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Abstract
The Fy method is an accurate and efficient numerical method for the one-
dimensional radiative transport equation. In this paper the F, method is
extended to three dimensions using rotated reference frames. To demonstrate
the method, the exiting flux from structured illumination reflected by a med-
ium occupying the half space is calculated.
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(Some figures may appear in colour only in the online journal)

1. Introduction

We consider light propagating in a homogeneous random medium occupying the half-space
[Rfr ={reR:;r= p,z2),p € R2, z > 0}) with the boundary at z = 0. The specific intensity
I(r,8) (re [R3+, § € $?) of light obeys the following radiative transport equation.

(L P(5.8)1(r.8) &8 +5(r.8), >0,
I(I', §)=f(p, §), Z = O’ﬂe(o’ 1]3

1(r,§)—>0, 7 = o0,

ey

where f (p, §) is the incident beam and S (r, §) is the internal source. Let x and ¢ be the cosine
of the polar angle and the azimuthal angle of § € S%. Here w € (0, 1) is the albedo for single
scattering. Using the absorption and scattering parameters 4, and g, we have @w = y /u,, where
U, = M, + & is the total attenuation. The above form (1) implies that r is normalized by p,.
Furthermore p (8, §') is the scattering phase function which is normalized as
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The radiative transport equation or the linear Boltzmann equation governs transport processes
of noninteracting particles such as neutrons in a reactor as well as light propagation in random
media such as fog, clouds, and biological tissue.

In this paper we will present a numerical method of solving (1) by extending the Fy
method (F stands for facile) to three dimensions. The Fy method first developed by Siewert
[51] is a method of obtaining the specific intensity in one dimension making use of ortho-
gonality relations of singular eigenfunctions [4, 6, 10]. The use of rotated reference frames
[43, 48, 50] makes it possible to extend the F method to three dimensions.

In 1960 Case considered the time-independent one-dimensional radiative transport
equation with isotropic scattering and solved the equation with separation of variables by
finding singular eigenfunctions [4]. The method was soon extended to the case of anisotropic
scattering without [44, 47] and with [45] azimuthal dependence. Such singular-eigenfunction
approach is sometimes called Caseology. In this method, solutions to the one-dimensional
radiative transport equation are given by a superposition of singular eigenfunctions. The
existence and uniqueness of such solutions were proved [25-28]. In the Fy method, there is
no need of evaluating singular functions although the fact that the specific intensity consists of
singular eigenfunctions is used. In one dimension, the radiative transport equation was solved
by the Fy method in the slab geometry for isotropic scattering [12, 52] and anisotropic
scattering without [9, 16, 51] and with [19, 20] azimuthal dependence. The method was also
extended to multigroup [14]. After finding the specific intensity on the boundary, we can
further calculate the specific intensity inside the medium [16]. The uniqueness of the solution
to the key Fy equation was proved [29]. For isotropic scattering, the three dimensional
radiative transport equation was solved with the Fy method [11, 53] using the pseudo-
problem [55], which is based on plane-wave decomposition. See the review article by
Garcia [13].

In 1964 Dede used rotated reference frames to solve the three-dimensional radiative
transport equation with the P, method [8]. Dede pointed out that equations in three
dimensions reduce to one-dimensional equations if reference frames are rotated in the
direction of the Fourier vector. Kobayashi developed Dede’s calculation and computed
coefficients in the P, expansion by solving a three-term recurrence relation recursively
starting with the initial term [24]. In 2004 Markel obtained the coefficients in terms of
eigenvalues and eigenvectors of the tridiagonal matrix originating from the three-term
recurrence relation, and showed that the specific intensity can be efficiently computed [43].
With the use of eigenvalues, the relation to Case’s method became visible. This new for-
mulation can be viewed as separation of variables in which the eigenvalues are separation
constants [50]. Moreover it was found that any complex unit vector can be used to rotate
reference frames [48]. This generalization makes it possible to solve boundary value problems
in the form of plane-wave decomposition [41]. It was then found that the structure of
separation of variables implies Case’s method in rotated reference frames [42]. Thus the
singular-eigenfunction approach was extended to three dimensions. Indeed the method of
rotated reference frames is a three-dimensional extension of the spherical-harmonic expansion
[1, 49] in Caseology.

The usefulness of the method of rotated reference frames has been numerically justified
for a two-dimensional rectangular domain [24], a three-dimensional infinite medium [43, 48],
the slab geometry in three dimensions [41], in flatland [30, 31, 38], in the half-space geometry
[33, 35-37, 39], and the time-dependent equation in an infinite medium [32, 34]. The method
was also used to experimentally determine optical properties of turbid media [56, 57]. It is
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expected that more accurate numerical values are obtained if higher terms in the series are
taken into account. Although the method of rotated reference frames is an efficient method,
the obtained values become unstable when high-degree spherical harmonics are used. The
three-dimensional F method developed in the present paper does not suffer from this
instability.

By assuming that scatterers are spherically symmetric we model p(8, §') as

=0 m=-1

(I))
w>

where L > 1,and , = 1,0 < ﬁl < 2l + 1forl > 1. Moreover P, are Legendre polynomials
and Y, are spherical harmonics. We introduce the scattering asymmetry parameter g as
B, = (2l + 1)g' (0 < g < 1). The Henyey—Greenstein model [22] is obtained in the limit
L — oo.

Let us define

I(q,z,8) = ./[RZ eI (r,8) dp, qeRL

We similarly define f (q, §) and S(q, z, §). Let us express the upper and lower hemispheres as
S?_, = {§ € $?; +u > 0}. We expand the Fourier transform of the reflected light I(q, 0, —8)
S e Si) as

Lmax L max—|m| /2J
I( Z Z Cim|+2a,m (q) Y|m|+2a,m ( §)s (3)

m=—lpax

where [,,,x is the highest degree of the expansion (/,x = L). Only same-parity degrees are
taken because the three-term recurrence relation of associated Legendre polynomials implies
that Y;,, of opposite-parity / are not independent [20, 48]. This expansion in (3) can be
compared to the Py method [6], but the F method is more efficient because the spatial
dependence of the specific intensity is analytically given and the orthogonality relation among
three-dimensional singular eigenfunctions can be used (see section 2.3). On the other hand,
I(q, 0, —8) is given as a linear combination of eigenmodes Rl;(,,,q)qﬁu’"' (8) [42], for which
notations are introduced in section 2.3. They satisfy orthogonality relations. For simplicity let
us assume S (r, §) = 0. Making use of the fact that / contains only decaying modes, we have
(See (34) for the general case)

[ #(Rice®(8) (g, 0.8) s =0, £>0. ()

The above equation results in a linear system for ¢|,,|424,,(q). The specific intensity of the
reflected light is then calculated as

Lmax

/[Rz e Z Z cim (@) Y (8) dq,

m=—lmax I=|m|,|m|+2,...

I(p,0, -8) ~

(2m)?
where p € (0, 1].

Remark 1.1. Isotropic scattering g = 0 is possible. However we need to change the
collocation scheme for obtaining c,. For the sake of simplicity, we assume g > O in this

paper.
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Figure 1. The exitance (44) is plotted as a function of /.« for g4, = 0.05, i = 100, and
g = 0.01. We set L = [jux-

Remark 1.2. The expansion in (3) can be compared to the method of rotated reference
frames, which expands every eigenmode with spherical harmonics:

Limax

1
Riwa®" (8) & X0 D cim W) Riw.q Yim(8), )
=0 m=-1

with some coefficients c,ﬁl (v). This causes numerical instability regardless of f(p, §) and
S (r, §) when [, is increased to achieve higher precision. For example, let us consider a

simple case of L = 0, m" =0, cos(¢p —¢) =0, and y;é/dgz(yq). Noting that
Riw,q Yim®8) = A ;l P,’"(ylgz(z/q))ng(,,,q)eim’f”, we see that the right-hand side of (5) is

a polynomial of uk,(vg). On the left-hand side, we have Rl;(,,,q)qﬁu”" ®) =
v - wheg)] = %[1 + (ko vg) + AP (uk.g)) + ] This series is diver-

gent if v — ,ulgz (vq) < 0. In general, the instability takes place due to the same mechanism.
Figure 1 shows the exiting current on the boundary (z = 0) as a function of /;;,,x. See section 4
for the details.

The remainder of the paper is organized as follows. In section 2 we introduce singular
eigenfunctions and rotated reference frames. In section 3 we consider the F method in three
dimensions. The key Fy equation is obtained in (35), from which the coefficients ¢, in (3) are
computed. In section 4 the three-dimensional Fy method is numerically tested for structured
illumination. Section 5 is devoted to concluding remarks. Finally structured illumination by
the method of rotated reference frames is summarized in appendix A.

2. Preliminaries

To develop the Fy method in three dimensions in section 3, we give brief reviews and define
our notations in this section. In section 2.1, we introduce polynomials g™ and p,”. In
section 2.2, Case’s singular-eigenfunction approach is explained. In section 2.3, we give a
review on singular eigenfunctions in three dimensions. In section 2.4, it is sketched how the
method of rotated reference frames is obtained using three-dimensional singular
eigenfunctions.
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2.1. Polynomials

Definition 2.1. We introduce #; ({ =0, 1,...) as
hy =21+ 1 = @fy0, D,

with x ;, (/) the step function (y = 1 for 0 </ < L and y = 0 otherwise).

Definition 2.2 ([17, 18]). The normalized Chandrasekhar polynomials g" (&) (m > 0,
[l > m,v € R) are given by the three-term recurrence relation

vhig" ) = U+ 1 = m? g}, W) + NI = m*g", (), (6)

with the initial term
") = @2m - DIt J(@2m)!
S J@2m)! 2mm)

We note that

(7

g ") =(=D"g" W), g"(=v) = (=D)"*"g" ).
The polynomials g" are obtained if we multiply Chandrasekhar polynomials [7] by
Ja=m)(+ m)! [54].

Definition 2.3. The polynomials pl’” () m = 0,1 > m) are introduced as
. =—m' _, 2\-/2 (I-m)! d"
=(-nn [—=1p 1 - = [— 2= B,
P = (=1 /(l+m)! I (ﬂ)( ﬂ) U ml o 1)
)]

where B (u) is the Legendre polynomial of degree [ and P (i) is the associated Legendre
polynomial of degree / and order m.
We have
p]_m (/’t) = (_1)mplm (ﬂ)

The polynomials satisfy the three-term recurrence relation

V= m2p" () = QL+ Dpp/” (o) + (L + 17 = mPp[l )y =0, (9)

with

Q@lml =DM _ J@]Im]!
J2 m) 2Aml |1

and the orthogonality relation

pil (uy =

2
2l+1

/_ 11 P @l (1 - w2 d =

(S[[/.

2.2. Singular eigenfunctions for one dimension

We will first investigate the one-dimensional homogeneous radiative transport equation (10)
and then consider the three dimensional equation (26). Let us begin with

5
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yail(z, 8) +1(z 8 w/ Z §) d§', (10)

where z € R, § € S$? and p (8, §) is given in (2). Separated solutions to (10) are given by
[4, 45, 47]

I(z.8) = & (8)e, (11)
where v € R is a separation constant, m (m| < L) is an integer, and
/A m lml2
@ (8) = " w, (1 - u2)" e, (12)

Here ¢ (v, p) satisfies

[ et -w) " a=1.

By plugging (11) into (10) we obtain

(1 - —)qb"’ w/ (8, &)@ (8) d§'. (13)

We multiply (13) by ¥}’ (8) and integrate both sides over $2. By noticing the expression
of p(8, §) in (2) and rearranging terms, we obtain

’lﬂ'ﬂ a m Q m Q
1/(1 St )]f Vi () (8) a8 = [ i (8) 0" (8) ds. (14)

Using the recurrence relation (21 + DuP™(u) = (I + 1 — m)PY,(w) + (I + m)P™, (),
we see that (14) becomes the three-term recurrence relation (6) for m’ = m. That is, we obtain

myN m m lml2 .
g" W) = (=1) /(l+ ),f o w. (1= w2)"" P ) du. (15)

Noting that P (u) = (—=1)"(2m — D11 — u®>)™? (m > 0), we see that (15) satisfies (7).
Let us rewrite (13) as

L
(1 - %)cﬁ’"(v, 0="73 bl w0 .

U'=|m|

We define g™ as

L
g"w, = Y B/ (e ). (16)

I=|m|

Singular eigenfunctions ¢™ (v, i) are thus obtained as

m wY (v, m —|m|
pmwopy = ZpE (1 - w2) 5w - .
2 V— U

where P denotes the Cauchy principal value. Here the separation constant v has discrete
values iyjf" (1/;" >1,j=0,1,.,M"™ — 1) and the continuous spectrum between —1 and 1.
The number M™ of discrete eigenvalues depends on w and f,. The function A™ (v) is given by

1 m m
My =1-"2"p M(l _ﬂz)' au.
2 -1 v—u
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Discrete eigenvalues satisfy
A" (I/j'”) =0,
where for w € C
wow rtg"(w, Im]
Anwy =1 - 2% u(l — )™ du.
2 J1 o ow—uyp

By using A" = " (=1)"(I — m)!/(I + m)!, we can readily check that g (v) in (15) satisfy
g " () = (=1)"g" (v). This implies ¢~ = ¢™. Singular eigenfunctions ¢" (v, u) satisfy
[4, 45, 47]

1
/_1 HP™ (W, @™ (v, p) du = N )6,

where the Kronecker delta §,,- is replaced by the Dirac delta 6 (v — v') if v, v/ are in the
continuous spectrum. The normalization factor N (v) is given by

_ .m
, V= yj s

m

w=u] a17)
A A= @) (1 - 02) " Ve (-1, 1),

(e el o) L5

2\ 7 dw

N W) =

where A"* (V) = lim._ ¢+ A" (v + i€).

We can numerically obtain the discrete eigenvalues v;" as eigenvalues of a tridiagonal

matrix B(m) below. For Iz (L) and m (—L < m < L), the matrix B(m) is given by

0 bimi+1 0
bimis1 0 b2
Bmy=| 0 by 0 - , (18)
) by,
by, 0

where b, (m) = \/(12 - mz)/(hzhl_l). The matrix B(m) has (Ig — |m| + 1)/2 or (Ig — |m|)/2
positive eigenvalues for [z — |[m| + 1 even or odd, respectively. To see how B(m) is
obtained, we first prove the following proposition.

Proposition 2.4 ([15]). Discrete eigenvalues are zeros Ofgl’" as | - 0.

Proof. We define
1t op" [m|
"(w) = — 1 —u? du, w -1, 1].

aron=y [ (=) e we oL
For v ¢ [—1, 1], the three-term recurrence relation of pl’” implies

VA + D? = m?gl )= QL+ Dug" (v) = V12 — m*q",(v)

V@2 |m)!

Q2m|-DN

By subtracting (6) multiplied by g, (v) on both sides from (19) multiplied by g (v) on both
sides, we obtain

— (sgn(m))™ OL|m|- (19)
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VU + D2 = m? (g g @) = ¢/ W)g)1, @)

= Q21+ Dyg" ) g" W) — vhig" )g" (v)

— NP = m? (" g @) - " )", ) = S1jm)-

!
Suppose Iz > L. By taking the summation Zli|m| we obtain

(15 + 1) = 12| 42, @18 @) = 4" g, @) |
Ip

> (@ + Dy = vhy)g" W)g" @) — 1.

I=|m|

Noting that A" (v) = 1 — wv ZIL=|'"| pg" (v)g/" (v), we obtain (the Christoffel-Darboux
formula)

A" (W) = \(Ip + 1)2 - m [ql’: &1 @) = a4, W)} (U)] 20)

Next we subtract (19) multiplied by p,” (v) on both sides from (9) multiplied by g," (v) on
both sides. By summing the resulting expression over [ from |m| to Iz, we have

(15 + 1) = n2 (2 04 ©) = P )%, @)). @1

Similarly we subtract (6) multiplied by p,” (v) on both sides from (9) multiplied by g (v) on
both sides, and take the sum over ! from |m| to /3. We obtain

g v, v) = (I + 17 = (1, (08 @) = p" g, ). (22)
Using (20), (21), and (22), we obtain

p1Z+1 (V)Am (V) = (ZB + 1)2 - m2 [p[?_,,] (1/)511:: (V)glr+1(y) - p121+1 (V)qlzl+1(l/)g1’:(7/)]
= g @) + \(ls + 1) = [ p g, @) = ity g @) g, @)
=g W) —wg"w, Vg ).

We note that lim;_o g," (W)/p/" (W) = lim;_ Q" W)/P" (W) =0 (w & [-1, 1]), where
Q;" is the associated Legendre polynomial of the second kind. Therefore we obtain

8y @)

A" (v) =
ZB—>oo pl +1 (I/)

Thus the proof is completed. O

Let us recall that the recurrence relation (6) for g (v) is derived for an eigenvalue v in
(11) and rewrite (6) as

12— m? I+1 .
S+ | pen ) = L g ).
ol hilyes

Hence eigenvalues of B(m) are zeros of ng+1. Together with proposition 2.4, we see that

discrete eigenvalues v;" can be computed as eigenvalues of B(m) for sufficiently large /.
More sophisticated ways of obtaining discrete eigenvalues are discussed in [17].

8
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The tridiagonal matrix B (m) can be alternatively obtained as follows. Let us write @," (S)
as

o 1A
3 =Z Z v @) Yo (8),
I'=0m'=

where ¢, (v) € C. Then (13) can be rewritten as

by .
(1 - _) 2com i (8) = @ 3o e i (8) *

I'm’ U'm’

Thus for [m| < L we have

Y7 (3) 08 @f;
- _zclm / MY;m s Ylm S) ds = 2 + 1)([0” (Z)Clm

1

Using the orthogonality relation for associated Legendre polynomials: / P"(w)P du =
-1

OS2l + m)!/[(2L + 1)(I — m)!], we obtain

A+ Dl + O [2-m? U+ 12— h,/
T or-1+ Or 141

hihy 40+ 1?2 -1 21' +1

Iy 7
= by (m)dy -1 + by(m)dy Al = UCpy 4| ——— .
(br(m)8y 11 + by ( )1,1+1)sz4/21,+1 VCan/ZZ 1

The above equation forms an eigenvalue problem for B(m), and ¢, are given in terms of
eigenvectors of B (m).

2.3. Singular eigenfunctions for three dimensions

Definition 2.5 (Rotated reference frames). Let k € C? be a unit vector such thatk - k = 1.
We define an invertible linear operator R : C — C. For a function fi(§) € C § € $?),
Rif; (8) is the value of £ (§) where § is measured in the rotated reference frame whose z-axis

lies in the direction of k.

Suppose that f; (§) € C is given by spherical harmonics:
oo [
K(8)= 20 2 finYin(9),
1=0 m=—1

where f,, € C. Then we have [8, 24, 43]

kai § 2 Zﬁm Z Dmm<(pk’ gk’ O)YIm/(g)

I= Om——l m'=—1

-y Zﬁm Z e Vkd 1y, (08) Yo (8),

=0 m=-1 m'=—I[

where 0 and @j; are the polar and azimuthal angles of k in the laboratory frame. Here D,f,/m
and d, are Wigner’s D-matrices and d-matrices. Moreover we obtain

9
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2 3 DL (0. 05 i) (9

— m' ==

1fl§

l
fon Z e™id), (0) Y ().

- m'=—

Ip4e ng

2

l

1
We can directly show R7'Rif; (8) = £ (8) by using Z dl, (0p)d!., (Ok) = . We
m'=—1

have for f (8), £, (§) € C,

Rifh (3)(8) = (Ref (9)(Reh (8). [ R (8)as = [ (8) s,

Example 2.6. For any function f (§) and the unit vector Z in the positive direction on the z-
axis, we have R;f] §) = f; (8).

Example 2.7. R;i§-§' =§-§ for§, § € $°.

1
Example 2.8. Riu = E RiYio®) = Z e meidl (O Yy (8) = § - k.

m'=-1

Definition 2.9 (Plane wave decomposition). Complex unit vectors k(v, qQ €C® @ eER,
q € R?) are given by

where ¢ = |q| and

k. (vg) = {1 + (vg)*.

Example 2.10. For v € R, q € R?, we obtain

Ri—qht = k. (vq)p — ivgy1 — u? cos((p - (pq), (24)

Rl b = | REL, o io(8) = ke — i gl 1= 7 cos . 29)
Definition 2.11 ([41, 48]). We define

cos[it (vg)] = cos Oi.q) siniz (lvg|)] = sin Oi,q)-
Since Wigner’s d-matrices d,,,(9) are given in terms of cos @, we also write

iz ()] = de (Okg))-

To compute Wigner’s d-matrices, we take square roots such that 0 < arg(y/z) < x for all
z € C [41, 48]. We have

- (vq) v . __ ¥ (g

v
cos ¢y, =———=—=—2008¢q, Sin @, ) = ———— = — sin
Pkw.q Gvq) - Gvaq) o] %y Piw.q) Gvq) - Gvq) o] Py
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and
cos O g = 2 - k = k. (vg), sin O.q) = /1 — cos? Oke.q = /(vq) - (ivq) =i |vgl.
In particular we obtain

A % forv > 0,
Pkw.q) @ + 7z, forv <O,

where ¢, is the polar angle of q.
Let us consider

- VI(r,8) +1(r,§) = wazp(g, §)I(r, §) ds', (26)

where r € R?, § € $%. Solutions to the above equation are given by a superposition of
eigenmodes

I(r, 8) = Ry (8)e ™7, 27)

where k = ﬁ(u, q). To see this we substitute the separated solution (27) in the above
homogeneous three-dimensional radiative transport equation (26) and obtain

R,\
(1 - ;‘”)R.;cp;”(@)zwfszp(é § )R (§) d8'. (28)

The right-hand side can be written as

@ [ p(8.8)Re@(8) &8 = @ [ p(Ris. Ri8 R0 (8) a5 (29)
That is,

Rl;(l - —)qsm = ka/ (8, §)d"(8) d8',

Thus the three-dimensional equation (28) reduces to the one-dimensional equation (13).
Recall that @ (8) given in (12) is constructed so that (13) obtained from (10) and (11) is
satisfied. We have
g’”(u, S - ﬁ)
k

v—S

—|m|

Rid" (v, u) = "”7”7) +am@)(1-02) " 5(v -8 k).

(30)

Proposition 2.12. The following orthogonality relation holds.

fS i ﬂ(RR(D,q)qm(@))(Rk( 9@ ( )) d§ = 27k, (vg) N )8, B -

Proof. The full-range orthogonality is obtained in [42] through the Green’s function. Here
we give a direct proof.

We perform separation of variables to the homogeneous equation by assuming the form
(27). By substituting the separated solution into the radiative transport equation (26), we
obtain
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!
Rf(ﬂ) R = b A
Ri®"(3) = w My s/ Yy, (8)Ri®" (8') d§’
(1= B raar (9 = o X 3 S8 [ (s Ra0r(5)
For fixed ¢, we consider (my, 14™) and (my, v,"). Let us write R]=ﬁ(y1m', qQ),
k, = ﬁ(y2m2, q). We write the following two equations
(Ri.22(s ))R“‘(l ) _)(pm'(ﬁ)
L 1

_wlz; Z 21ﬂl i () Ri, ®2(3) /§ Vin(8) (Ri @ (81)) 08,

(Ri 2 ( ))sz(l - —2]%"2”(@)

i=0m—i 2 Y (R"‘@ml(é))/y Yin (8 )(Rm (s’)) ds’.

We note (24). By subtraction and integration over § we have
Rin Rigp
il _ m my A
S B - B e 9) (o)

:(lgz(vzq) k()

v " ]fs #(Ri, @) (8))( R, ®22(8)) ds

=0.

Therefore,

/SZN(RQI(P (8))(Ri,22(8)) d8 = 0 for vy # vy,

(€2
Suppose v = v| = vy, k= ﬁ = ﬁ my # m,. In this case we have
f§2 (R (3))(Rid(3)) ds = / ud™ (3) &> (8) ds
— / eilmi+m)e de / up™ (v, )™ (v, ﬂ)(l _ ﬂz)(|m1|+|mz|)/2 du
0 -1
& Oy —msy- (32)
We note that q

@ (8) = 9" (8)",

Using (31) and (32), for arbitrary v, v', m, m’, we have

/S i Iu(Rl;qm(§))(7€1;/®y"/”(§)*) d8 o 8, 8-
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Ifv=0v,m=m we have
[ n(Rar (@) Reer (9 as= [ (Rew)er (e (s a
=‘/;2 (er(l,u)[gl)’"(y, u)]z(l - yz)lml ds.

Hence,

/7 ”(Rﬁ(ppm(g))(R]}@ym(ﬁ)*) d§=2ﬂ.’/€z(1/q) ‘/;11 ,“[¢m(l/, M)]Z(l _ /42)|M| du
= 22k W) N ).

where the normalization factor AN (v) is given in (17). Thus we obtain the full-range
orthogonality relation. O

2.4. Method of rotated reference frames

The method of rotated reference frames does not rely on singular eigenfunctions qﬁym/ (8) and
uses the expansion (5), in which c,zf (v) are unknown coefficients that can be fully numeri-
cally computed as eigenvectors of B(m’). The method is summarized in appendix A. We
describe below how the matrix B (m') appears in this method.

We plug (5) into (28):

(1 - R“‘) D cim RicYim(8) =
Im

P(Ri8. Ri8) D cim RiYy(8') d§'.

2
s im

v

By operating Rﬁl, the above equation reduces to (23), from which the matrix B(m') is
derived.

3. The Fy method in three dimensions

To show how the Fy method can be extended to three dimensions, we will consider the half-

space geometry in which a homogeneous random medium with optical parameter @ exists

only in the lower half z < 0. By the Placzek lemma [5] we can consider the following

radiative transport equation in R? instead of (1).
§-Vy(r,8)+y(r.8)=w . p(8, 8)w(r, §)ds

+ 20.00) (2)S(r, 8) + pul(r, 8)5(2), Z € (00, ),

A

w(r, 8) - 0, |z| = oo,
where y ) (z) = 1 for z > 0 and = 0 otherwise. We have the jump condition
w(p, 0+, §) —y(p,07,8) =1(p,0,5).

Since I (p, 0, §) is given by only eigenmodes with positive eigenvalues and y (p, 07, §) is
given by only eigenmodes with negative eigenvalues, we see that y (p, 0, §) = 0. Therefore
we obtain the relation
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w(r. é)={I(r, §), z>0,

0, z<0.

Let us introduce the Green’s function G (r, §; 1y, Sg) for the infinite medium as

8- VG(r. §) + G(r. 8) =w/82p(§, §)G(r, &) d§’

+5(r —1)8(8 — 8), 7 € (-0, ),

G(r, §)—>O, |z| = .

Thus we obtain
w(rd)= [ [, G(rs0 0.8)W1(p.0.8) dp'as
+ ‘/17 f°° Az G(r, §;p/’ ZI, §/)S(p/, Z/, §/) dp/dZ/dg/, re |R3, s e Sz.
2 Jo

The Green’s function is obtained as [42]

a. P — l —iq- - ~ . Q. a
G(r, 8 1, §) = e f[R2 e~ 9= G(q; 2, 8 20, §0) dq.
Here,
. L M"—1 1
G(q; z, 8; 20, 80) = Z -

1 1 .
+ / ————————— Rk @ (§) @ (8 ek lz=2l/v gy i
0 27k, W N (@) CrOTE ()27 (30)

where upper signs are chosen for z > zo and lower signs are chosen for z < zo. By letting
z = 0% we obtain

1(p,0,8)= /;2 /[RZ G(p, 0+, 80,0, §’),u’1(p’, 0, §") dp'ds’

+ ” G(p,0,8,p,2,8)5(p,7,8) dp'dz'd§’,
where § € $2. We have

I(q,0,8)= fs G(q: 0%, 8:0,8)ul(q.0,8)ds
+ [ [ 6a:0.82.8)S(a. 7. 8) dres” (33)
2 Jo
Definition 3.1. Let £ denote the positive eigenvalues, i.e., §" = v;" (j =0, 1,..,M" — 1)
or " =v € (0, 1). We drop the superscript and write £ = £™ if there is no confusion.

If we multiply (33) by uRi-¢qP _m; (8) with some m’ and & = &” > 0, and integrate
over $2, we obtain
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fSz Z ( Ri-cq®”; (ﬁ))l (q.0.8)ds
i 3% i~ ’ ~
N /s / (Rli<—¢,q><1>—"2 (§’))e‘k"“‘m /45(q, 2, §') dz'ds’.
0

Hence we can write the above equation as

/si “(Rf«(—é,q@f(—@))f(q’ 0, =§) d8 = fs3 ﬂ(Rm—g,q)@-’”;(@))f(q, 3) ds
- [S‘Z /'oo (Rﬁ(_g,q)‘ls_"g*(§’))e"€z(§q)z'/§§(q, 7, %) dz/ds’. (34)
0

By the expansion in (3), we obtain the following key Fy equation

I max

> ANE Qam@ = K" ¢ q), (35)

m=—lax 1=|m .l m[+2....

where —L < m’ < L. Here,
Al(E, q) = fs? MYIm(g)Rf((—&q)@fg*(_é) ds,
K™ (&, q)=/82 K (@ 8)Rieq®% (3) d8

— /;7 /00 e_lgz(‘fq)zl/gg(q’ Z/, §/)R]A((_§’q)(p_m§'*(§/) dZ/dg/.
- JO

Remark 3.2. In the above proof we used the Green’s function in the free space to derive
(34). This approach is similar to the Cy method [2, 23]. If the Green’s function for the half
space is used, we can explicitly give I(q, 0, —8) without relying on (3) and (35) [52].
However, the half-space Green’s function in three dimensions is not yet known.
We obtain
Ajn (& @) = A (€, )e™™,

where

Al & @) = ko) |5 dilie Gl (VU + D2 = m2 g2 @
+E—m? g,'_“l(@)

_ &4l .
2 2[ +1 ( 1) Z ldmm [l‘f(fq)]

X[ B (NT= DT = 1) = T+ m"+ DA+ g @)
+ St (VT =+ DA =gl @) = JT+m T+ m)g", )]

+ 7y 21+1(z =) o 1/(2/|m’|)!
2 (L +m)! Qm-1n
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y 1y [AmT=m")!
] \ (Im'] + m"")!
gm,( — & k,(Eq)u — iEqy1 — u? cos q))
&+ k. (Equ — iEqy1 — y? cos @

X uPm () P (uy el g, (36)
If K™ (&, q) is independent of ¢, and K -m' = K" then

xdhl, lit (&)

Cim ((I) = Cim (q)e_im(/{l’ Cl,—m (CI) = (_1)mclm (q)
Here the coefficients ¢y, (¢) are solutions to

s | (m=m)/2]
Z I:Anrf+2(1,m (‘f’ 6]) + (1 - 57"0)( l)mAm+2a m(‘f’ q):lcm+2a,m (q)

m=0 a=0
=K" (&, q), (37)

where A,,':’J,rzg,m (&, q) are given in (36).
The rest of the section is devoted to the calculations of (36) and (37).
First, A;, (¢, q) are computed as follow. We begin by noting that

A (&, q) = /S WY (8)Riceq 7% (—8) d§ — / , Win(8)Rieq @t (—8) d8

Z‘/Sz(Rl« gq)/’ylm( )) §) ds + / 1Y (—8) Ri(—e.q P (§) ds.

(33)
We obtain the first term on the right-hand side of (38) as

(istierm) = [[| 02 (<R, uhn(8)

I

= X i (06) [l 028 (S)(Relgp (9 8

— 1) Z e rid e (0%) [, 18 (3)( ko (Eqpn

+1|§q|\/1—ﬂ cosgo)Ylm (3) ds.

/S D" ()i (8) d8

(l + 1)2 _ m//2 R .
40+ 12— 1 Yt (8) 08

//2 o
T /S §)Yi—1,m(8) d8

Here,
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= S (=) 21’11(\/<l+1>2—m’2g, (=& + P —m?g 1(—5)),

where we used /lP/m/ W) =11+ m’)Pff/l W)+ -m + l)P,’_fl]/(Zl + 1). We also have

. Ql+Dr(l-m")!
D 1 — u” cos @Y, (8) ds = St i1+ Ot
/. b con () i = [CEDEC I 5yt 5

% /_1 (- u)(l _ ﬂz)(lm'm)xzplm,,(#) .

Using \1 — @2 B~ () = [P, () — P G01/ @1+ 1), 1 = 2 B4 ) = (1 = myup)”
() — (L + m’)P", (), we obtain

/S (s )«/1 — 12 cos Y (8) d8

_1
221

— JT+m + DA+ m)g™ (5))
+ St (VA= "+ DA =g @ = T+ m + DT+ g ©) ]

= D o (VT =+ DT =52 (@)

Therefore,

(1st term)

= —(=1)*"k, (&) eid )

mm’ V(l + 1)2 - m/zg[ (- 5)
/ _ m/2glml( _ 5) |‘}:':q| T Z elm(/)kdl A)

x [5mff,m/_1( JT=m+ DT =m)g!" © - J(l T+ DT+ m)g @)
St (VT =m0+ DA =g @ = T+ m + DT+ m)g©) ]

We will use

e (- 1)""'| _
1 - 2 e~im'y — |m| e im'¢

./4;:(2 [m] + 1!

QIm|+ DN
The second term on the right-hand side of (38) is calculated as

(2nd term) = /S . (ng(_é’q)@ _*@’*(ﬁ))ﬂYlm(—ﬁ) ds
_wt g’”/( — & k. (Eqyp — iEgy1 — u? 008(40 - cq,))
208 gt kG - &1 - 4 cos(9 - @)

= [sgn(m’)]’”’ Y|m/|,_mf(§).
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X [sgn(m’)"

Az 2 m'+ D)}

Q|m'[+ N

|

E

—im" g q1m'|
X € kdm”,—m’

™M

m'|

120+ 11— m)!
dr (I + m)!
(lm/l_m// !

’ 1’ '
| (jm’| + m’")!

X sz [Rf«—:,q)

+

m''=—|
@
=3 (=1

m'|

S+

g" (=& w

(04 Yo-(3) Vi 5)

V@ m'])!

Q|m'| -1

(0k)

[sgn(m) "™

Zim" g glm'|
ka,m”,—m/

]uP%i] ()P (el ds.

We note that the relation g (=&, u) = g" (&, —u) implies Rz ™ (=&, p) = Rid™ (&, —p) for

a fixed k. Thus (36) is obtained.

Next, (37) is obtained as follows. Using p,™ (1) = (=1)"p," (u), g " (&) = (=1)"g/" (&),

and g" (&, u) = g™ (&, u), we can show that

AT (E, @e™ = (=1)"AM (£, q)e” "%,

Since we assume K~ (£, q) = K" (£, q), we have

U inax

> Y AR E em(@)

m=—lmax [

L inax

> YA E Qem(@)

m=—lmx [

Linax

D YA E Q@)

m=—lmx [

lmax

> YAm e q-1)"e e, (q).

m=—lp.

This implies

ct-m(q) = (=1)"e*"cy, (q).

Moreover since we assume that K™ (€, q) is independent of @y We have

Lmax

Z ZAIZII, &, Qcm(q) =

m=—lma [

This implies

cm(Q) = cim(g)e™ .
Therefore we obtain

c-m(q) = (=D "cim(q).

By using this relation in (35), we obtain (37).

Lmax

D D ARE gye™icy, ().

m=—lma 1

18
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4. Structured illumination

Let us consider a structured illumination in the half space:
S VI(r8)+1(r8)=w [ p(8.8)(r.8)d8" >0,

I(r,8)=f(p.8), z = 0,ue(,1],
I(r,§)—>0, 7 > .

Here the incoming boundary value fis given by
f(p, §)=IO[1 + A cos(qo-p+Bo)]5(§—§o), S €S2,

where [, is the amplitude, A is the modulation depth, and B, is the phase of the source. It is
enough if we consider [40]

f(p. 8)=eT75(8 — ), §o €S, (39)

where §p has the azimuthal angle ¢, and the cosine of the polar angle y,. By collision
expansion we can write [ as

I(r,8) = Iy(r, §) + I(r, §),
where [, is the ballistic term and I is the scattered part. They satisfy
{é - VIy(r, 8) + I,(r, 8) = 0, z> 0,

I(r. §) = £ (p. §). 2=0.u€ 11,

and

8- VI(r, 8) + I(r, §) = w/sz p(8, §)I,(r, §) d§' + S(r,8), z>0,

I(r.8) =0, c=0,p €11,
where

S(r.8)= @ [ p(3.8)(r. 8) a5
We also assume 1, I, - 0 as z — oo. Let us put

So = Z.
We obtain

L(r, §) = e ' WPe35(8 — 2).
We have

L L
S(r, §) = %e‘iq(ﬂ’e_z YHEwW.  S(q.z8) = 2w3(q - qpe™ Y 4R w).

=0 =0

Furthermore we assume that q,, is parallel to the x-axis:

Qo = goX. (40)
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We obtain

Km’(g, q) = _/;2 /:o e—lgz(-fq)z’/ﬁj(q, Z, §l)RR(—E,q)q§—m§,*(§,) dz'ds’

_ — 213 w¢

L
b
== " 5(q —
£+ k.(Eq) a q(’)l:ZOJZH fs

)Rz D% (87) d8'.

We note that

[ Yo Rieq @t (3) 8= [ (Rg fq)no@))wg*(@) s

l

Z (08) [, @24 (8) ¥ (8) ds

"
Z A(0k)J L+ D (=1)" Sy g/™ (= &)

= Jo.n <|m Ddgw (08) 2L+ D (=1)g™ (&).

Therefore,

K"(& q0)=K" (& a)5(q - qp).
K" (& q0) _“ml i‘, (—1)'Bdg (0k)8,™ (€)-
Y &+ lgz(f%) I=|m’| e :

This implies that ¢, (q) have the form
cm(q) = Em(qe)S(q — qp).

Since K" (¢, q,) is independent of %, and K" =K m,, we can write the key Fy equation
as
o L(mam)2]
Z I:Anrf+2(1,m (57 CI()) ( 1 - 5m0)( l)mAr:z+2(x —m (‘5’ QO)]Cvm+211,m(q())
m=0 a=0

_&"(2.00) an

The number of columns of the matrix {A(gy) Jen 1 = Aﬁr (&, qp) is Nyor, where

(Imax +2)° I even
mAX b max b
]Vtot - z col 4
Imax + 1)({max + 3
m=0 (£max + } w ¥ ), Imax 0dd,

where Ny = [(lmaX - m)/ZJ + 1. We choose the number of rows so that A(g,) becomes
square. For this purpose, different collocation schemes have been proposed [14 16, 20, 46].
Here we take, in addition to discrete eigenvalues &; = v/, (j = 1,....,M"™ ), N — M"™ points
according to

20
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. _ Mm’
G=cos| 2L | j=M" 41N (42)
2 co] - Mm +1
The number of components of the vector {K(qo) Jem = k" (&, qy) 15 Nt
The hemispheric flux Jy,.q,) exiting the boundary is
2z 1
Ji(p; qp) = / f ul(p, 0, —8) dude

e Y VATF Teo(ag [ #RGo

1=0,2,...

4 3/2

Here for even [

1 _ —(=D"2q =D _ —(=1)"2n
fOMPZW)dﬂ_ Mad-ne+2) %
21— 1)+ 2)[(5)!]

Therefore we obtain

1+1/2
> V20 + 1 (=D)+2

J+(p;qo)w 3/2 & 1
20— DU +2) (5)!

5¢0(q0)- (43)

Let us express the absolute value as
Ti(qp) = |Ju(ps qp)|- (44)

The algorithm of the three-dimensional F method can be summarized as follows.

Step 1. The integral over y in (36) is done using the Golub—Welsch algorithm [21] of the
Gauss—Legendre quadrature with points 4, and weights w,, (n = 1, 2,...,N,). The integral over
¢ in (36) is computed using the trapezoid rule with points ¢; = 27j /N,,, (j=0,1,.,N,). We

use eigenvalues of the matrix B (m’) in (18) for f;", corresponding to discrete eigenvalues and

use (42) for & ;"’ corresponding to the continuous spectrum. We calculate P (4,) and g" (5;”,)
with recurrence relations. The polynomials g (£) are evaluated according to [17, 18]. That is,
when ¢ is a discrete eigenvalue, we obtain g (&) starting with a large degree using backward
recursion. For £ in the continuous spectrum, we begin with the initial term and successively
obtain g (£) using the three-term recurrence relation (6).

Step 2. The analytically continued Wigner d-matrices are computed using the recurrence
relation. See appendix B.

Step 3. We compute the double integrals in (36). In the function g", we compute p/" ()
by using the recurrence relation (9). The computation time for each double integral grows as
N,N,.

Step 4. The coefficients ¢;,(q,) are obtained from the linear system (41) with the
Niot X Nio¢ matrix A(g,) and the vector K(qo) of length Niy.

Step 5. Once ¢y, (qy) are obtained, Ji.q,) is immediately calculated by using (43).

Remark 4.1. The computation time is dominated by the integral in (36), which does not
exist in the method of rotated reference frames (appendix A). For a given q,,, the computation

time for the double integrals grows as O (1> N,N,) whereas the computation time of J,(g,)

max

scales as O (1>, ) in the method of rotated reference frames.

21
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For numerical calculation, let us set the absorption and scattering coefficients to
u, = 0.05, u = 100.

We set the scattering asymmetry parameter to g = 0.9 and g = 0.01 (almost isotropic).
Although the unit of length has been 1/u, we take the transport mean free path

¢* = 1/(u, — ug) to be the unit of length in the figures.

In figures 2 and 3, J,(g,) in (44) is plotted as a function of the spatial frequency go. The
Fy result is compared with Monte Carlo simulation and the method of rotated reference
frames. In Monte Carlo simulation 10® particles were used. To obtain Monte Carlo simulation
for structured illumination, Fourier transform was performed to results from Monte Carlo
simulation for the delta-function source [35]. Monte Carlo simulation assumed the Henyey—
Greenstein model for the scattering phase function. The method of rotated reference frames
for structured illumination [33, 35] is summarized in appendix A.

The scattering asymmetry parameter g = 0.01 in figure 2 and g = 0.9 in figure 3. We set
L = [« For both the Fy method and the method of rotated reference frames we consider
Imax = 9 and 25. In figure 2, the three methods agree reasonably well for [;,,x = 9. When we
increase /,,x aiming at more accuracy, however, J, from the method of rotated reference
frames becomes unstable. Note that in this case scattering is almost isotropic and discrete
eigenvalues are rather close to 1. Hence we have v — /412Z (vgy) < 0 (see (30)) for relatively
small go. In figure 3, the result from the 3D Fyy method has a jump near g, = 3.7 for s = 9
because this [,,,x is not sufficiently large in this case. A smooth curve is obtained if large
enough /.« is used as shown in the right panel of figure 3 for [,.x = 25.

5. Concluding remarks

The F method is similar to the method of rotated reference frames in the sense that spherical-
harmonic expansion is used. However, in the Fy method, there is no need of expanding
singular eigenfunctions. The extension of the F method in the half space to the slab geo-
metry is straight forward. In the slab geometry, in addition to conditions such as (4) for one
plane at z = 0, we have another set of conditions that corresponds to the other plane. Once the
specific intensity on the boundary is obtained, it is also possible to compute the specific
intensity inside the medium for the half space geometry and the slab geometry [51].
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Appendix A. Structured illumination with the method of rotated reference
frames

In this section we solve (1) with the method of rotated reference frames [33, 35]. We consider
structured illumination and assume the source term (39) with (40).

We write the eigenvector of the matrix B (M) in (18) corresponding to the eigenvalue v as
[3,) €13, = 1. Note that v and |y, ) depend on M. In the method of rotated reference frames,
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Figure 2. The exitance (44) is plotted against g, for 4, = 0.05, i = 100, and g = 0.01.

The unit of length is £*. For the Fy method and the method of rotated reference frames
(MRRF) we set (Left) Imax = 9 and (right) I, = 25.

Figure 3. The exitance (44) is plotted against g, for g, = 0.05, 4 = 100, and g = 0.9.

The unit of length is £*. For the Fy method and the method of rotated reference frames
(MRRF) we set (left) [n.x = 9 and (right) [, = 25.

we write the specific intensity as a superposition of I and 1) [41, 48], where

I max l
1(+)(r’ §) = eiq-p—kz(uq)z/u Z % z Hm(g)(—l)me_im%<l|yy>d,l,,M liz (vg)],
1 0 ! m——l

Ly (1' S)_ elaptk:wz/v Z 2+ 1 Z Ylm _""("l(l|yy>dm _mlit(g)],
=0 L m=—l

In the half space R3, the specific intensity is given by

(+) (+)
I(r,8) (2”)2 Z zy: o FiP L (r, 8) dq,

where 2 stands for the sum over all positive eigenvalues of B(M). From the boundary
conditions we obtain

FiP =17 @Crs(a, +a0)5(a,), 5@ = DM @)

23
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Here f,f,;r) (g) are solutions to
M@fy (@) =v», M >0,
where

I max

2 + 1 . ,
(M@ Yy, = Z T2 B ) (diuli )] + (1= o) (=D)Yd, ylir )],
I

and
2 + 1
(+) —
{v+ }lm Smo ZB [= T
Here,
w1 QI+ DI+ DI -m)! ' —m)! /1 m m
B = — P, Py du.
1 \/ T+mIl +m)! o 1" () Py (p) dp
That is,
Imax |
. 1 & 20+ 1 R v /A
I(r,8) ~ oy ) n;)lm 3 [Ylm(s) +(1 - 5m0)Ylm(s)]K1m(p, 2),
where

Kin(p. 2) = 2z (=iy"ei 3 (1], )eFa)/op0 (40

M>20 v
x [ dhu[ i (a) ] + (1 = 8u0)(=DMd;, [ 7 (g0 ]|

The hemispheric flux is obtained as

2r
nw= [ / 1(p. 0. 8) dudg
2 2
/ / 1(p. 0, §) dudg — / / 8- 2)I(p, 0, §) dudg
Kio(p, 0) — e 4o //‘0){[01](/"0) (A.1)
1/71']’11

where we used I(p, 0, §) = e "5 (§ — §y) for u > 0. The expression (A.l) is used for
figures 2 and 3.

Appendix B. Analytically continued Wigner d-matrices

To compute the analytically continued Wigner d-matrices we use a pyramid scheme with
recurrence relations [3]. We begin with dgy[iz (x)1(=1), dgo it (x)], d,_, [ir (x)1, dij lit (x)],

and d}! [ir (x)]:
1 =1+ x?

do=V1+x2, al_ =—"T%  gl=-i— a-=
00 -1 ) 10 NG 1 )
Let us we increase [ iteratively up to /.. For each value of [, we first compute d,flmr [iz (x)]

m=0,..,l—-2;,m =—-m,..,m) according to
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. 121 - 1)

dmm’_
=)=
X (dolo - )dl_] \/[(l_ 1)2—"12][(1— 1)2_”1/2]dl‘2 .

=) (= 1DHQ2l-1) !

We obtain dj[iz (x)] and d/, ,_ [iz (x)] as
djy = di\d|={ -y, iy = (ld(}o -+ l)dl[—_ll,l—l’
and d] [t(x)](m' =1 —1,..., =I) as

dl’mf=—i l+m +1
[ —m

With the relation

ldl _ ’ B
Ay =~ ; x /m ,l+m -i/- !
ldoo—m -1 [l —m

we have dll_ 1 it)] (m" =1—-2,..,1 = [). Other functions d,;mf [iz (x)] are obtained by
using the symmetry properties

dpw =d! oy _,y = (=Dl = (=Dl

mm'’ —m',—m —m,—m’ m'm*

1
dl—l
1
dll

l
dl,m/+l‘

d_,
dy

l
dl—l,m’+1’
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