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Abstract
In this paper, for the radiative transport equation, we study inverse problems
of determining a time-independent scattering coefficient or total attenuation
by boundary data on the complementary sub-boundary after making a one
time input of a pair of a positive initial value and boundary data on a suitable
sub-boundary. The main results are Lipschitz stability estimates. We can also
prove the reverse inequalities, which means that our estimates for the inverse
problems are the best possible. The proof is based on a Carleman estimate with
a linear weight function.

Keywords: Lipschitz stability, transport equation, coefficient inverse problem,
Carleman estimate

1. Radiative transport equation and main results

Let � be a bounded domain of R
n, n � 2, with the C1-boundary ∂�. We consider

P0u(x, v, t) + σt (x, v)u −
∫

V
k(x, v, v′)u(x, v′, t) dv′ = 0, (1.1)

x ∈ �, v ∈ V, 0 < t < T,

u(x, v, 0) = a(x, v), x ∈ �, v ∈ V, (1.2)

u(x, v, t) = g(x, v, t), 0 < t < T, (x, v) ∈ �−, (1.3)

where

P0u(x, v, t) := ∂tu(x, v, t) + v · ∇u(x, v, t).
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Here and henceforth for v, v′ ∈ R
n, by v · v′ we denote the scalar product in R

n; let
∇ = ∇x = (

∂
∂x1

, . . . , ∂
∂xn

)
and V ⊂ R

n be a bounded sub-domain or a measurable subset
of {v ∈ R

n; |v| = c} with a constant c > 0. Here and henceforth V denotes the closure of V .
Let ν(x) be the outward normal unit vector to ∂� at x ∈ ∂�. We define �+ and �− by

�+ = {(x, v) ∈ ∂� × V ; (ν(x) · v) > 0},
�− = {(x, v) ∈ ∂� × V ; (ν(x) · v) � 0}. (1.4)

The radiative transport equation or linear Boltzmann equation (1.1) governs non-interacting
particles such as neutrons in a reactor [12, 18]. Equation (1.1) is also used for light propagating
in random media such as biological tissue [1, 2], interstellar media [13] and atmospheres [38].
In (1.1), we let a real-valued function u(x, v, t) denote the angular density of particles or the
specific intensity of light at time t ∈ (0, T ) and position x ∈ � ⊂ R

n with the velocity v ∈ V .
Let σt (x, v) denote the total attenuation and satisfy

σt ∈ L∞(� × V ) (1.5)

and k(x, v, v′) be a scattering kernel which indicates the amount of particles scattering from a
direction v′ to a direction v at the position x. In this paper, we assume that k is independent of
t and

k(x, v, v′) ≡ σs(x, v)p(x, v, v′), (1.6)

σs ∈ L∞(� × V ),

p ∈ L∞(� × V × V ),> 0 in � × V × V . (1.7)

Throughout this paper, p ∈ L∞(�×V ×V ) is fixed, and σt or σs is unknown to be determined.

Remark 1.1. The parameters σt and k are called admissible [3, 15] if they satisfy
0 � σt ∈ L∞(� × V ), 0 � k(x, ·, v′) ∈ L1(V ) for almost all x ∈ � and v′ ∈ V and∫

V k(·, v, ·) dv ∈ L∞(� × V ). Therefore, if we further assume that σt, k � 0 in � × V , then
σt and k are admissible. For our arguments, we do not need the admissibility of σt and k.

Throughout this paper, we assume that there exist γ ∈ R
n, �= 0 and θ > 0, such that

V ⊂ {v; (γ · v) � θ}. (1.8)

This means that we should restrict the distribution of v in a sector with the angle < π with
the vertex 0. We can consider the following experiment of optical tomography for example.
That is, in (1.1), u(x, v, t) is the specific intensity of light at time t and point x ∈ � with the
velocity v ∈ V ⊂ {v ∈ R

n; |v| = c}, where c is the speed of light. Let a slab-shaped box �

be filled with a random medium such as a biological tissue. An array of sources on a face of
� illuminates the medium, and the outgoing light is collected by an array of detectors on the
other face. We suppose that the width of the box is thin in the sense that limited scattering
takes place while the light travels from one side to the other. If the light is scattered in the
forward direction when it collides with impurity, i.e., the direction does not change much by
scattering, then the light stays within V when it reaches the other side. Thus, in this situation,
we can assume that v is confined in V . That is, by taking γ in the direction perpendicular to
the source and detector faces, we have V = {v ∈ R

n; |v| = c, (γ · v) � θ}, where θ > 0 is
some constant. Thus, (1.8) is satisfied.

We rewrite (1.1) as

P0u(x, v, t) + σt (x, v)u − σs(x, v)

∫
V

p(x, v, v′)u(x, v′, t) dv′ = 0. (1.9)
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In this paper, we consider inverse problems of determining total attenuation σt or a
scattering coefficient σs in the radiative transport equation (1.9) by the boundary data

u(x, v, t), (x, v) ∈ �+, 0 < t < T,

after setting up the initial value (1.2) and the boundary value (1.3) once. Our inverse problem is
motivated for example by optical tomography, in which we recover σt and/or σs from boundary
measurements (e.g., [1, 2]). An incident laser beam g(x, v, t) enters the sample through the
sub-boundary �− × (0, T ), and the outgoing light u(x, v, t) is measured on the sub-boundary
�+ × (0, T ). As is seen by theorems 1.1 and 1.2, we need the positivity for an initial value
a(x, v), and in remark 1.2 we describe such a setup.

We refer to works concerning inverse problems on the transport equation. Let us define the
albedo operator as A[g] = u(x, v, t), (x, v) ∈ �+, 0 < t < T , where u is the solution to (1.1)–
(1.3) with a ≡ 0. Choulli and Stefanov [15] proved the uniqueness of σt and k = k(x, v, v′).
The corresponding stability is proved by the angularly averaged albedo operator [6] and by
the full albedo operator [7]. For the inverse problems in [6, 7, 15], the input–output operation
can be limited to the boundary, and the initial value can be zero, but one has to make infinite
measurements.

Also, for the stationary transport equation, Choulli and Stefanov [16] and Tamasan [42]
proved the uniqueness. The Hölder-type stability was obtained by Bal et al [4], Ball and Jollivet
[5], Romanov [36, 37], Stefanov and Uhlmann [41] and Wang [45]. The non-uniqueness in the
coefficient inverse problem with the albedo operator was characterized by gauge equivalent
pairs in [40], and the Lipschitz stability for gauge equivalent classes was proved for the time-
independent radiative transport equation in [34]. See also review articles [3, 39] for coefficient
inverse problems for the radiative transport equation. Our paper discusses the determination
of one coefficient σt or σs by a single measurement, while most of the above-mentioned papers
are concerned with the simultaneous recovery of multiple parameters.

As for the simultaneous determination of both σt and σs by twice observations, see
remark 1.3.

Klibanov and Pamyatnykh [30] proved the uniqueness of σt by the boundary values of u.
The formulation in [30] is different from [6, 7, 15] and measures a single output on �+× (0, T )

after choosing initial value and boundary data on �− × (0, T ).
In this paper, we adopt a similar formulation to [30] and consider the inverse problems

of determining σs or σt by the boundary value on �+ × (0, T ) with a suitable single input of
the initial value and boundary data on �− × (0, T ). Our main results are Lipschitz stability
estimates in determining σs or σt . To the best knowledge of the authors, there are no publications
on the Lipschitz stability with single measurement data related to the initial/boundary value
problem (1.2), (1.3) and (1.9).

Our proof is based on the methodology by Bukhgeim and Klibanov [10] which uses a
Carleman estimate, which is an L2-weighted estimate for solutions to the differential equation
under consideration. Although the principle of our method is the same as [10] and [30], our key
Carleman estimate (lemma 3.2) is of different character, and so we do not need any extension
of the solution u to (−T, T ). On the other hand, [30] needs the extension of the solution u to
(−T, T ), and so it further requires extra conditions for the unknown coefficients σt and the
initial value a, such as (a(x, v)σt (x, v))2 = (a(x,−v)σt (x,−v))2 for x ∈ � and v ∈ V in
the case of V = {v; |v| = 1}. Klibanov and Pamyatnykh [29] proved the Lipschitz stability
in determining σt when we consider the transport equation (1.9) for −T < t < T with (1.2)
and (1.2) is prescribed at an intermediate time t = 0 and is not an initial value. In [29], the
extension argument is not necessary and the application of the relevant Carleman estimate is
more direct.
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The method by Bukhgeim and Klibanov [10] is useful for proving the uniqueness and the
stability for coefficient inverse problems with a single measurement. The Carleman estimate
dates back to [11] (see [20, 24, 33]). As for inverse problems by the Carleman estimate, we
refer for example to [9, sections 1.10 and 1.11] and [21–23, 25–28, 31, 46].

On the other hand, Klibanov and Yamamoto [32] proved the exact controllability for the
transport equation. Prilepko and Ivankov [35] discussed an inverse problem of determining a
t-function in the case where σt depends on x, v, t. In the case of k ≡ 0, Gaitan and Ouzzane
[19] proved the Lipschitz stability for σt using the method in [29, 30]. However, the argument
requires more care in our case k �= 0.

Our arguments in the case V ⊂ {v ∈ R
n; |v| = c} is the same as in the case of the sub-

domain V ⊂ R
n. Therefore, henceforth we assume that V is a sub-domain in R

n. Throughout
this paper, Hm(�) denotes usual Sobolev spaces. We set

X = H1(0, T ; L∞(� × V )) ∩ H2(0, T ; L2(� × V )).

For an arbitrarily fixed constant M > 0, we set

U = {u ∈ X; ‖u‖X + ‖∇u‖H1(0,T ;L2(�×V )) � M}. (1.10)

By the geometric configuration assumption (1.8) of V , we can choose γ ∈ R
n such that

min
v∈V

(γ · v) > 0.

We recall that p ∈ L∞(� × V × (0, T )) is given.
Now we are ready to state our main results.

Theorem 1.1 (Determination of σ t). Let ui = u(σ i
t )(x, v, t), i = 1, 2 be the solutions to the

transport equation:

∂tu(x, v, t) + v · ∇u + σ i
t (x, v)u

−σs(x, v)

∫
V

p(x, v, v′)u(x, v′, t) dv′ = 0, x ∈ �, v ∈ V, 0 < t < T,

u(x, v, 0) = ai(x, v), x ∈ �, v ∈ V,

u = g on �− × (0, T ).

Let ui ∈ U and ‖σ i
t ‖L∞(�×V ), ‖σs‖L∞(�×V ) � M. Then we assume that

T >
maxx∈�(γ · x) − minx∈�(γ · x)

minv∈V (γ · v)
(1.11)

and there exists a constant a0 > 0, such that

a1(x, v) � a0 or a2(x, v) � a0, almost all (x, v) ∈ � × V . (1.12)

Then there exists a constant C = C(M, a0) > 0, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖σ 1
t − σ 2

t ‖L2(�×V ) � C

(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

+C(‖a1 − a2‖L2(�×V ) + ‖∇a1 − ∇a2‖L2(�×V )),(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

� C(‖σ 1
t − σ 2

t ‖L2(�×V ) + ‖a1 − a2‖L2(�×V ) + ‖∇a1 − ∇a2‖L2(�×V )).

(1.13)

Here, C(M, a0) → ∞ as M → ∞ or a0 → 0.

4



Inverse Problems 30 (2014) 035010 M Machida and M Yamamoto

In particular, if we assume a1 = a2 in � × V , then we have a two-sided estimate:

C−1

(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

� ‖σ 1
t − σ 2

t ‖L2(�×V )

� C

(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

.

This means that the choice of the norm of the boundary data on �+ × (0, T ) is the best possible
for our inverse problem.

In this theorem, we assume the regularity ui ∈ U , i = 1, 2, for the solutions to the forward
problem (1.9) and (1.2)–(1.3). We can prove it in terms of the regularity and compatibility
conditions of the initial value a and the boundary value g and omit the details. In the following
theorems, we assume the same regularity assumption on ui. As for the forward problem of the
transport equation, we refer for example to [8, 17, 35, 43, 44]. The dependence of the constant
C(M, a0) in (1.13) on M and a0 can be given explicitly, but we need lengthy arguments and
omit details. In theorem 1.1, as is seen from the proof, we need not assume (1.6).

Theorem 1.2 (Determination of σs). Let ui = u(σ i
s )(x, v, t), i = 1, 2, be the solution to the

transport equation:

∂tu(x, v, t) + v · ∇u + σt (x, v)u

− σ i
s (x, v)

∫
V

p(x, v, v′)u(x, v′, t) dv′ = 0, x ∈ �, v ∈ V, 0 < t < T,

u(x, v, 0) = ai(x, v), x ∈ �, v ∈ V,

u = g on �− × (0, T ).

Let ui ∈ U and ‖σt‖L∞(�×V ), ‖σ i
s‖L∞(�×V ) � M, i = 1, 2, and we assume (1.11) and (1.12).

Then there exists a constant C = C(M, a0) > 0, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖σ 1
s − σ 2

s ‖L2(�×V ) � C

(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

+C(‖a1 − a2‖L2(�×V ) + ‖∇a1 − ∇a2‖L2(�×V )),(∫ T

0

∫
�+

(ν(x) · v)|∂t (u
1 − u2)(x, v, t)|2 dS dv dt

)1/2

� C
(‖σ 1

s − σ 2
s ‖L2(�×V ) + ‖a1 − a2‖L2(�×V ) + ‖∇a1 − ∇a2‖L2(�×V )

)
.

(1.14)

Here, C(M, a0) → ∞ as M → ∞ or a0 → 0.

In (1.13) and (1.14), the second inequalities show the Lipschitz stability for the inverse
problems, while the first inequalities assert the stability for the forward problems. Thus, we
obtain both-sided estimates, and so the estimates for the inverse problems are the best possible.

Remark 1.2. Our inverse problem is for the well-posed initial boundary value problem, and
we have to observe the initial values a1, a2. Moreover, for the best possible Lipschitz stability
for the inverse problems by a single measurement, we need not observe both initial values
but need to set up one of the initial values in order to satisfy positivity (1.12). The positivity
condition is restricting but can be achieved for example as follows for theorem 1.1. We assume
that � is strictly convex and σ 1

t is known, while σ 2
t is unknown and we would like to estimate

the deviation σ 2
t −σ 1

t around σ 1
t . We consider the transport equations for σ i

t , i = 1, 2, over the
time interval (−T0, T ) with some T0 > 0. We arbitrarily choose ã(x, v) as the initial value of
u1 at t = −T0: u1(x, v,−T0) = ã(x, v), x ∈ �, v ∈ V . We arbitrarily fix a constant a0 > 0 and
a1 ∈ L2(� × V ) satisfying a1 > a0 almost everywhere in � × V . By the exact controllability
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result [32], if T0 > 0 is sufficiently large, then we can find a function g0 belonging to some
weighted L2-space in �− × (−T0, 0), such that u1(x, v, 0) = a1(x, v), x ∈ �, v ∈ V . Here,

∂tu
1 + v · ∇u1 + σ 1

t u1 − σs

∫
V

p(x, v, v′)u1(x, v′, t) dv′ = 0 in � × V × (−T0, 0),

u1(x, v,−T0) = ã(x, v), x ∈ �, v ∈ V

and

u1(x, v, t) = g0(x, v, t), (x, v, t) ∈ �− × (−T0, 0).

Extending g0 to (−T0, T ) and denoting it by g, we consider the transport equations in (0, T ) for
σ i

t , i = 1, 2 with the same boundary value g on �− × (0, T ) and initial values ai at t = 0. Then
a1 > a0 almost everywhere in �×V is satisfied. In other words, for u2 satisfying the transport
equation with σ 2

t in � × V × (−T0, T ) with the boundary value g on �− × (−T0, T ), we are
requested to observe a2 := u2(·, ·, 0) in � × V and u2 on �+ × (0, T ). We note that we need
not know the original initial value u2(·, ·,−T0), but the non-stationary transport equation with
σ 2

t should start at t = −T0. In [32], the case of V = {v ∈ R
n; |v| = 1} is considered, and the

modification to our case (1.8) is possible, but we omit the details. For realizing the positivity
of solutions at some moment, see also [14, 47]. For theorem 1.2, we can argue similarly.

Moreover, we have to assume (1.11), that is, the observation time T should be sufficiently
large. The principal part of the transport equation (1.1) is a hyperbolic operator of first order,
which means that the transport equation has a finite propagation speed. Thus, we cannot avoid a
condition like (1.11). Otherwise, we cannot detect the sufficient information of the coefficients
in � × V only by data on the boundary.

Remark 1.3. In order to determine σt and σs simultaneously, we choose two initial values a,
b which satisfy for example

det

⎛⎜⎜⎝a
∫

V
p(x, v, v′)a(x, v′) dv′

b
∫

V
p(x, v, v′)b(x, v′) dv′

⎞⎟⎟⎠ �= 0.

The proof is similar to theorems 1.1 and 1.2 but we omit. The setup for such a, b is
more complicated than that in theorem 1.1. For realizing such a, b, we can apply the exact
controllability result by Klibanov and Yamamoto [32], but we omit the details.

In order to prove theorems 1.1 and 1.2, it is sufficient to prove the linearized inverse
problem below.

Theorem 1.3. We consider

∂tu + v · ∇u + σtu −
∫

V
k(x, v, v′)u(x, v′, t) dv′

= f (x, v)R(x, v, t), x ∈ �, v ∈ V, 0 < t < T,

u(x, v, 0) = a(x, v), x ∈ �, v ∈ V.

We assume

k ∈ L∞(� × V × V ), R, ∂tR ∈ L2(0, T ; L∞(� × V )), σt, σs ∈ L∞(� × V ), (1.15)

and

u ∈ U . (1.16)

6
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For an arbitrarily fixed constant a0 > 0, we further assume

R(x, v, 0) > a0, almost all (x, v) ∈ � × V (1.17)

and

T >
maxx∈�(γ · x) − minx∈�(γ · x)

minv∈V (γ · v)
. (1.18)

There exists a constant C > 0, which depends on ‖σt‖L∞(�×V ), ‖k‖L∞(�×V×V ) and
‖R‖H1(0,T ;L∞(�×V )), such that

‖ f ‖L2(�×V ) � C

(∫ T

0

∫
∂�

∫
V

|(v · ν)||∂tu|2 dv dS dt

)1/2

+ C(‖a‖L2(�×V ) + ‖∇a‖L2(�×V ))

(1.19)

for all f ∈ L2(� × V ).

Theorem 1.4. We assume (1.15)–(1.18). If u = 0 on �− × (0, T ) in theorem 1.3, then there
exists a constantC > 0, which depends on ‖σt‖L∞(�×V ), ‖k‖L∞(�×V×V ) and ‖R‖H1(0,T ;L∞(�×V )),
such that

‖ f ‖L2(�×V ) � C

(∫ T

0

∫
�+

(ν · v)|∂tu|2 dS dv dt

)1/2

+ C(‖a‖L2(�×V ) + ‖∇a‖L2(�×V ))

and(∫ T

0

∫
�+

(ν · v)|∂tu|2 dS dv dt

)1/2

� C(‖ f ‖L2(�×V ) + ‖a‖L2(�×V ) + ‖∇a‖L2(�×V ))

for any f ∈ L2(� × V ).

In fact, for the proof of theorem 1.1, assuming that a1 > a0 almost everywhere in � × V
and setting u = u2 −u1, f = σ 2

t −σ 1
t , a = a2 −a1 and R = −u1, we have the above-linearized

inverse problem. By the regularity assumption of u1, u2 and ‖σ i
t ‖L∞(�×V ), ‖σ i

s‖L∞(�×V ) � M,
we can apply theorem 1.4 to obtain the conclusion (1.13). We can similarly derive theorem 1.2
from theorem 1.4.

Without the assumption u1 = u2 = g on �−×(0, T ), by (1.19) we can obtain the Lipschitz
stability in determining σt or σs:

‖σ 1
t − σ 2

t ‖L2(�×V ) � C

(∫ T

0

∫
∂�

∫
V

|(v · ν)||∂t (u
1 − u2)|2 dS dv dt

)1/2

+C(‖a‖L2(�×V ) + ‖∇a‖L2(�×V ))

or

‖σ 1
s − σ 2

s ‖L2(�×V ) � C

(∫ T

0

∫
∂�

∫
V

|(v · ν)||∂t (u
1 − u2)|2 dS dv dt

)1/2

+C(‖a‖L2(�×V ) + ‖∇a‖L2(�×V )).

The paper is composed of five sections. In section 2, we prove theorem 1.4 assuming that
theorem 1.3 is proved. In section 3, we prove a key Carleman estimate and in section 4, we
complete the proof of theorem 1.3. Section 5 gives concluding remarks.
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2. Proof of theorem 1.4

Henceforth, in this section, C > 0 denotes generic constants which are independent of f .

Lemma 2.1. Under the assumptions in theorem 1.3, for u satisfying the radiative transport
equation with the initial value a and the right-hand side f (x, v)R(x, v, t), there exists a
constant C > 0, which depends on ‖σt‖L∞(�×V ) and ‖k‖L∞(�×V×V ), such that∫

�

∫
V

|∂tu(x, v, t)|2 dv dx � C
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
+C

∫ T

0

∫
�−

|(v · ν)||∂tu|2 dS dv dt (2.1)

for 0 � t � T and∫ T

0

∫
�+

|(v · ν)||∂tu|2 dS dv dt � C
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
+C

∫ T

0

∫
�−

|(v · ν)||∂tu|2 dS dv dt. (2.2)

Theorem 1.4 is obtained from lemma 2.1 and theorem 1.3. In fact, the first inequality
in theorem 1.4 follows from theorem 1.3 with u = 0 on �−, while the second inequality is
derived from (2.2). Thus, the rest part of this paper is devoted to the proofs of lemma 2.1 and
theorem 1.3.

Proof of lemma 2.1. Taking the t-derivative of the transport equation, we have ∂t (∂tu) +
v · ∇(∂tu) + σt (∂tu) − ∫

V k(∂tu) dv′ = f (x, v)∂tR with (∂tu)(x, v, 0) = f (x, v)R(x, v, 0).
Fixing t ∈ (0, T ) arbitrarily, multiplying this equation by 2∂tu and integrating over �×V , we
have

∂t

∫
�

∫
V

|∂tu(x, v, t)|2 dv dx +
∫

�

∫
V

v · ∇(|∂tu|2) dv dx + 2
∫

�

∫
V

σt |∂tu|2 dv dx

− 2
∫

�

∫
V

(∫
V

k(x, v, v′)∂tu(x, v′, t) dv′
)

∂tu(x, v, t) dv dx

= 2
∫

�

∫
V

f (∂tR)∂tu dv dx.

Setting E(t) = ∫
�

∫
V |∂tu(x, v, t)|2 dv dx and integrating the second term on the left-hand side,

we obtain

E ′(t) = −
∫

∂�

∫
V
(v · ν)|∂tu|2 dv dS − 2

∫
�

∫
V

σt |∂tu|2 dv dx

+ 2
∫

�

∫
V

(∫
V

k(x, v, v′)∂tu(x, v′, t) dv′
)

∂tu(x, v, t) dv dx

+ 2
∫

�

∫
V

f (∂tR)∂tu dv dx.

Therefore, noting that 2
∫
�

∫
V | f (∂tR)∂tu| dv dx �

∫
�

∫
V | f |2|∂tR|2 dv dx + ∫

�

∫
V |∂tu|2 dv dx,

integrating over (0, t) and using k, σt ∈ L∞, we have

E(t) − E(0) = −
∫ t

0

(∫
�+

+
∫

�−

)
(v · ν)|∂tu|2 dS dv dt − 2

∫ t

0

∫
�

∫
V

σt |∂tu|2 dv dx dt

+ 2
∫ t

0

∫
�

∫
V

(∫
V

k(x, v, v′)∂tu(x, v′, t) dv′
)

∂tu(x, v, t) dv dx dt

8
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+ 2
∫ t

0

∫
�

∫
V

f (∂tR)∂tu dv dx dt

� −
∫ t

0

∫
�+

(v · ν)|∂tu|2 dS dv dt −
∫ t

0

∫
�−

(v · ν)|∂tu|2 dS dv dt

+ C
∫ t

0
E(η) dη + C‖ f ‖2

L2(�×V )
(2.3)

for 0 � t � T . Here by the Cauchy–Schwarz inequality and k ∈ L∞(� × V × V ), we also
used∣∣∣∣∫ t

0

∫
�

∫
V

(∫
V

|k(x, v, v′)∂tu(x, v′, t)| dv′
)

∂tu(x, v, t) dv dx dt

∣∣∣∣
� C

∫ t

0

∫
�

(∫
V

(∫
V

|∂tu(x, v′, t)| dv′
)

|∂tu(x, v, t)| dv

)
dx dt

� C
∫ t

0

∫
�

((∫
V

|∂tu(x, v′, t)|2 dv′
)1/2

|V |1/2

)

×
((∫

V
|∂tu(x, v, t)|2 dv

)1/2

|V |1/2

)
dx dt

= C|V |
∫ t

0

∫
�

∫
V

|∂tu(x, v, t)|2 dv dx dt,

where we set |V | = ∫
V dv. By R(·, ·, 0) ∈ L∞(� × V ) by (1.15), using

∂tu(x, v, 0) = −v · ∇a − σta +
∫

V
k(x, v, v′)a(x, v′) dv′ + f R(x, v, 0),

we have

E(0) � C(‖ f ‖2
L2(�×V )

+ ‖a‖2
L2(�×V )

+ ‖∇a‖2
L2(�×V )

).

Hence, since
∫ t

0

∫
�+

(v · ν)|∂tu|2 dS dv dt � 0, by (2.3) we have

E(t) � E(0) −
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C‖ f ‖2
L2(�×V )

+ C
∫ t

0
E(η) dη

� −
∫ t

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
+ C

∫ t

0
E(η) dη, 0 � t � T.

The Gronwall inequality implies

E(t) � C

(
−

∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + ‖ f ‖2
L2(�×V )

+ ‖a‖2
L2(�×V )

+ ‖∇a‖2
L2(�×V )

)
(2.4)

for 0 � t � T . Thus, (2.1) is verified.
By (2.3), we have

E(T ) � E(0) −
∫ T

0

∫
�+

(v · ν)|∂tu|2 dS dv dt

−
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C
∫ T

0
E(η) dη + C‖ f ‖2

L2(�×V )
.

9
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Hence, (2.4) yields∫ T

0

∫
�+

(v · ν)|∂tu|2 dS dv dt

� E(0) − E(T ) −
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C
∫ T

0
E(η) dη + C‖ f ‖2

L2(�×V )

� −C
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
.

Thus, the proof of lemma 2.1 is completed. �

3. Carleman estimate

In this section, we prove our key Carleman estimate.
We set

Q = � × (0, T )

and

Pu(x, v, t) = ∂tu(x, v, t) + v · ∇u(x, v, t) + σt (x, v)u(x, v, t), (x, t) ∈ Q, v ∈ V.

By the assumption (1.8) on V , we can choose γ ∈ R
n satisfying (γ · v) > 0 for all v ∈ V . We

set

ϕ(x, t) = −βt + (γ · x)

where 0 < β < minv∈V (γ · v) and

B := ∂tϕ + (v · ∇ϕ) = −β + (γ · v) > 0.

Then we can prove

Lemma 3.1. There exist constants s0 > 0 and C > 0, such that

s
∫

�

∫
V

|u(x, v, 0)|2 e2sϕ(x,0) dv dx + s2
∫

Q

∫
V

|u(x, v, t)|2 e2sϕ(x,t) dv dx dt

� C
∫

Q

∫
V

|Pu|2 e2sϕ(x,t) dv dx dt + s
∫ T

0

∫
�+

(v · ν)|u|2 e2sϕ(x,t) dS dv dt

for all s � s0 and u ∈ H1(0, T ; L2(� × V )) satisfying ∇u ∈ L2(� × V × (0, T )) and
u(·, ·, T ) = 0 in � × V .

Remark 3.1. The proof is direct by integration by parts. Lemma 3.1 gives what is called
a Carleman estimate with a special choice of linear ϕ which is possible by the geometric
condition (1.8). This Carleman estimate is essential for our proof, and thanks to it we need not
extend solutions to t < 0. In particular, we note that u(x, v, 0) and u(x, v, t) with the power s2

are estimated by the right-hand side.

Here and henceforth, C > 0 denotes generic constants which are independent of s > 0.

Proof. Since σt ∈ L∞(� × V ), by choosing s > 0 large, it suffices to prove the inequality for
σt = 0. We set w(x, v, t) = esϕ(x,t)u(x, v, t) and Lw(x, v, t) = esϕ(x,t)P(e−sϕ(x,t)w(x, v, t)).
Henceforth, we omit the independent variables (x, v, t) if there is no fear of confusion. Then

Lw = {∂tw + (v · ∇w)} − sBw.

10
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We have ∫
Q

|Pu|2 e2sϕ(x,t) dx dt =
∫

Q
|Lw|2 dx dt.

Now, for almost all v ∈ V , by u(·, v, T ) = 0, we calculate and estimate:∫
Q

|Pu|2 e2sϕ dx dt =
∫

Q
|∂tw + (v · ∇w)|2 dx dt +

∫
Q

|sB|2w2 dx dt

− 2s
∫

Q
Bw(∂tw + (v · ∇w)) dx dt

� −2s
∫

Q
Bw(∂tw + v · ∇w) dx dt + s2

∫
Q

B2w2 dx dt

= −s
∫

Q
(B∂t (w

2) + Bv · ∇(w2)) dx dt + s2
∫

Q
B2w2 dx dt

= s
∫

�

B|w(x, 0)|2 dx − s
∫ T

0

∫
∂�

B(ν · v)w2 dS dt + s2
∫

Q
B2w2 dx dt

� s
∫

�

B|w(x, 0)|2 dx − s
∫ T

0

∫
∂�∩{(v·ν(x))>0}

B(ν · v)w2 dS dt

+ s2
∫

Q
B2w2 dx dt.

Substituting w = esϕu and noting B > 0, we have∫
�

s|u(x, v, 0)|2 e2sϕ(x,0) dx + s2
∫

Q
|u(x, v, t)|2 e2sϕ dx dt

−s
∫ T

0

∫
∂�∩{(v·ν(x))>0}

(v · ν)|u(x, v, t)|2 e2sϕ dS dt

� C
∫

Q
|Pu(x, v, t)|2 e2sϕ(x,t) dx dt.

Integrating in v over V , we complete the proof. �

Finally, we prove a Carleman estimate for the transport equation with the integral term∫
V ku dv′. For it, it is essential that ϕ(x, t) = −βt + (γ · x) is independent of v.

Lemma 3.2. There exist constants s0 > 0 and C > 0, such that

s
∫

�

∫
V

|u(x, v, 0)|2 e2sϕ(x,0) dv dx + s2
∫

Q

∫
V

|u(x, v, t)|2 e2sϕ dv dx dt

� C
∫

Q

∫
V

∣∣∣∣∂tu + v · ∇u + σtu −
∫

V
ku dv′

∣∣∣∣2

e2sϕ(x,t) dv dx dt

+s
∫ T

0

∫
�+

(v · ν)|u|2 e2sϕ(x,t) dS dv dt

for all s � s0 and u ∈ H1(0, T ; L2(� × V )) satisfying ∇u ∈ L2(� × V × (0, T )) and
u(·, ·, T ) = 0 in � × V .
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Proof. By k ∈ L∞(� × V × V ), noting that ϕ is independent of v, we have∫
Q

∫
V

∣∣∣∣∫
V

k(x, v, v′)u(x, v′, t) dv′
∣∣∣∣2

e2sϕ dv dx dt

� C
∫

Q

∫
V

(∫
V

|u(x, v′, t)|2 dv′
)

e2sϕ(x,t) dv dx dt

� C|V |
∫

Q

∫
V

|u(x, v′, t)|2 e2sϕ(x,t) dv′ dx dt.

Therefore, we can absorb the term
∫

Q

∫
V

∣∣∫
V ku dv′∣∣2

e2sϕ dv dx dt into the left-hand side by
choosing s > 0 large. Thus, the lemma follows from lemma 3.1. �

4. Proof of theorem 1.3

The proof of theorem 1.3 is based on the Carleman estimate (lemma 3.2) and the energy
estimate (lemma 2.1), and is similar to [22]. Henceforth, C > 0 and C1 denote generic
constants which are independent of s > 0. Let ϕ(x, t) = −βt + (γ · x) for (x, t) ∈ Q. We set

rmax = max
x∈�

(γ · x), rmin = min
x∈�

(γ · x).

By conditions (1.18) on T > 0, we can choose β > 0, such that

0 < β < min
v∈V

(γ · v), rmax − βT < rmin. (4.1)

Then

ϕ(x, T ) � rmax − βT < rmin � ϕ(x, 0), x ∈ �.

Therefore, there exist δ > 0 and r0, r1, such that rmax − βT < r0 < r1 < rmin,

ϕ(x, t) > r1, (x, t) ∈ �, 0 � t � δ (4.2)

and

ϕ(x, t) < r0, (x, t) ∈ �, T − 2δ � t � T. (4.3)

For applying lemma 3.2, we need a cut-off function χ ∈ C∞
0 (R), such that 0 � χ � 1 and

χ(t) =
{

1, 0 � t � T − 2δ,

0, T − δ � t � T.
(4.4)

We set

z(x, v, t) = (∂tu(x, v, t))χ(t).

Then we have z(x, v, T ) = 0 and

Pz −
∫

V
k(x, v, v′)z dv′ = χ f (∂tR) + (∂tχ)∂tu, (x, t) ∈ Q, v ∈ V,

z(x, v, 0) = f (x, v)R(x, v, 0) − v · ∇a(x, v) − σta

+
∫

V
k(x, v, v′)a(x, v′) dv′, x ∈ �, v ∈ V.

Applying lemma 3.2 to z, we obtain

s
∫

�

∫
V

|z(x, v, 0)|2 e2sϕ(x,0) dv dx � C
∫

Q

∫
V

|χ f ∂tR|2 e2sϕ(x,t) dv dx dt

+C
∫

Q

∫
V

|(∂tχ)∂tu|2 e2sϕ(x,t) dv dx dt + C eC1sd2
0 . (4.5)
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Here, we set

d0 =
(∫ T

0

∫
�+

(v · ν)|∂tu|2 dS dv dt

)1/2

and

d =
(∫ T

0

∫
�+

(v · ν)|∂tu|2 dS dv dt

)1/2

+ ‖a‖L2(�×V ) + ‖∇a‖L2(�×V ),

and we used s eCs � e(C+1)s for t > 0, so that we replace C in the last term on the right-hand
side of (4.5) by C + 1, and we set C1 = C + 1. Since ∂tχ = 0 for 0 � t � T − 2δ or
T − δ � t � T , by (4.3) we have∫

Q

∫
V

|(∂tχ)∂tu|2 e2sϕ(x,t) dv dx dt =
∫ T−δ

T−2δ

∫
�

∫
V

|(∂tχ)∂tu|2 e2sϕ(x,t) dv dx dt

� C e2sr0

∫ T−δ

T−2δ

∫
�

∫
V

|∂tu|2 dv dx dt. (4.6)

By (2.1), we obtain∫
�

∫
V

|∂tu(x, v, t)|2 dv dx � C
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
+C

∫ T

0

∫
�−

|(v · ν)||∂tu|2 dS dv dt

for 0 � t � T . Therefore, by (4.6) we obtain∫
Q

∫
V

|(∂tχ)∂tu|2 e2sϕ(x,t) dv dx dt � C e2sr0
(‖ f ‖2

L2(�×V )
+ ‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
−C e2sr0

∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt.

Moreover, since R(x, v, 0) �= 0 and

f (x, v)R(x, v, 0) = z(x, v, 0) + v · ∇a + σta −
∫

V
k(x, v, v′)a(x, v′) dv′

for x ∈ � and v ∈ V , we have∫
�

∫
V

|z(x, v, 0)|2 e2sϕ(x,0) dv dx + C eC1s
(‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
� C

∫
�

∫
V

| f (x, v)|2 e2sϕ(x,0) dv dx.

Therefore, (4.5) yields

s
∫

�

∫
V

| f (x, v)|2 e2sϕ(x,0) dv dx � C
∫

Q

∫
V

| f (x, v)|2 e2sϕ(x,t) dv dx dt

+C e2sr0‖ f ‖2
L2(�×V )

− C e2sr0

∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C eC1sd2.

Since ϕ(x, t) � ϕ(x, 0) for (x, t) ∈ Q, we have

s
∫

�

∫
V

| f (x, v)|2 e2sϕ(x,0) dv dx � C
∫ T

0

∫
�

∫
V

| f (x, v)|2 e2sϕ(x,0) dv dx dt

+C e2sr0‖ f ‖2
L2(�×V )

− C e2sr0

∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C eC1sd2.
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That is,

(s − CT )

∫
�

∫
V

| f (x, v)|2 e2sϕ(x,0) dv dx � C e2sr0‖ f ‖2
L2(�×V )

−C e2sr0

∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C eC1sd2

for all large s > 0. Using ϕ(x, 0) > r1 and choosing s > 0 large, we obtain

s e2sr1

∫
�

∫
V

| f (x, v)|2 dv dx � C e2sr0‖ f ‖2
L2(�×V )

−C eCs
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt + C eC1sd2.

That is,

‖ f ‖2
L2(�×V )

� C e−2s(r1−r0 )‖ f ‖2
L2(�×V )

− C eCs
∫ T

0

∫
�−

(v · ν)|∂tu|2 dS dv dt

+C eC1s
∫ T

0

∫
�+

(v · ν)|∂tu|2 dS dv dt + C eC1s
(‖a‖2

L2(�×V )
+ ‖∇a‖2

L2(�×V )

)
.

for all large s > 0. Note that r1 − r0 > 0. Choosing s > 0 large, we can absorb the first term
on the right-hand side into the left-hand side, and complete the proof. �
Remark 4.1. If we assume ‖∂tu‖L2(�×V×(0,T )) � M with some constant M > 0, the estimate
in (4.6) is written as∫

Q

∫
V

|(∂tχ)∂tu|2 e2sϕ(x,t) dv dx dt � C e2sr0 M2.

Then f is estimated less sharply but more easily without using (2.1). We obtain

‖ f ‖2
L2(�×V )

� CM2 e−2s(r1−r0 ) + C1 eCsd2.

By minimizing the right-hand side with respect to s, the Hölder stability is obtained only with
data on the sub-boundary �+ × (0, T ). That is, there exist constants κ ∈ (0, 1), C > 0 and
T > 0, such that

‖ f ‖L2(�×V ) � C

((∫ T

0

∫
�+

(v · ν)|∂tu|2 dv dS dt

)1/2

+ ‖a‖L2(�×V ) + ‖∇a‖L2(�×V )

)κ

for all f ∈ L2(�×V ). The data on the whole boundary V × ∂�× (0, T ) are needed to obtain
the Lipschitz stability.

5. Concluding remarks

Considering the transport equation (1.9) over 0 < t < T , we establish the Lipschitz stability
in determining σt or σs by measurement data on the sub-boundary �+ × (0, T ) by choosing
the initial value a and boundary value g on �− × (0, T ).

We consider the inverse problem totally in (0, T ). For a conventional method by Bukgheim
and Klibanov [10], it is necessary to extend the solution u(x, v, t) to −T < t < 0 and such an
extension needs some extra condition on σt (see [30]). If we consider the transport equation in
t ∈ (−T, T ) with the ‘intermediate’ value u(x, v, 0) at t = 0, then we need not the extension
of u in t and we can more directly prove the Lipschitz stability (see [29]). However, in the latter
case, since we have to control u(x, v, 0) in order to satisfy the positivity (1.12), the control is
more difficult, because it is not an initial condition,

We have to assume an extra condition (1.8) on V . It is not known whether we can prove
theorems 1.1–1.4 for general V satisfying only 0 �∈ V .
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