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ESR intensity and the Dzyaloshinsky-Moriya interaction of the nanoscale molecular magnet V15
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The intensity of electron spin resonance (ESR) of the nanoscale molecular magnet V15 is studied. We calculate
the temperature dependence of the intensity at temperatures from high to low. In particular, we find that the
low-temperature ESR intensity is significantly affected by the Dzyaloshinsky-Moriya interaction.
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I. INTRODUCTION

The V15 molecule has been one of the promising nanometer-
scale molecular magnets since it was first synthesized.1–5 It is
the complex of formula K6[VIV

15As6O42(H2O)] · 8H2O. In V15,
fifteen vanadium ions of spin 1/2 form almost a sphere. Three
spins in the middle are sandwiched by the upper and lower
hexagons.

Different experiments on the magnetization process have
shown that the magnetization changes adiabatically in a
fast sweeping field, and a magnetic plateau appears in a
slow sweeping field due to the thermal bath attached to the
molecule.6–8 The latter phenomenon, which is called the
phonon bottleneck effect, is theoretically analyzed from a
general point of view of the magnetic Foehn effect.9 This
smooth change of the magnetization at H = 0 T implies the
existence of an avoided-level-crossing energy structure. The
structure of the avoided level crossing has been studied. In a
model of the triangle Heisenberg antiferromagnet with three
spins, at H = 0, two sets of S = 1/2 doublets overlap, and
4 states degenerate. The degeneracy is resolved into two sets
of Kramers doublets by perturbation such as anisotropy, the
Dzyaloshinsky-Moriya interaction (DMI),10–13 and also the
hyperfine interaction.14 Depending on the type of perturbation,
there appear many kinds of energy structures. At the crossing
point of the two states of m = 1/2 of the doublet states and
one of the quartet state (m = 3/2), H = Hc, a kind of avoided
level crossing is formed. It has been pointed out that adiabatic
change causes the change of magnetization from m − 1/2 to
m = 1 because one state adiabatically changes to the state with
m = 3/2.15,16 In V15, the equilibrium magnetization curve
shows smooth change at zero field from 1/2 to 1/2 and at
2.8 T (≡ Hc) from 1/2 to 3/2. V15 can be described by a
triangle model but details of the DMI in V15 are not yet fully
understood.

In this paper, first we numerically calculate the temperature
dependence of the electron spin resonance (ESR) intensity of
V15 using a new numerical method (the double Chebyshev
polynomial method) of calculating the Kubo formula. We find
that the model Hamiltonian for V15 including the DMI success-
fully reproduces the experimental temperature dependence of
the ESR intensity. Second we investigate the ESR at very low
temperatures. We find that the intensity ratio (the intensity of
V15 divided by that of a spin 1/2) is affected by the DMI at
small fields. We propose that experimental observation of the

intensity ratio enables us to estimate the DMI in V15. Finally,
we analyze the ESR at low temperatures using a triangle model
whose energy levels model the low-lying levels of V15.

II. MODEL AND FORMULATION

Figure 1 shows the structure of vanadium ions in V15. We
consider the following spin Hamiltonian for V15:17–19

H = −
∑
〈i,j〉

Jij Si · Sj +
∑
〈i,j〉

Dij · [Si × Sj ] −
∑

i

H · Si .

(1)

The first term on the right-hand side of Eq. (1) describes
the Heisenberg interaction. Coefficients Jij take three values
J , J1, and J2 (|J | > |J2| > |J1|) depending on the bonds
on the upper and lower hexagons. Three spins between two
hexagons interact with the hexagons by J1 and J2. There is
no interaction among these three spins.3 We set J = −800 K,
J2 = −350 K, and J1 = −225 K.20 The second term describes
the DMI. We assume the existence of DM vectors {Dij } at the
bonds of J . In the third term, H denotes the static magnetic
field applied to the molecule. We will ignore other effects
such as dipolar fields, hyperfine interactions, and the crystal
field, which are considered to be negligibly small. Indeed, the
dipolar and hyperfine fields are estimated as 1 mK and 50 mK,
respectively.7

Figure 2 explains the interactions between spins. If we
assume the D3 symmetry of V15, the lower hexagon differs
from the upper hexagon by rotation π/6 and we have only one
free DM vector, say D1,2 (Fig. 3). We take the vector D1,2 to
be Dx

1,2 = D
y

1,2 = Dz
1,2 = 40 K. Let us define

R̂(θ ) =
⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ , P̂ =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ .

(2)

We obtain the other DM vectors on the upper hexagon by
rotating D1,2 by 2π/3 and 4π/3:

D3,4 = R̂

(
4π

3

)
D1,2, D5,6 = R̂

(
2π

3

)
D1,2; (3)

i.e., Dx
3,4 = 14.641 K, D

y

3,4 = −54.641 K, Dz
3,4 = 40 K,

Dx
5,6 = −54.641 K, D

y

5,6 = 14.641 K, and Dz
5,6 = 40 K. The
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FIG. 1. Schematic picture of V15.

DM vectors on the lower hexagon are obtained as

D10,11 = P̂ D1,2, D12,13 = R̂

(
2π

3

)
D10,11,

D14,15 = R̂

(
4π

3

)
D10,11; (4)

i.e., Dx
10,11 = −40 K, D

y

10,11 = 40 K, Dz
10,11 = −40 K,

Dx
12,13 = −14.641 K, D

y

12,13 = −54.641 K, Dz
12,13 = −40 K,

Dx
14,15 = 54.641 K, D

y

14,15 = 14.641 K, and Dz
14,15 =

−40 K.
Let us calculate the ESR intensity of V15 using the

Hamiltonian (1). By the Kubo formula,21,22 the imaginary part
of the susceptibility χ ′′(ω,T ) on the transverse field H parallel
to the x axis is given by the Fourier transform of the spin-spin
correlation function:

χ ′′(ω; T ) = (1 − e−βω)Re
∫ ∞

0
〈MxMx(t)〉e−iωt dt, (5)

where ω is the frequency of the radiation field, T is tempera-
ture, and β = 1/T . The absorption is given by

I (ω; T ) = ωH 2
R

2
χ ′′(ω; T ), (6)

where HR is the amplitude of the radiation field. We obtain the
ESR intensity I (T ) by integrating I (ω,T ) with respect to ω:

I (T ) =
∫ ∞

0
I (ω,T )dω. (7)

In the present paper, we obtain I (T ) without diago-
nalization. Our method can readily be applied to other
nanomagnets. In Appendix A, we describe the numerical
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FIG. 2. Heisenberg interactions between the spins.
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FIG. 3. The D3 symmetry of V15.

method of calculating the Kubo formula for huge Hamiltonian
quantum many-body systems.19 This method, which we call
the double Chebyshev expansion method (DCEM), realizes
O(N ) calculation in both speed and memory. In the method,
we evaluate the summation over all the states in the expression
of the correlation function by using the average over a few
numbers of random initial states. Furthermore, we calculate
the exponential operators e−βH and e−iHt by expanding them
in the Chebyshev polynomial. The DCEM takes all the states
in the Hilbert space into account and enables us to obtain the
ESR at any temperature.

III. TEMPERATURE DEPENDENCE OF
THE ESR INTENSITY

We study the temperature dependence of the ESR intensity
of V15. We apply the magnetic field parallel to the c axis of the
molecule (z axis): H = (0,0,H ). Figure 4 shows intensities at
H = 2 T from 1 K to 10 000 K. The intensity obtained by the
DCEM (solid circles) is plotted together with experimental
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FIG. 4. The temperature dependencies of the intensity for H||z
and H = 2 T and the experimental intensity.
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FIG. 5. The temperature dependence of the intensity for H||z and
H = 4 T.

data by Ajiro et al.23 (solid squares). The intensity by the
DCEM in Fig. 4 agrees with the experimental data. In addition,
the dashed line denotes the intensity

I1(T ) = H tanh
βH

2
(8)

of an isolated spin 1/2. The short-dashed line, dotted line,
and dash-dotted line denote 2I1(T ), 3I1(T ), and 15I1(T ) for
noninteracting 2, 3, and 15 spins, respectively.

When the temperature is sufficiently higher than the interac-
tions, spins in V15 are almost isolated. Therefore, the intensity
is expected to meet the dash-dotted line at very high temper-
atures. In Fig. 4, the intensity starts to deviate from the dotted
line near 200 K. As the temperature decreases, the effective
number of spins changes from 15 to 3, and the intensity stays
on the dotted line at temperatures between 10 K and 100 K.

Figure 5 is the same as Fig. 4 except H = 4 T. At temper-
atures above 10 K, the intensity in Fig. 5 behaves almost the
same as that in Fig. 4. However, the temperature dependence
of the effective number is different from that in Fig. 4 below
10 K. In Fig. 5, the effective number of spins changes from
15 to 3 at high temperatures, and stays on the dotted line for
3I1(T ) as temperature decreases. A similar behavior of the
low-temperature intensity has also been predicted.24

IV. THE LOW-TEMPERATURE INTENSITY RATIO

A. I(T ) at low temperatures

Although the DMI affects I (T ) only mildly at T > 1 K,
it significantly changes I (T ) at low temperatures. At low
temperatures, only transitions among low-lying energy levels
near the ground state are responsible for the ESR absorption.
This fact enables us to obtain the intensity by investigating the
transitions among the lowest eight levels. Thus, we can calcu-
late intensity with the subspace iteration method (SIM).19,25,26

The response χ ′′(ω,T ) is obtained by direct diagonalization
in the small reduced space. In Fig. 6, we compare the result
of Fig. 4 and the data obtained by the SIM. We find a good
agreement below 100 K. Above this temperature, the lowest
eight states are not enough to represent the system.

In Fig. 7(a), we show the lowest eight energy levels of V15

as a function of the magnetic field H applied in the z direction.
Due to the DMI, we have an avoided level crossing near 3 T as
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FIG. 6. The temperature dependence of the intensity for H||z and
H = 2 T.

shown in Fig. 7(b). Without the DMI, the gap closes and the
two levels just cross each other.

We define the intensity ratio R(T ) as

R(T ) = I (T )/I1(T ), (9)

where I1(T ) is the intensity of a single spin [Eq. (8)]. In
the previous section, we have found R(T ) � 3 for H = 4 T
and R(T ) is slightly larger than 1 for H = 2 T in the low-
temperature limit. Figure 8 shows R(T ) in a low temperature
region. In Fig. 8, the circles and triangles show R(T ) at H =
57.8 GHz (� 2 T) and at H = 108 GHz (� 4 T), respectively.
The dashed lines in Fig. 8 show the ratios without the DMI at
H = 2 T and at H = 4 T for comparison. First, we notice that
Hc can be experimentally estimated with the low-temperature
ESR by measuring the field at which the destination of the
intensity changes. Second, we see that R(T = 0 K) at H = 2 T
deviates from 1 due to the DMI, while R(T = 0 K) at H = 4 T
stays very close to the dotted line. Thus it would be possible
to experimentally determine the DMI in V15 by observing the
intensity at low temperatures.

Furthermore, we study intensity ratios at various fields near
the avoided level crossing point (hereafter we refer to this field
as Hc) in the presence [Fig. 9(a)] and absence [Fig. 9(b)] of
the DMI. The ratio goes to 3 as T → 0 for a field higher than
Hc. In contrast, it goes near 1 for a lower field. The derivative
of the line for H = 2 T in Fig. 9(a) is negative at 0 K, while
that for H = 3 T is positive. Hence the line for H = 2 T has
a dip at T � 0.5 K. In the absence of the DMI, the line for
H = 2 T does not have a dip.

B. Triangle model

As shown in Figs. 8 and 9(a), the intensity ratio for lower
fields deviates from 1 in the low-temperature limit. Here, we
study the mechanism of this deviation analytically in a triangle
model of three spins which well describes the low-lying energy
structure of V15.

The triangle model18 is given by the Hamiltonian Eq. (1)
with Jij = J < 0, H = (0,0,H ), H > 0,

Dx
12 = Dx, D

y

12 = Dy,

Dx
23 = (−Dx +

√
3Dy)/2, D

y

23 = (−
√

3Dx − Dy)/2,

Dx
31 = (−Dx −

√
3Dy)/2, D

y

31 = (
√

3Dx − Dy)/2, (10)
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FIG. 7. (a) The lowest eight levels of V15 as a function of H||z. (b) Magnified figure near 3 T.

and

Dz
12 = Dz

23 = Dz
31 = Dz. (11)

Note that the elements of the DM vectors are chosen so that
the model satisfies the C3 symmetry. If we put J = −2.5 K
and Dx = Dy = Dz = 0.25 K (≡ D), energy levels of the
triangular model well reproduce the lowest eight levels of V15

as shown in Fig. 10. In the absence of the DMI, the ground-state
magnetization Mz changes from 1/2 to 3/2 at

Hc ≡ 3
2 |J | � 2.8 T. (12)

The intensity ratio R3(T ) of this triangle model is obtained
as

R3(T ) =
[
I1(T )

∑
m

e−βEm

]−1 ∑
m

r(m),

r(m) =
∑

n(En>Em)

(En − Em)(e−βEm − e−βEn )|2〈wm|Mx |wn〉|2,

(13)

where {Em} and {|wm〉} are the eigenvalues and eigenvectors of
the triangle-model Hamiltonian, respectively. In Appendix B,
R3(T ) at low temperatures around Hc is calculated.

Let us explore the nonmonotonic temperature dependence
of the intensities shown in Fig. 9 by using the triangle model
with different values of Dx , Dy , and Dz. First, we consider
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FIG. 8. The intensity ratios of V15 as a function of the tem-
perature. The intensity ratios without the DMI are also shown for
comparison.

how the DMI causes the dip at T � 0.5 K for H = 4 T
in Fig. 9(a). In the absence of the DMI [Fig. 9(b)], by
setting Dx = Dy = Dz = 0, we obtain dR3(T )/dT > 0 for
H < Hc and dR3(T )/dT < 0 for Hc < H [see Eq. (B15) in
Appendix B]. To investigate the intensities in Fig. 9(a), we
set Dx = Dy = 0,Dz 
= 0 (uniaxial). Note that the structure
of the energy levels with Dx = Dy = Dz 
= 0 is the same as
that in the uniaxial case only except that the gap closes in the
uniaxial case. We find that dR3(T )/dT < 0 for H � Hc and
dR3(T )/dT > 0 for H � Hc [see Eq. (B17) in Appendix B],
which implies a dip at a low field.

Next, let us consider the effect of a weak DMI. We set Dx =
Dy = Dz = D 
= 0. By ignoring smaller terms than O(D), we
have (Appendix B)

R3(T ) �
{

1 + �
H

− 2�
H

e−�/T (H < Hc),

3 − (
2 − �

H

)
e−|H−Hc−�/2|/T (Hc < H ),

(14)

where we defined

� ≡
√

3D. (15)

Taking the limit T → 0, we have

R3(T ) �
{

1 + �
H

(H < Hc),

3 (Hc < H ).
(16)

This term �/H describes the deviation of R(T ) from 1, and
the deviation is proportional to D.

V. SUMMARY

In this paper, we studied the ESR of the nanomagnet V15.
We investigated the temperature dependence of the intensity
on the DMI for different values of the static field H . The DMI
significantly affects the low-temperature intensity of V15. We
found that the intensity at H < Hc has a dip as a function of
temperature due to the DMI. We analyzed the dip using the
three-spin model and obtained analytical expressions of the
intensity. Experimental measurement of the dip may be used
to estimate the DMI of V15.
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APPENDIX A: DCEM

The DCEM is an extension of the Boltzmann-weighted
time-dependent method (BWTDM).27,28 The DCEM differs
from the BWTDM by the third step below. The procedure of
the DCEM is divided by the following five steps.

At the first step, we prepare a random vector |�〉.29,30 For
a given basis |n〉 of the Hilbert space, this random vector
is given by |�〉 = ∑N

n=1 |n〉 eiθn . Here, the dimension of the
Hilbert space is N and the random numbers {θn} take values
from −π to π .

At the second step, we obtain the Boltzmann-weighted
random vector |�Boltz〉 = e−βH/2 |�〉 by expanding it with the
Chebyshev polynomial:

e−βH/2 = I0 (−β�λ/2) T0(Hsc)

+ 2
∑

k

Ik (−β�λ/2) Tk(Hsc), (A1)

where Ik(x) is the modified Bessel function and Tk(Hsc)
is the Chebyshev polynomial, which satisfies Tk(Hsc) =
2HscTk−1(Hsc) − Tk−2(Hsc), T0(Hsc) = 1, and T1(Hsc) =
Hsc. We note that the eigenvalues of Hsc (= H/�λ) are
confined between −1 to 1. By this procedure, we obtain vectors
e−βH/2 |�〉 without diagonalization.

-10
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FIG. 10. Energy levels of the triangle model as a function of the
field H .

At the third step, we obtain |�Boltz; t〉 = e−iHt |�Boltz〉
and |�Mx ; t〉 = e−iHt |�Mx 〉, where |�Mx 〉 = Mx |�Boltz〉 and
Mx = ∑

Sx
j . In the BWTDM, the time evolution is performed

by the leap frog method, which evolves a state |φ; t〉 as

|φ; t + �t〉 = −2iH�t |φ; t〉 + |φ; t − �t〉 . (A2)

Note that the condition Emax�t � 1 should be satisfied, where
Emax is the largest eigenvalue of the Hamiltonian. In the
DCEM, we make use of the Chebyshev polynomial expansion
in order to obtain the time evolution of the vector:

|φ; t + τ 〉 = e−iτ�λHsc |φ; t〉
= J0(τ�λ)T0(Hsc) |φ; t〉

+ 2
∑

k

(−i)kJk(τ�λ)Tk(Hsc) |φ; t〉 , (A3)

where Jk(x) is the Bessel function. Note that the time step
τ is not necessarily small. In the ESR experiment for V15,
the magnetic field H (∼1 K) is usually much smaller than
the strongest coupling |J | (∼103 K). Hence the frequency of
precession of the spins is small. This means that we need
to evolve state vectors for a long time but do not need fine
resolution of the time step. This is why the DCEM is more
efficient than the BWTDM for the ESR of V15.

At the fourth step, we calculate the correlation function

〈MxMx(t)〉 = Tre−βHMxeiHtMxe−iHt

Tre−βH

= [〈�Mx ; t | Mx |�Boltz; t〉]av

[〈�Boltz|�Boltz〉]av
, (A4)

where the traces are replaced by the ensemble averages ([·]av)
with respect to the random vectors; for any operator X̂, TrX̂ is
calculated as

[〈�|X̂|�〉]av =
∑

n

〈n|X̂|n〉 +
∑
m,n

[ei(θm−θn) − δmn]av〈n|X̂|m〉

� TrX̂. (A5)

Finally, χ ′′(ω; T ) is obtained by the Fourier transform of
〈MxMx(t)〉:

χ ′′(ω; T ) = (1 − e−βω)Re
∫ ∞

0
〈MxMx(t)〉e−iωtdt

= (1 − e−βω)Re
∫ Tmax

0
〈MxMx(t)〉e−iωt e−η2t2/2dt.

(A6)
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Here we introduced the Gaussian filter with variance 1/η2.
This η determines the frequency resolution. The upper limit
of the integral Tmax satisfies Tmax ∼ 1/η in order to avoid the
Gibbs oscillation. Also η should satisfy the conditions that
0 < η � 1, η � H , and βη2 � H .

APPENDIX B: DETAILS OF THE TRIANGLE MODEL

We obtain the block-diagonalized form of the Hamiltonian
by using the following basis vectors {∣∣vj

〉}:
|v1〉 = −1

2
√

3
[(1 + i

√
3)|↑↑↓〉 + (1 − i

√
3)|↑↓↑〉

− 2|↓↑↑〉],
|v2〉 = −1

2
√

3
[(1 − i

√
3)|↑↑↓〉 + (1 + i

√
3)|↑↓↑〉

− 2|↓↑↑〉],
|v3〉 = −1

2
√

3
[−2|↑↓↓〉 + (1 + i

√
3)|↓↑↓〉

+ (1 − i
√

3)|↓↓↑〉],
|v4〉 = −1

2
√

3
[−2|↑↓↓〉 + (1 − i

√
3)|↓↑↓〉

+ (1 + i
√

3)|↓↓↑〉],
|v5〉 = |↑↑↑〉,
|v6〉 = 1√

3
[|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉],

|v7〉 = 1√
3

[|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉], and

|v8〉 = |↓↓↓〉. (B1)

Now we have

H |v5〉 = −1

4
(3J + 6H ) |v5〉 + 3

4
D+ |v1〉 ,

H |v1〉 = 3

4
D− |v5〉 + 1

4
(3J − 2H − 2

√
3Dz) |v1〉 , (B2)

H |v4〉 = 1

4
(3J + 2H + 2

√
3Dz) |v4〉 +

√
3

4
D− |v6〉 ,

H |v6〉 =
√

3

4
D+ |v4〉 − 1

4
(3J + 2H ) |v6〉 , (B3)

H |v2〉 = 1

4
(3J − 2H + 2

√
3Dz) |v2〉 −

√
3

4
D+ |v7〉 ,

H |v7〉 = −
√

3

4
D− |v2〉 + 1

4
(−3J + 2H ) |v7〉 , (B4)

H |v8〉 = 1

4
(−3J + 6H ) |v8〉 + 3

4
D− |v3〉 , and

H |v3〉 = 3

4
D+ |v8〉 + 1

4
(3J + 2H − 2

√
3Dz) |v3〉 , (B5)

where D± = Dx ± iDy .

1. Uniaxial Dzyaloshinsky-Moriya interaction

In the presence of the uniaxial DMI (Dx = Dy = 0), the
triangle-model Hamiltonian is diagonalized by the vectors
{∣∣vj

〉}, i.e., {∣∣vj

〉} form the eigenvectors of the Hamiltonian.

The correspondent eigenvalues {Ej } are given by

E8 = −3

4
J + 3

2
H, E7 = −3

4
J + 1

2
H,

E6 = −3

4
J − 1

2
H, E5 = −3

4
J − 3

2
H,

E4 = 3

4
J + 1

2
H +

√
3

2
Dz, E3 = 3

4
J + 1

2
H −

√
3

2
Dz,

E2 = 3

4
J − 1

2
H +

√
3

2
Dz, and

E1 = 3

4
J − 1

2
H −

√
3

2
Dz. (B6)

Besides, nonzero matrix elements are obtained as

〈v1| Mx |v4〉 = −1

2
, 〈v2| Mx |v3〉 = −1

2
,

〈v5| Mx |v6〉 =
√

3

2
, 〈v6| Mx |v7〉 = 1, and

〈v7| Mx |v8〉 =
√

3

2
, (B7)

where

Mx = Sx
1 + Sx

2 + Sx
3 . (B8)

Note that Mx is Hermitian; i.e., 〈vi |Mx |vj 〉 = (〈vj |Mx |vi〉)∗.
The magnitude relation of E1, E2, and E5 depends on H :

E1 < E2 < E5(H < Hc − �z

2
),

E1 < E5 < E2(Hc − �z

2
< H < Hc + �z

2
), and

E5 < E1 < E2(Hc + �z

2
< H ), (B9)

where we define

�z ≡
√

3Dz. (B10)

In the absence of the DMI (Dx = Dy = Dz = 0), the twofold
degenerate ground state (|v1〉 , |v2〉) of Mz = 1/2 and the state
(|v5〉) of Mz = 3/2 intersect at H = Hc. In the uniaxial DMI,
the states |v2〉 and |v5〉 intersect at H = Hc − �z, and the
states |v1〉 and |v5〉 intersect at H = Hc + �z, respectively.

Note that near Hc, we calculate the intensity ratio by taking
into account only three low-lying states |v1〉, |v2〉, and |v5〉 at
very low temperatures, and we have

∑
m

e−βEm � e−βE1 + e−βE2 + e−βE5 ,

∑
m

r(m) � r(1) + r(2) + r(5)

� (H + �z)e
−βE1 + He−βE2 + 3He−βE5 .

(B11)
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Hence R3(T ) is approximated as

R3(T ) �
(
1 + �z

H

)
e−βE1 + e−βE2 + 3e−βE5

tanh
(

βH

2

)
(e−βE1 + e−βE2 + e−βE5 )

� 3 + e−β(H−Hc+�z/2) + (
1 + �z

H

)
e−β(H−Hc−�z/2)

1 + e−β(H−Hc+�z/2) + e−β(H−Hc−�z/2)
.

(B12)

In the absence of the DMI (�z = 0), we have

R3(T ) � 3 + 2e−β(H−Hc)

1 + 2e−β(H−Hc)
. (B13)

Therefore, at ultracold temperatures (T � |H − Hc|), we have

R3(T ) �
{

1 + e−|H−Hc|/T (H < Hc),
3 − 4e−|H−Hc|/T (Hc < H ),

(B14)

and

dR3(T )

dT
�

{ |H−Hc|
T 2 e−|H−Hc|/T (H < Hc),

− 4|H−Hc|
T 2 e−|H−Hc|/T (Hc < H ).

(B15)

In the case of finite �z, at ultracold temperatures (T � �z

for H < Hc − �z/2 and T � |H − Hc − �z/2| for Hc −
�z/2 < H ), we have

R3(T ) �

⎧⎪⎨
⎪⎩

1 + �z

H
− 2�z

H
e−�z/T (H < Hc − �z/2),

1 + �z

H
+ (

2 − �z

H

)
e−|H−Hc−�z/2|/T (Hc − �z/2 < H < Hc + �z/2),

3 − (
2 − �z

H

)
e−|H−Hc−�z/2|/T (Hc + �z/2 < H ),

(B16)

and

dR3(T )

dT
�

⎧⎪⎨
⎪⎩

− 2�2
z

T 2H
e−�z/T (H < Hc − �z/2),

1
T 2

(
2 − �z

H

)|H − Hc − �z

2 | e−|H−Hc−�z/2|/T (Hc − �z/2 < H < Hc + �z/2),
−1
T 2

(
2 − �z

H

)|H − Hc − �z

2 | e−|H−Hc−�z/2|/T (Hc + �z/2 < H ).

(B17)

In the uniaxial case, the structure of the energy levels is almost
the same as that of V15 except that the gap at the avoided
level crossing point closes. The equation explains the behavior
of R(T ) in the simulation of V15: R′(T ) < 0 at low fields,
R′(T ) > 0 at fields close to the avoided level crossing, and
R′(T ) < 0 at high fields.

2. Weak Dzyaloshinsky-Moriya interaction

Let us consider the full DMI case (Dx = Dy = Dz = D).
We assume D > 0 is small in the sense that D � 2|H − Hc|
is satisfied. By ignoring smaller terms than O(D), we have the
following eigenvectors {∣∣uj

〉}:
|u1〉 = −

√
3e−iπ/4ξ |v5〉 + |v1〉 ,

|u2〉 = |v5〉 +
√

3eiπ/4ξ |v1〉 ,

|u3〉 = −e−iπ/4η |v2〉 + |v7〉 ,

|u4〉 = −
√

3eiπ/4η |v8〉 + |v3〉 ,

|u5〉 = |v2〉 + eiπ/4η |v7〉 , (B18)

|u6〉 = |v4〉 − e−iπ/4ξ |v6〉 ,

|u7〉 = eiπ/4ξ |v4〉 + |v6〉 ,

|u8〉 = |v8〉 +
√

3e−iπ/4η |v3〉 ,

where

ξ ≡ −�

2
√

2(H − Hc)
, η ≡ �

2
√

2(H + Hc)
. (B19)

The corresponding eigenvalues {Ej } are given by

E8 = −3

4
J + 3

2
H, E7 = −3

4
J + 1

2
H,

E6 = −3

4
J − 1

2
H, E5 = −3

4
J − 3

2
H,

E4 = 3

4
J + 1

2
H + �

2
, E3 = 3

4
J + 1

2
H − �

2
,

E2 = 3

4
J − 1

2
H + �

2
, E1 = 3

4
J − 1

2
H − �

2
. (B20)

From the above eigenvectors {|uj 〉}, nonzero matrix ele-
ments are obtained as

〈u1| Mx |u4〉 = −1

2
, 〈u1| Mx |u6〉 = −2eiπ/4ξ,

〈u2| Mx |u3〉 = −1

2
, 〈u2| Mx |u4〉 = 0,

〈u2| Mx |u6〉 = e−iπ/4η, 〈u2| Mx |u8〉 = 0,

〈u3| Mx |u7〉 = −ηe−iπ/4, 〈u4| Mx |u5〉 = −
√

3eiπ/4ξ,

〈u4| Mx |u7〉 = −eiπ/4ξ, 〈u5| Mx |u6〉 =
√

3

2
,

〈u6| Mx |u7〉 = 1, 〈u7| Mx |u8〉 =
√

3

2
. (B21)

Let us consider the ultracold limit (β → ∞), where all
transitions can be ignored except for the transitions from the
ground state. We consider two cases: H < Hc, where |v1〉 is
the ground state, and Hc < H , where |v5〉 is the ground state.
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We have

∑
m

e−βEm � e−βE1 + e−βE2 ,

∑
m

r(m) � r(1) + r(2) � (H + �) e−βE1 (H − �) e−βE2 ,

(B22)

for H < Hc, and∑
m

e−βEm � e−βE5 + e−βE1 ,

∑
m

r(m) � r(5) + r(1) � 3He−βE5 + (H + �) e−βE1 ,

(B23)

for Hc < H . Thus we obtain Eq. (14).
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