confirmatory
numerical simulations for a slab-shaped medium. Exact solutions to the forward problem
were used as scattering data and reconstructions were computed to fifth order in the inverse
series. We found that the series appears to converge quite rapidly for low contrast objects and
that as the contrast is increased, the higher order terms systematically improve the recon-
structions until, at sufficiently large contrast, the series diverges. We expect to test these
conclusions with data from experiments in the near future. It will then be important to

Figure 8. As in figure 4, except that the contrast 8.0D = .

Figure 9. As in figure 4, except that the contrast 20D = .
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compare the inverse Born series with optimization-based reconstruction methods. We note
that for the Calderon problem, reconstructions using the inverse Born series were compared to
those from the Gauss–Newton method [3]. It was found that the quality of reconstructions
was comparable in both cases. However, since the inverse Born series does not make use of a
PDE-based forward solver, its computational cost is less than the Gauss–Newton method.
Finally, we note that the interplay between the extent of angular averaging, regularization and
resolution will be important to explore in future work, as will be a more extensive analysis of
computational complexity.
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Appendix A. Singular eigenfunctions

Here we express the forward operators Kj and inverse operators j defined in section 5 using
singular eigenfunctions and obtain the transformed forward and inverse operators Kj¯ and j̄ .

Since Kj and j are given by the Green’s function for the homogeneous medium with
attenuation 0s , we first consider G in (48). The singular eigenfunctions f are defined by [8, 9]

,
2

1
, ,

2

1
, A.10

0

0 0 0
( ) ( ) ( ) ( ) ( )f n m

n
s n m

f n m
n
s n m

l n d n m = 
 -

=
-

+ -

where 1, 1( )n Î - ,  denotes the Cauchy principal value and

1 tanh . A.2
0

1( ) ( ) ( )l n
n
s

n= - -

The discrete eigenvalue 10n > is the positive solution to the transcendental equation

tanh
1

. A.30 0
1

0
( )

⎛
⎝⎜

⎞
⎠⎟n s

n
= -

The singular eigenfunctions satisfy the following normalization and orthogonality relations:

, d 1, A.4
1

1
( ) ( )ò f t m m =

-

, , d 0, , A.5
1

1 ( )( ) ( )ò mf t m f t m m t t¢ = ¹ ¢
-

, , d , A.6
1

1

0 0 0 0( ) ( ) ( )ò mf n m f n m m n  = 
-

, , d , A.7
1

1 ( ) ( )( ) ( ) ( )ò mf n m f n m m n n d n n¢ = - ¢
-

where

2

1

1

1
, 1 tanh

4
. A.80

0
2

0 0 0
2

0
2

0

1
2 2 2

0
2( ) ( ) ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟ 

n
s s n n

n
n
s

n
p n
s

=
-

- = - +-

Using the expansion coefficients g z z,( )¢t , which will be determined below, we can write the
Green’s function G in (48) as

Inverse Problems 31 (2015) 095009 M Machida and J C Schotland

16



G z z g z z g z z

g z z

g z z

, ; , , , , , , ,

, , , d

, , , ,

A.9

0 0 0 0

1

1
0 0( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

ò
å

m m f n m f n m f n m f n m

f n m f n m n

f t m f t m

¢ ¢ = ¢ ¢ + ¢ - - ¢

+ ¢ ¢

= ¢ ¢

n n

n

t
t

-

-

where t Î Gt (recall (51)). To find gt , we note that G can be written using the one-
dimensional free-space Green’s function G01, which satisfies (48) for r-¥ < < ¥:

G z z

G z z a A

, ; ,

, ; , , e , e d . A.10z z
01 0

0

1
0 0 0

( )
( ) ( ) ( ) ( ) ( )ò

m m

m m f n m n f n m n

¢ ¢

= ¢ ¢ + +s n s n
+

- -

The coefficients a+ and A ( )n are determined by the symmetry condition
G z G z0, ; , 0, ; ,( ) ( )m m m m¢ ¢ = - ¢ ¢ , and are obtained as

a

A

1
e , ,

1
e , d . A.11

z

z

0 0
00 0

0

( )

( )( )
( )

( )





n
f n m

n
n n

f n m n

= ¢

= ¢

¢

¢

s n

s n

+
-

-

The Green’s function G01 is given by [9]

G z z

z z

z z

, ; ,

1
e , ,

1
e , , d ,

1
e , ,

1
e , , d .

A.12

z z

z z

z z

z z

01

0 0
0 0

0

1

0 0
0 0

0

1

0 0

0

0 0

0

( )

( )

( )

( )

( )

( )

( )
( )

( )

( )
( )

( )

( )

( )

∣ ∣

∣ ∣

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪









ò

ò

m m

n
f n m f n m

n n
f n m f n m n

n
f n m f n m

n n
f n m f n m n

¢ ¢ =

¢

+ ¢ > ¢

- - ¢

+ - - ¢ < ¢

s n

s n

s n

s n

- - ¢

- - ¢

- - ¢

- - ¢

Therefore the functions g z z,( )¢t ( 0n > ) are obtained as

g z z z z,
1

e e , A.13z z z z

0 0
0

0 0 0 0( ) ( ) ( )( ) ( )⎡⎣ ⎤⎦
n

¢ = + Q - ¢n
s n s n- + ¢ - - ¢

g z z z z,
1

e , A.14z z

0 0
0

0 0( ) ( ) ( )∣ ∣
n

¢ = Q ¢ -n
s n

-
- - ¢

g z z z z,
1

e e , A.15z z z z0 0( )
( )

( ) ( )( ) ( )⎡⎣ ⎤⎦
n n

¢ = + Q - ¢n
s n s n- + ¢ - - ¢

g z z z z,
1

e . A.16z z0( ) ( )
( )

( )∣ ∣
n n

¢ = Q ¢ -n
s n

-
- - ¢

Here ( · )Q is the step function.
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Since the specific intensity u is measured on the plane z L= , (52) reads

L G L z u z z z, , ; , , d d .

A.17

L

0
0 1

1

0( ) ( )( ) ( )

( )

ò òm s m m m h mF = ¢ ¢ ¢ ¢ ¢ ¢ ¢ +
-



We write the Born series as 0 1( ) ( )F = F + F + and introduce j¯ ( )F as

L, , . A.18j j( ) ¯ ( ) ( ) ( )( ) ( )åm t f t mF = F
t

Thus, using (A.1) and (A.9), the jth term in the series is given by

K z z z z z z... , ,..., d d . A.19j
a a

j j j j
0 0

1 1 1( ) ( )( )¯ ( ) ¯ ( )( ) ò òt t h hF = ¢ ¢ ¢ ¢ ¢ ¢ 

Here K L a a L: 0, 0,j
1¯ ([ ] [ ]) ⟶ ( )´ ´ Gt¥  are given by

K z z

g L z h g z z h g z L

, ,..., 1

, , , , , , A.20

j j
j j

j j j

1
1

0

,...,
1 1 1 2 1

j

j

1

1

( )
( )( ) ( )

¯ ( )

( ) ( ) ( )å

t s

t t t t

¢ ¢ = -

´ ¢ ¢ ¢ ¢
t t

t t t

+

-

where we have defined

h , , , d

1

2
, ,

1

2
, 1 1 .

A.21

1

1

0 ,
0

0

0

( ) ( )

( )

( )

( ) ( )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪





òt t f t m f t m m

d
s

t n

n d n t
s

t n n

¢ = ¢

=
+ = 

- ¢ + = - < <

¢t t

-

Thus we obtain the Born series for F̄ in (57).
Each term j¯ ( )F in the Born series can be recursively calculated as follows. Let us

introduce i ( i j2   ) as

z z h g z z z z, , , , d ,

A.22

i

a

i i0
0

1( ) ( )( ) ( ) ( )

( )

 ò åt s t t t h¢ ¢ = -  ¢¢  ¢ ¢¢ ¢ ¢¢ ¢¢


¢
t

t-

where the initial term is given by

z g L z h g z z z z, , , , d . A.23
a

1 0
0

1( ) ( )( ) ( ) ( ) ( ) òt s t t h¢ ¢ = ¢¢ ¢ ¢¢ ¢ ¢¢ ¢¢¢t t

From (A.19), we see that

L, . A.24j
j ( )¯ ( ) ( )( ) åt tF = ¢

¢t

The inverse Born series (58) is now written as

z z z, , , , A.251
,

2 1 2 1 2

1 2

( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( ) å åh t t t t t t= F + F Ä F +
t t t



where j̄ are the corresponding inverse operators.
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