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We study characteristics of the steady state of a random-matrix model with periodical pumping, where
the energy increase saturates by quantum localization. We study the dynamics by making use of the
survival probability. We found that Floquet eigenstates are separated into the localized and extended
states, and the former governs the dynamics.
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1. Introduction

Energy dissipation in quantum systems has been studied for
a long time. A typical example in one-body systems is the kicked
rotator model [1]. In particular, quantum localization is interest-
ing in such dynamics; unlike classical diffusion, the average en-
ergy starting initially from the ground state saturates at a finite
value after the transient diffusive time-evolution because of quan-
tum interference [2]. That is, the system cannot absorb energy
thereafter. The kicked rotator model has been experimentally re-
alized using hydrogen and sodium atoms, and this saturation is
observed [3–7]. A spin model [8] was also used to study dynamics
of many-body quantum systems. In addition, the energy diffusion
of time-dependent random-matrix Hamiltonians has been studied.
Wilkinson clarified the dependence of the diffusion constant on
symmetries of random matrices [9,10]. Bulgac et al. derived an
analytical expression of the diffusion coefficient [11]. Cohen and
Kottos studied the diffusion coefficient under an oscillating pertur-
bation [12].

In this Letter, we study the distribution of energy of a random-
matrix Hamiltonian with an oscillating external field in the steady
state after quantum localization takes place, while in the previous
works the initial dissipation has been focused. We introduce the
survival probability as the long-time overlap between the time-
evolved state and the initial state. We study the saturation energy
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in terms of the survival probability. We point out that the survival
probability is separated in two parts: the localized part to which
the localized Floquet eigenstates contribute and the extended part
to which the extended Floquet eigenstates make a contribution.

This Letter is organized as follows. In Section 2, we study the
survival probability. In Section 3, we study the saturation energy.
Finally in Section 4, we give conclusions.

2. Survival probability

2.1. Definition

Let us introduce an N × N time-dependent Hamiltonian H(t)
with an oscillating external field of frequency ω. This Hamiltonian
is periodic with period 2π/ω.

H
(

t = 2π

ω

)
= H(t = 0). (1)

We write the k-th eigenvalue and eigenstate of the initial Hamilto-
nian H(t = 0) (≡ H0) as Ek and |k〉 (k = 0,1, . . . , N − 1). We take
the ground state |0〉 as the initial state. With the help of the Flo-
quet operator F (the time-evolution operator for a period) [13],
the state |ψn〉 after the n-th period (t = 2πn/ω) is written as

|ψn〉 = Fn|0〉. (2)

The ν-th eigenvalue and eigenstate of F are written as eiφν

and |φν〉. We arrange {|φν〉} such that they satisfy |〈φν+1|0〉|2 �
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Fig. 1. (a) The five lines show, from the bottom, p0(ν) for ω = 0.02π , 0.1π , 0.2π , 0.4π , and 1.0π , respectively. The data are obtained by averaging five independent samples.
Fittings are shown for ω = (b) 0.02π , (c) 0.1π , (d) 0.2π , (e) 0.4π , and (f) 1.0π , respectively.
|〈φν |0〉|2. We define pk(ν) as the overlap between the energy
eigenstate |k〉 and Floquet eigenstate |φν〉:

pk(ν) ≡ ∣∣〈φν |k〉∣∣2
. (3)

For a sequence Xn , we define Xn as the long-time average:
Xn ≡ limm→∞

∑m−1
n=0 Xn/m. We define the survival probability

P (ω) as follows:

P (ω) ≡ lim
m→∞

1

m

m−1∑
n=0

∣∣〈0|ψn〉
∣∣2 =

∑
ν,ν ′

ein(φν−φν′ )p0(ν)p0
(
ν ′). (4)

The survival probability has been considered, for example, from the
viewpoint of quantum irreversibility [14,15]. In this Letter, the ini-
tial state is always taken in the ground state |0〉. Correspondingly,
the survival probability (4) is defined using |0〉. Therefore, the sur-
vival probability reduces only when the transition to upper levels
occurs. Moreover, P (ω) in Eq. (4) is defined as the probability in
the long-time limit.

By assuming phases are random, we obtain

ein(φν−φν′ ) = δν,ν ′ , (5)

and then

P (ω) 	
∑
ν

p2
0(ν). (6)

We count how many Floquet eigenstates are involved in the
ground state as a function of ω. For a given value r (< 1), we de-
fine f (ω; r) as the minimum number of the Floquet states which
satisfy

∑N−1
ν=0 p0(ν) > r [16,17];

f (ω; r) = 1

N
min

{
N ′:

N ′−1∑
ν=0

p0(ν) > r

}
. (7)

2.2. Localized and extended states

To study the numerical behavior of P (ω), we use the following
random-matrix Hamiltonian:
H
(
λ(t)

) = H0 + λ(t)V, λ(t) = λ0 sin(ωt), (8)

where H0 and V are random matrices with N = 500 drawn from
the Gaussian orthogonal ensemble. We put λ0 = 0.5. The vari-
ance of the off-diagonal elements of the random matrices is unity.
We scale the eigenvalues of H0 so that they distribute from −1
to 1, i.e., E0 = −1 and EN−1 = 1.

For quantum chaotic systems, whose level statistics is well de-
scribed by random matrices, the whole shape of the spectrum is
different from the semi-circle of random matrices. Near the ground
state |0〉 of the Hamiltonian (8), the mean level spacing 	 quickly
changes. Although the whole shape of the spectrum is not uni-
versal, such a quick change is usually seen in quantum chaotic
systems (e.g., the two-dimensional well model in [15]). In this Let-
ter, we are interested in the dynamics when 	 is not necessarily
constant.

In Fig. 1(a), we show p0(ν) as a function of ν for different val-
ues of ω. We find that p0(ν) is fitted by two functions;

p0(ν) 	
{

aLe−bL
√

ν for small ν,

aEe−bEν for large ν,
(9)

where aL, bL, aE, and bE are positive constants. Figs. 1(b)–(f) show
fitting for ω = 0.02π , 0.1π , 0.2π , 0.4π , and 1.0π . For small ν ,
0 � ν � 50 are used (first a few singular values are dropped if any).
For large ν , 150 � ν � 350 are used. We define νc as the closest
integer to the real number which satisfies

aLe−bL
√

ν = aEe−bEν . (10)

The values of νc are shown in Figs. 1(b)–(f).
By using νc, we can divide {|φν〉} into two groups. We call the

states with ν smaller than νc the localized states and the states
with ν greater than or equal to νc the extended states:

localized states = {|φν〉: ν < νc
}
,

extended states = {|φν〉: ν � νc
}
. (11)

Note that p0(ν) > p0(νc) for the localized states and p0(ν) �
p0(νc) for the extended states. For every ω, p0(ν) first drops
sharply (localized states) and then has a tail (extended states).
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Fig. 3. (a) f (ω; r) as a function of r for ω = 0.04π , 0.08π , 0.1π , 0.2π , 0.4π , 0.8π , and 1.0π . (b) Same as (a) but small values of f (ω; r) are focused together with horizontal
lines which show the values of νc/N .
Fig. 2. PL(ω) is compared to P (ω).

Let us similarly separate P (ω) into two terms according to the
localized and extended states:

P (ω) 	
∑
ν

p2
0(ν) = PL(ω) + PE(ω), (12)

where we defined the localized survival probability PL(ω) and the
extended survival probability PE(ω) as

PL(ω) =
∑
ν<νc

p2
0(ν), PE(ω) =

∑
ν�νc

p2
0(ν). (13)

Fig. 2 shows PL(ω) as a function of ω together with P (ω). We see
that the dominant behavior of P (ω) is governed by PL(ω) even
though only a small fraction of the Floquet states contribute
to PL(ω).

Fig. 3(a) shows the number of relevant Floquet eigenstates
f (ω; r) as a function of r for ω = 0.04π (×), 0.08π (∗), 0.1π (�),
0.2π (!), 0.4π (�), 0.8π (�), and 1.0π (♦). In the figure, each
mark is obtained as an average over five samples. It is found that,
for large ω, more than half of the Floquet eigenstates are needed
to cover the initial state |0〉 when r is larger than 0.9. This means
that the contribution of the extended states |φν〉 (ν � νc) be-
comes more important in this regime. The behavior of f (ω; r) for
smaller r, however, implies that the localized states |φν〉 (ν < νc)
govern P (ω) even for large ω. To investigate how many extended
states contribute, small values of f (ω; r) are focused in Fig. 3(b).
In the figure, fractions of the localized states (νc/N) are also plot-
ted. We have f (ω;0.5) < νc

N for every ω. We have f (ω;0.8) < νc
N

for ω � 0.2π , f (ω;0.9) < νc
N for ω � 0.1π , and f (ω;0.99) < νc

N
for ω � 0.04π .

3. Saturation energy

The energy expectation value E(n,ω) at the n-th period is cal-
culated as
E(n,ω) = 〈ψn|H
(

t = 2πn

ω

)
|ψn〉 = 〈ψn|H0|ψn〉

= 〈0|(Fn)†H0Fn|0〉

=
N−1∑
k=0

Ek

∑
ν,ν ′

ein(φν−φν′ )〈0|φν ′ 〉〈φν ′ |k〉〈k|φν〉〈φν |0〉. (14)

Let us consider the saturation energy Esat(ω), which is the long-
time average of E(n,ω) [18].

Esat(ω) ≡ E(n,ω)

≡ lim
m→∞

1

m

m−1∑
n=0

E(n,ω)

=
N−1∑
k=0

Ek

∑
ν,ν ′

ein(φν−φν′ )〈0|φν ′ 〉〈φν ′ |k〉〈k|φν〉〈φν |0〉

=
N−1∑
k=0

Ek

N−1∑
ν=0

p0(ν)pk(ν). (15)

The distributions of p2(ν) and p9(ν) are shown in Fig. 4 for
ω = 0.1π (k = 2,9 are chosen as typical examples). To compare,
p0(ν) is also shown in the figure. We see that pk(ν) is quickly
randomized as a function of k, and pk(ν) (k = 0) spreads randomly.
When k � krand with an integer krand determined by the system (1)
and the initial condition, we can approximate pk(ν) as

pk(ν) 	 1

N
for k � krand. (16)

The number krand is small compared with N but depends on N
and also weakly depends on ω.

Let us consider the upper bound and lower bound of Esat:

Emin � Esat � Emax. (17)

Let us estimate Emax. Using Eq. (15), we have

Esat(ω) �
N−1∑

k=krand

Ek

N−1∑
ν=0

p0(ν)pk(ν) 	 1

N

N−1∑
k=krand

Ek. (18)

The term
∑

k Ek/N vanishes in the limit N → ∞ because the dis-
tribution of {Ek} follows the semi-circle law. Therefore, we esti-
mate

Emax 	 0. (19)

Next we estimate Emin. Using Eq. (15), we have

Esat(ω) �
krand−1∑

Ek

N−1∑
ν=0

p2
0(ν) +

N−1∑
Ek

N−1∑
ν=0

p0(ν)pk(ν). (20)

k=0 k=krand
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Fig. 4. The distributions of (a) p2(ν) and (b) p9(ν) are shown for ω = 0.1π . The insets show semi-log plots. The data are averaged with five independent samples. For com-
parison, p0(ν) is plotted together.
Thus, we obtain for large N

Emin 	
krand−1∑

k=0

Ek P (ω) + 1

N

N−1∑
k=krand

Ek 	
( krand−1∑

k=0

Ek

)
P (ω). (21)

The factor
∑

k Ek is not universal and depends on the system even
if the level statistics of the system is described by random matri-
ces.

Finally we consider the variance of the energy E(n,ω). To es-
timate the variance, we use the nonresonance assumption [18,19]
for the Floquet eigenvalues, which assumes that all the differences
of the eigenvalues are different. That is, if φν1 −φν2 = φν4 − φν3 = 0
such that |〈0|φνi 〉|2 = 0 (i = 1, 2, 3, and 4), then ν1 = ν4 and
ν2 = ν3. With the help of the nonresonance assumption in addi-
tion to relations (5) and (16), we have

var
(

E(n,ω)
) ≡ E2(n,ω) − (

E(n,ω)
)2

=
∑
ν,ν ′

p0(ν)p0
(
ν ′)

×
∑
k,k′

Ek〈φν ′ |k〉〈k|φν〉Ek′
〈
φν

∣∣k′〉〈k′∣∣φν ′
〉
. (22)

Since p0(ν
′)� 1, we have

var
(

E(n,ω)
)
�

∑
k

E2
k

∑
ν

p0(ν)pk(ν)

�
krand−1∑

k=0

E2
k

∑
ν

p2
0(ν) +

N−1∑
k=krand

E2
k

∑
ν

p0(ν)pk(ν)

	
( krand−1∑

k=0

E2
k

)
P (ω) + 1

N

N−1∑
k=krand

E2
k . (23)

Thus, for large N , the variance is estimated as

var
(

E(n,ω)
)
�

( krand−1∑
k=0

E2
k

)
P (ω). (24)
4. Conclusions

We pointed out that the survival probability P (ω) can be sep-
arated into the localized part PL(ω) and the extended part PE(ω).
We further showed that PL(ω) is dominant even though relatively
small number of states |φν〉 (ν < νc) are involved. The saturation
energy Esat(ω) and its variance var(E(n,ω)) are given in terms of
the survival probability P (ω).

Acknowledgements

The work of S. Miyashita was supported by Research on Prior-
ity Areas “Physics of new quantum phases in superclean materials”
(Grant no. 17071011) from MEXT and by the Next Generation Su-
per Computer Project, Nanoscience Program from MEXT.

References

[1] G. Casati, B.V. Chirikov, J. Ford, F.M. Izrailev, in: Lecture Notes in Physics,
vol. 93, 1979, p. 334.

[2] M. Wilkinson, E.J. Austin, J. Phys. A: Math. Gen. 23 (1990) L957.
[3] E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch, D. Richards, Phys. Rev. Lett. 61

(1988) 2011.
[4] J.E. Bayfield, G. Casati, I. Guarneri, D.W. Sokol, Phys. Rev. Lett. 63 (1989) 364.
[5] M. Arndt, A. Buchleitner, R.N. Mantegna, H. Walther, Phys. Rev. Lett. 67 (1991)

2435.
[6] F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams, M.G. Raizen, Phys. Rev.

Lett. 73 (1994) 2974.
[7] G.P. Collins, Phys. Today 48 (1995) 18.
[8] K. Kudo, K. Nakamura, Phys. Rev. B 71 (2005) 144427.
[9] M. Wilkinson, J. Phys. A 21 (1988) 4021.

[10] M. Wilkinson, Phys. Rev. A 41 (1990) 4645.
[11] A. Bulgac, G.D. Dang, D. Kusnezov, Phys. Rev. E 54 (1996) 3468.
[12] D. Cohen, T. Kottos, Phys. Rev. Lett. 85 (2000) 4839.
[13] G. Floquet, Ann. de l’Ecole Norm. Sup. XII (1883) 47.
[14] T. Kottos, D. Cohen, Europhys. Lett. 61 (2003) 431.
[15] M. Hiller, D. Cohen, T. Geisel, T. Kottos, Ann. Phys. 321 (2006) 1025.
[16] M. Machdia, K. Saito, S. Miyashita, J. Phys. Soc. Jpn. 71 (2002) 2427.
[17] F. Haake, M. Kus, R. Scharf, Z. Phys. B 65 (1987) 381.
[18] M. Machida, K. Saito, S. Miyashita, J. Phys. Soc. Jpn., Suppl. C 72 (2003) 109.
[19] This condition is also used in a different context by Tasaki for deriving the

canonical distribution quantum mechanically: H. Tasaki, Phys. Rev. Lett. 80
(1998) 1373.


	Survival probability and saturation energy in periodically driven quantum chaotic systems
	1 Introduction
	2 Survival probability
	2.1 Deﬁnition
	2.2 Localized and extended states

	3 Saturation energy
	4 Conclusions
	Acknowledgements
	References


