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Abstract
The radiative transport equation is solved in the three-dimensional slab
geometry by means of the method of rotated reference frames. In this spectral
method, the solution is expressed in terms of analytical functions such as
spherical harmonics and Wigner d-functions. In addition, the eigenvalues
and eigenvectors of a tridiagonal matrix and certain coefficients, which are
determined from the boundary conditions, must also be computed. The Green’s
function for the radiative transport equation is computed and the results are
compared with diffusion approximation and Monte Carlo simulations. We find
that the diffusion approximation is not quite correct inside the slab, even when
the light emitted from the slab is well described by the diffusion approximation.
The solutions we obtain are especially convenient for solving inverse problems
associated with radiative transport.

PACS numbers: 05.60.Cd, 87.57.Gg, 42.68.Ay, 95.30.Jx

1. Introduction

The radiative transport equation (RTE) is widely used to describe the propagation of multiply
scattered light in random media including biological tissue, the atmosphere and the ocean
[1–4]. Despite the fact that the RTE has been studied for decades, analytical solutions are
known only for the case of isotropic scattering [5, 6]. In the latter case, in the presence
of boundaries, solutions can only be obtained if the problem is effectively one dimensional.
For example, an axially symmetric beam perpendicular to one or more planar interfaces can
be described by a specific intensity which depends on one spatial and one angular variable.
The case of one spatial and two angular variables was recently studied [7, 8] by using a
method which relates multidimensional solutions of the RTE to solutions of the so-called
pseudo-problem [9–11].
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In many applications, especially those which arise in biomedical imaging, it is necessary to
consider the RTE in three spatial dimensions with full angular variation. This five-dimensional
problem is solved using numerical methods such as the discrete-ordinate method [12], the PL

approximation [5], the method of invariant embedding [3] or the Monte Carlo method [13].
The drawback of such methods is their extremely high computational cost.

In recent work [14, 15], we have described a spectral method for solving the three-
dimensional RTE with anisotropic scattering. The method is applicable to geometries with
planar boundaries and both internal and external sources. In this approach, the RTE Green’s
function is decomposed into plane-wave modes characterized by the wave vector k. Each mode
is then expanded into spherical harmonics defined in a rotated reference frame whose z-axis
is aligned with the direction k̂. We refer to this approach as to the method of rotated reference
frames (MRRF). Kim and Keller [16, 17] have also studied the plane-wave decomposition of
the RTE Green’s function. However, in their work the angular dependence of Green’s function
is computed numerically as a basis of discrete ordinates.

Numerical studies of the MRRF have so far been limited to the case of an infinite medium
[15]. In this paper, we use the MRRF to solve the three-dimensional RTE in a medium
with planar boundaries (the slab geometry). This geometry is of considerable interest in
applications to biomedical optical imaging, where plane-wave expansions are an important
tool for the study of the inverse transport problem [18, 19].

The remainder of this paper is organized as follows. In section 2, we recall some aspects
of radiative transport theory and formulate the problem under study. In section 3, the MRRF in
the slab geometry is developed. In section 4, we describe the numerical aspects of solving the
boundary-value problem in the slab. In section 5, we calculate the specific intensity, energy
density and current using the MRRF. Numerical results are reported in section 6, where we
compare computations using the MRRF with the diffusion approximation and Monte Carlo
simulations. Our conclusions are presented in section 7.

2. Radiative transport in the slab geometry

Consider a slab of width L with boundaries on the planes z = 0 and z = L. The specific
intensity I (r, ŝ) inside the slab is a function of position r = (ρ, z) and the direction of
propagation specified by the unit vector ŝ. The specific intensity obeys the RTE:

ŝ · ∇I (r, ŝ) + μtI (r, ŝ) = μs

∫
d2s ′A(ŝ, ŝ′)I (r, ŝ′), (1)

where μa and μs are the absorption and the scattering coefficients respectively, and
μt = μa + μs is the extinction coefficient. We consider a homogeneous medium and assume
that the quantities μa, μs and the phase function A(ŝ, ŝ′) are independent of position. We also
assume that the medium is isotropic on average, so that A(ŝ, ŝ′) is a function of ŝ · ŝ′ only; it
is normalized by the condition

∫
d2s ′ A(ŝ, ŝ′) = 1 for all ŝ. We will utilize the above property

to expand the phase function as

A(ŝ, ŝ′) =
∑
lm

AlYlm(ŝ)Y ∗
lm(ŝ′). (2)

Here A0 = 1 and A1 = ∫
d2s ′ ŝ · ŝ′ A(ŝ, ŝ′) � 1 is the scattering asymmetry parameter. For the

higher moments, we have Al < 1 (l = 2, 3, . . .). Note that isotropy of space is not equivalent to
isotropy of scattering; the latter implies that A(ŝ, ŝ′) = 1/(4π), and correspondingly, A1 = 0.
We also utilize below a set of constants σl defined by

σl = μa + μs(1 − Al). (3)

2



J. Phys. A: Math. Theor. 43 (2010) 065402 M Machida et al

Note that σ1 = 1/�∗ is the inverse transport mean free path. We assume that μa > 0 throughout
the paper. However, we can consider the purely scattering case by taking the limit of μa → 0.

Suppose that a narrow collimated incident beam enters the slab from the vacuum at the
interface z = 0 at the point ρ = ρ0 and in the direction ŝ0. The specific intensity of the
incident wave at the plane of incidence is

Iinc(ρ, ŝ) = I0δ
(
ρ − ρ0

)
δ (ŝ − ŝ0) , (4)

where I0 is a constant. The specific intensity satisfies the boundary conditions

I (ρ, z = 0, ŝ) = Iinc(ρ, ŝ) ŝ · ẑ > 0, (5)

I (ρ, z = L, ŝ) = 0 ŝ · ẑ < 0. (6)

3. Method of rotated reference frames

Following [15], the solution to the RTE with the boundary conditions (5) and (6) will be
constructed as a superposition of plane-wave modes:

I (r, ŝ) =
∑

k

FkIk(r, ŝ). (7)

Here, the coefficients Fk are to be determined from the boundary conditions and the modes
Ik(r, ŝ) are of the form

Ik(r, ŝ) =
∑
lm

ClmYlm(ŝ; k̂) exp(−k · r), (8)

where Clm are constants and Ylm(ŝ; k̂) are spherical functions defined in the rotated reference
frame whose z-axis coincides with the direction of the unit vector k̂ = k/k, k = √

k · k.
Here and everywhere below the branch of a square root of an arbitrary complex number z is
determined by applying the condition 0 � arg

(√
z
)

< π .
The rotated reference frame is uniquely defined by the three Euler angles α, β, γ . The

converse, however, is not true: there is more than one set of Euler angles that correspond
to the same rotation. Therefore, we set the third Euler angle γ to zero. Any rotation of the
reference frame is then uniquely defined by the two remaining angles α and β, and vice versa.
The functions Ylm(ŝ; k̂) are related to the spherical functions defined in the laboratory frame,
Ylm(ŝ), by

Ylm(ŝ; k̂) =
∑
lm′

Dl
m′m(ϕk̂, θk̂, 0)Ylm′(ŝ), (9)

where Dl
m′m(α, β, γ ) are the Wigner D-functions [20] and ϕk̂, θk̂ are the polar and azimuthal

angles of k̂ in the laboratory frame. The Wigner D-functions are given in terms of the Wigner
d-functions as Dl

m′m(α, β, γ ) = exp(−im′α)dl
m′m(β) exp(−imγ ).

Substitution of (8) into (1) results in the following generalized eigenproblem:

k
∑
l′m′

Rl′m′
lm Cl′m′ = σlClm, (10)

where σl is defined in (3) and

Rl′m′
lm =

∫
d2s ŝ · k̂Y ∗

lm(ŝ; k̂)Yl′m′(ŝ; k̂)

=
∫

d2s ŝ · ẑY ∗
lm(ŝ)Yl′m′(ŝ). (11)

3
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Note that Rl′m′
lm = 0 if m �= m′. The generalized eigenproblem (10) can be transformed into a

standard eigenproblem. To this end, we define the diagonal matrix Sl′m′
lm = δmm′δll′

√
σl . Since

Al � 1 and correspondingly σl > 0, the matrix S is invertible. It is then easy to see that (10)
is equivalent to the equation kW |ψ〉 = |ψ〉, where W = S−1RS−1 and |ψ〉 = S|C〉.

Since the matrix R is symmetric and block tridiagonal, so is W . We will denote the
individual blocks of W by B(M) (M = 0,±1,±2, . . .); each block can be diagonalized
separately:

Bl′
l (M) = βl(M)δl′,l−1 + βl+1(M)δl′,l+1, (12)

βl(M) =
√

l2 − M2

(4l2 − 1)σl−1σl

, (13)

l, l′ = |M|, |M| + 1, . . . .

The eigenproblem is then reduced to computing the eigenvalues and eigenvectors of the
infinite set of tridiagonal matrices B(M), denoted here by λn(M) and |φn(M)〉, respectively.
Here the index n labels the eigenvalues, which can belong to the continuous spectrum, in
which case n should be viewed as a continuous variable. We will also use a composite index
μ = (M, n) which runs over the following set: μ ∈ {(M, n)|λn(M) > 0}, since only the
positive eigenvalues and corresponding eigenvectors will eventually enter the solution.

From the eigenproblem (10), we see that the wave vector k must satisfy k = √
k · k =

1/λμ. The variable k can also take negative values because −λμ is also an eigenvalue if λμ is
an eigenvalue. This fact is taken into account in (15), where we consider both signs. If a matrix
B(M) is truncated so that its dimension is odd, it has one zero eigenvalue. The corresponding
mode decays infinitely fast into the medium and can be safely excluded. This problem can be
avoided by truncating B(M) so that its dimension is even. We can, therefore, write k = k̂/λμ,
where k̂ is an arbitrary unit vector. Thus, instead of a general three-dimensional vector k, the
modes can be labeled by the unit vector k̂ and the index μ. In terms of the spherical functions
defined in the laboratory frame, Ylm(ŝ), the modes can be written as

Ik̂,μ(r, ŝ) = exp

(
− k̂ · r

λμ

)∑
lm

Ylm(ŝ)
exp(−imφk̂)√

σl

〈l|φμ〉dl
mM(θk̂), (14)

where dl
mM are the Wigner d-functions and θk̂, φk̂ are the polar and azimuthal angles of k̂.

In order to solve the boundary-value problem, the modes defined in (14) must be
analytically continued. The analytical continuation will give rise to evanescent modes of
the RTE. The wave vectors of such modes are of the form

k± = −iq ± Qμ(q)ẑ, (15)

where q is an arbitrary two-dimensional, purely real vector in the xy-plane and

Qμ(q) =
√

q2 + 1/λ2
μ. (16)

The above modes are labeled by the composite index μ = (M, n) and the two-dimensional
vector q.

The unit vector k̂ in (14) should also be analytically continued. This is accomplished by
writing

k̂ = k̂± = λμk± = −iqλμq̂ ± Qμ(q)λμẑ, (17)

where the choice of the plus or minus sign corresponds to the choice of sign in (15). It can be
verified that k̂ · k̂ = 1. The cosine and sine of the polar angle θk̂ are defined by the relations

cos θk̂± = k̂± · ẑ = ±
√

1 +
(
qλμ

)2
, sin θk̂± =

√
1 − cos2 θk̂± = iqλμ, (18)

4
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where we have used the square root convention stated above. The azimuthal angle φk̂± is
obtained as

φk̂± = φq̂ + π, (19)

where φq̂ is the polar angle of the real vector q in the xy-plane.
Since k̂ is a function of qλμ (defined by (16) and (17)), we write θk̂ = iτ(qλμ) where

τ(x) is a function

cos[iτ(x)] =
√

1 + x2, sin[iτ(x)] = ix. (20)

Similarly, the analytically continued Wigner d-functions can be expressed as

dl
mM(θk̂+

) = dl
mM [iτ(qλμ)], (21)

dl
mM(θk̂−) = dl

mM(π − θk̂+
) = (−1)l+mdl

m,−M [iτ(qλμ)]. (22)

In numerical simulations, we compute dl
mM [iτ(x)] by recursion as described in

section 6.2. In appendix A, these functions are given in terms of Jacobi polynomials and
analytically continued to complex arguments. In numerical simulations, we computed the
Wigner functions iteratively by utilizing the so-called Wigner d-matrix pyramid, as explained
in appendix B.

We now insert (15) into (14) and obtain the following two evanescent modes:

I (+)
qμ (r, ŝ) = exp[iq · ρ − Qμ(q)z]

∞∑
l=0

l∑
m=−l

Ylm(ŝ)

× exp[−im(φq + π)]√
σl

〈l|φμ〉dl
mM [iτ(qλμ)], (23)

I (−)
qμ (r, ŝ) = exp[iq · ρ + Qμ(q)z]

∞∑
l=0

l∑
m=−l

Ylm(ŝ)(−1)l+m

× exp[−im(φq + π)]√
σl

〈l|φμ〉dl
m,−M [iτ(qλμ)]. (24)

As can be seen, I
(+)
qμ decays exponentially in the positive z-direction, while I

(−)
qμ decays in the

negative z-direction. The completeness of these modes is shown in [15]; the Green’s function
in the infinite medium is spanned by I

(+)
qμ and I

(−)
qμ .

4. Boundary-value problem

The solution to the boundary-value problem in the slab geometry contains only evanescent
modes given in (23) and (24). Therefore, expansion (7) can be written as

I (r, ŝ) =
∑

μ

∫
d2q

(2π)2

[
F (+)

qμ I (+)
qμ (r, ŝ) + F (−)

qμ I (−)
qμ (r, ŝ)

]
. (25)

To obtain the coefficients F
(±)
qμ , we rewrite the boundary conditions as

I (ρ, z = 0, ŝ) = �(ŝ · ẑ)I0δ(ρ − ρ0)
∑
lm

Y ∗
lm(ŝ0)Ylm(ŝ)

+ �(−ŝ · ẑ)I (ρ, z = 0, ŝ), (26)

I (ρ, z = L, ŝ) = �(ŝ · ẑ)I (ρ, z = L, ŝ), (27)

5
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where �(·) denotes the Heaviside step function and we have used the identity δ (ŝ − ŝ0) =∑
lm Y ∗

lm(ŝ0)Ylm(ŝ). We then act on (26) and (27) with
∫

d2sY ∗
l′m′(ŝ)

∫
d2ρ e−iq·ρ, perform the

integration and obtain∑
μ

∑
l

Bm′
l′l

e−im′(φq+π)

√
σl

〈l|φμ〉[F (+)
qμ dl

m′M [iτ(qλμ)] + F (−)
qμ (−1)l+m′

dl
m′−M [iτ(qλμ)]

]
= I0e−iq·ρ0

∑
l

Bm′
l′l Y

∗
lm′(ŝ0), (28)

∑
μ

∑
l

Bm′
l′l (−1)l+l′ e−im′(φq+π)

√
σl

〈l|φμ〉

×[F (+)
qμ e−Qμ(q)Ldl

m′M [iτ(qλμ)] + F (−)
qμ eQμ(q)L(−1)l+m′

dl
m′−M [iτ(qλμ)]

]
= 0. (29)

Here Bm
ll′ is defined by the following ‘half-range’ integrals:∫

ŝ·ẑ>0
d2sY ∗

l′m′(ŝ)Ylm(ŝ) = δmm′Bm
ll′ , (30)

∫
ŝ·ẑ<0

d2sY ∗
l′m′(ŝ)Ylm(ŝ) = δmm′(−1)l+l′Bm

ll′ , (31)

Bm
ll′ = 1

2

[
(2l + 1)(2l′ + 1)(l − m)!(l′ − m)!

(l + m)!(l′ + m)!

]1/2 ∫ 1

0
dxP m

l (x)P m
l′ (x). (32)

Note that Bm
ll′ = B−m

ll′ , and Bm
ll′ = 1

2δll′ if l and l′ have the same parity. The coefficients F
(±)
qμ

are obtained by solving equations (28) and (29) numerically.
Below, we report computations for the case of normal incidence with ŝ0 = ẑ. In this

situation, we obtain the simpler result

F (+)
qμ = I0f

(+)
μ (q) e−iq·ρ0 , (33)

F (−)
qμ = I0f

(−)
μ (q) e−iq·ρ0 e−Qμ(q)L, (34)

where f (±)
μ (q) satisfy∑

μ,l

Bm′
l′l

1√
σl

〈l|φμ〉[f (+)
μ (q)dl

m′M [iτ(qλμ)] + f (−)
μ (q)e−Qμ(q)L(−1)l+m′

dl
m′−M [iτ(qλμ)]

]

= δm′0

∑
l

Bm′
l′l

√
2l + 1

4π
, (35)

∑
μ,l

Bm′
l′l

(−1)l+l′

√
σl

〈l|φμ〉[f (+)
μ (q) e−Qμ(q)Ldl

m′M [iτ(qλμ)] + f (−)
μ (q)(−1)l+m′

dl
m′−M [iτ(qλμ)]

]
= 0. (36)

Note that in the case of oblique incidence (ŝ0 �= ẑ), the coefficients f (+)
μ and f (−)

μ depend on
the full two-dimensional vector q, as does the matrix M defined below. We then must solve
for f (+)

μ and f (−)
μ for each value of q.

Equations (35) and (36) are invariant with respect to the substitution m′ → −m′.
Therefore, we obtain

f−Mn(q) = (−1)MfMn(q), (37)

6
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where we have expanded the composite index μ: μ = (M, n). Thus, it is sufficient to use
only the equations with m′ � 0 and the sums over M run only in M � 0.

Equations (35) and (36) can be written in matrix form as(
M(++)(q)M(+−)(q)

M(−+)(q)M(−−)(q)

)(
f (+)(q)

f (−)(q)

)
=
(

v(+)

v(−)

)
. (38)

Here

v
(+)
l′m′ = δm′0

∑
l

B0
l′l

√
2l + 1

4π
, v

(−)
l′m′ ≡ 0, (39)

and

M(++)
l′m′,Mn =

∑
l

cll′m′,Mn, (40)

M(+−)
l′m′,Mn = e−Qμ(q)L(−1)M+m′ ∑

l

(−1)lcll′m′,Mn, (41)

M(−+)
l′m′,Mn = e−Qμ(q)L

∑
l

(−1)l+l′cll′m′,Mn, (42)

M(−−)
l′m′,Mn = (−1)l

′+m′+M
∑

l

cll′m′,Mn, (43)

cll′m′,Mn = Bm′
l′l

1√
σl

〈l|φμ〉{dl
m′M [iτ(qλμ)] + (1 − δM0)(−1)Mdl

m′−M [iτ(qλμ)]
}
. (44)

The system M |f 〉 = |v〉 given in (38) is an infinite set of linear equations which must
be truncated in a numerical implementation. The truncated set contains approximately twice
as many equations as unknowns (see step 3 in section 6.2). However, approximately half of
these equations are not linearly independent. In the infinite system limit, a solution exists and
is unique. However, in the truncated set, this may not be the case if the truncation is not done
carefully. Although a rigorous method exists to select only linearly independent equations
(which will be reported elsewhere), in this paper the solution to (38) is obtained by computing
the SVD pseudo-inverse [21–23] of M.

5. Specific intensity, density and current

From (23), (24) and (25), it follows that the specific intensity can be written in the form

I (r, ŝ) = I0

2π

∑
lm

(−i)m√
σl

e−imφρ−ρ0 Ylm(ŝ)Klm(|ρ − ρ0|, z), (45)

where φρ−ρ0
is the polar angle of the two-dimensional vector ρ − ρ0 (it is often convenient to

place the source at the origin so that ρ0 = 0) and

Klm(|ρ − ρ0|, z) =
∫

dqqJm(q|ρ − ρ0|)
∑

M�0,n

〈
l|φμ

〉

× [
e−Qμ(q)zf

(+)
Mn(q) + (−1)l+m+Me−Qμ(q)(L−z)f

(−)
Mn (q)

]
× [

dl
mM [iτ(qλμ)] + (1 − δM0)(−1)Mdl

m,−M [iτ(qλμ)]
]
, (46)

7
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with Jm(z) being the Bessel functions of the first kind. Since Kl,−m(|ρ − ρ0|, z) =
Kl,m(|ρ − ρ0|, z), we obtain

I (r, ŝ) = I0

2π

∞∑
l=0

l∑
m=0

(−i)m√
σl

Klm(|ρ − ρ0|, z)

× [
e−imφρ−ρ0 Ylm(ŝ) + (1 − δm0) eimφρ−ρ0 Y ∗

lm(ŝ)
]
. (47)

The density u and the current J of electromagnetic energy are defined as follows:

u(r) = 1

c

∫
d2sI (r, ŝ) =

(
I0

c

)
K00(|ρ − ρ0|, z)√

πσ0
, (48)

J(r) =
∫

d2s ŝI (r, ŝ) =

⎛
⎜⎝

Jρ cos φρ−ρ0

Jρ sin φρ−ρ0

Jz

⎞
⎟⎠ , (49)

where c is the average speed of light in the medium and

Jz = I0√
3πσ1

K10(|ρ − ρ0|, z), Jρ = iI0

√
2

3πσ1
K11(|ρ − ρ0|, z). (50)

Note that we can readily obtain the specific intensity, density and current in the half-space
geometry by taking the limit of L → ∞.

6. Numerical results

6.1. Parameters

We adopt the Henyey–Greenstein model for the phase function [25]. Here the expansion
coefficients Al in (2) are given by Al = gl , where 0 � g < 1 is the scattering asymmetry
parameter. We use the numerical value g = 0.9 which corresponds to highly forward-peaked
scattering, characteristic of biological tissues in the near-IR spectral range [1].

The absorption and the reduced scattering coefficients are taken to be μa = 0.05 cm−1

and μ′
s = μs(1 − g) = 10 cm−1. This corresponds to the transport mean free path

�∗ = 1/(μa + μ′
s) = 0.099 50 cm.

Five different values of the slab width, L, are used: L = 50�∗, 10�∗, 7�∗, 5�∗ and 3�∗.
For the case of normal incidence, the specific intensity is axially symmetric with respect

to the incident beam. Therefore, without loss of generality, we take ρ0 = 0 and φρ−ρ0
= 0.

Thus, the position of the observation point is specified by two parameters, z and ρ.
The indices l and l′ in Bl′

l (M) (12) and the summation over l in (45) will be truncated by
l, l′ � lmax. In most cases, lmax � 10 will prove to be sufficient.

The integral over q is computed numerically by the Simpson rule in a finite interval
q ∈ [0, qmax] with Nq discretization points.

6.2. The numerical procedure

The numerical procedure is divided into the following four steps.

Step 1: Compute the matrix Bm′
ll′ .

Step 2: Compute λμ and
∣∣φμ

〉
by diagonalizing the tridiagonal matrices B(M)(M =

0, 1, . . . , lmax). We need lmax(lmax + 2)/4 or (lmax + 1)2/4 positive eigenvalues, depending
on whether lmax is even or odd.

8
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Jρ/Z
Jz/Z

η
32.521.510.50

10

0

-10

-20

Figure 1. Convergence of the current components Jz and Jρ with η. The point of observation is
located at the plane of incidence (z = 0, ρ = 5�∗). Other parameters: lmax = 9 and L = 10�∗.
Normalization factor: Z = 104I0/(�

∗)2.

Step 3: Compute Klm for l (= 0, . . . , lmax) and m (= 0, . . . , l). To this end, we compute
the matrix M by calculating dl

mM [iτ(qiλμ)] for qi (i = 0, . . . , Nq). The size of M is
(lmax + 1)(lmax + 2) × lmax(lmax + 2)/2 for even lmax and (lmax + 1)(lmax + 2) × (lmax + 1)2/2
for odd lmax. We then solve M |f 〉 = |v〉 by SVD pseudo-inverse. After that, we obtain
Klm by numerical integration.

Step 4: The density u(r), the current J(r) and the specific intensity I (r, ŝ) are computed
according to (48), (49) and (45), using the coefficients Klm obtained in the previous step.

A few comments are needed regarding step 3. First, we calculate the analytically continued
Wigner d-functions dl

mM [iτ(x)] according to the Wigner d-matrix pyramid for dl
mM(θ)

[26–28]; the algorithm is described in appendix B. Second, numerical calculation of the
coefficients f (±)

μ (q) by solving the system M |f 〉 = |v〉 can be unstable for large values of q.
However, calculation of the specific intensity for small values of z, such that z � �∗, requires
relatively large values of qmax. In such cases, we introduce a Gaussian function to regularize
the integral in (46). More specifically, we replace the integral in (46) by∫ ∞

0
dqf (q) = lim

η→0

∫ ∞

0
dq exp

[
−η2

2
q2

]
f (q). (51)

Here η is a small regularization parameter and f (q) is given in (46). We can estimate the value
of η which is required for fast convergence as η ∼ √

2(1 − qmaxz)/qmax. For z > 1/qmax,
we can take η = 0. Note that this technique is frequently used for evaluation of oscillatory
integrals [24].

Numerical convergence of the current components Jz and Jρ with η computed at the
incidence face of the slab (z = 0, ρ = 5�∗) is illustrated in figure 1. Here, Jz and Jρ are plotted
as functions of η for lmax = 9 in a slab with L = 10�∗. It can be seen that convergence is
reached for η < 0.5.

In step 4, we need to compute the spherical functions. To do so, we make use of the
relation

Ylm(θs, φs) =
√

2l + 1

4π
exp (imφs) dl

m0 (θs) , (52)

where the Wigner d-functions dl
m0 (θs) are calculated from the Wigner d-matrix pyramid.

Convergence of the current components Jz and Jρ with lmax is illustrated in figure 2. Here
the observation points are located in the following points: (z, ρ) = (0, 5�∗), (5�∗, 5�∗) and
(10�∗, 5�∗); the slab width is L = 10�∗. We use η = 0.4 when the point of observation is

9
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(b)
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Figure 2. Current components Jz (a) and Jρ (b) as functions of lmax for the following three
points of observation: (ρ, z) = (5�∗, 0), (5�∗, 5�∗) and (5�∗, 10�∗). The slab width is L = 10�∗.
Normalization factor: Z = 104I0/(�

∗)2.
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φ = π
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O

Figure 3. (Left) the angles θ, θs and φs. (Right) the angles θr and φρ.

located at (z, ρ) = (0, 5�∗). In other cases, regularization of the q-integral is not needed and
we set η = 0. It can be seen that both Jz and Jρ converge for lmax > 4.

6.3. Specific intensity

In figure 4, the specific intensity is plotted as a function of the polar angle of the vector ŝ, θ .
The angle θ(0 � θ < 2π) is illustrated in figure 3.

10
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θr = 4π/9
θr = π/3
θr = 2π/9
θr = π/9

θ

I
/Z

2π3π
2ππ

2
π
3

π
90

10−2

10−3

10−4

10−5

10−6

Figure 4. Specific intensity I (r, ŝ) computed at z = 2�∗ and plotted as a function of θ with
lmax = 9 and η = 0.4. Normalization factor: Z = I0/(�

∗)2.
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Figure 5. Specific intensity I (r, ŝ = ẑ) as a function of two variables: ρ and z. Logarithmic
color scale is used. The slab width is L = 10�∗. The source is located at (z, ρ) = (0, 0). We use
lmax = 9, and η � 0.5 for z < 2.5; otherwise, η = 0.

We see that the maxima of I (r, ŝ) are in the direction of the positive z-axis for
θr = π/9, 2π/9 and π/3, whereas the peak is in the direction of the negative z-axis for
θr = 4π/9.

A contour plot of I (r, ŝ = ẑ) as a function of z and ρ is shown in figure 5. Here I (r, ŝ = ẑ)
was calculated with lmax = 9. A nonzero regularization parameter η (� 0.5) was used for
z < 2.5�∗.

6.4. Current

The diffusion equation is often used as an approximation to the RTE [6, 29]. In this section,
we compare the current J computed using the MRRF to the respective quantity obtained in
the diffusion approximation (DA). In the DA, the specific intensity is obtained by solving the
diffusion equation with appropriate boundary conditions. Explicit analytical solutions in the
slab geometry were obtained in [30]. In particular, for the current components, Jz and Jρ (not

11
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to be confused with the Bessel functions J0 and J1), we have

Jz = −I0(1 − �∗μa)

∫
qdq

4πQ�∗ J0(q|ρ − ρ0|)

× [1 + (Q�)2]c′
−(z) − [1 − (Q�)2]c′

+(z) + 2Q�s ′
−(z)

2Q� cosh(QL) + [1 + (Q�)2] sinh(QL)
, (53)

Jρ = I0(1 − �∗μa)

∫
qdq

4πQ�∗ J1(q|ρ − ρ0|)

× [1 + (Q�)2]c−(z) − [1 − (Q�)2]c+(z) + 2Q�s−(z)

2Q� cosh(QL) + [1 + (Q�)2] sinh(QL)
, (54)

where

� = 2

3
�∗, Q =

√
q2 +

3μa

�∗ . (55)

We note that c′
+(z), c

′
−(z) and s ′

−(z) stand for the derivatives of c+(z), c−(z) and s−(z),
respectively. The functions c+(z), c−(z) and s−(z) are given as follows:

c+(z) =
∫ L

0
dz′ exp[−z′/�∗] cosh[Q(L − |z + z′|)]

= �∗

2(1 − Q�∗)
[e−QL − e−L/�∗

] eQz +
�∗

2(1 + Q�∗)
[eQL − e−L/�∗

] e−Qz, (56)

c−(z) =
∫ L

0
dz′ exp[−z′/�∗] cosh[Q(L − |z − z′|)]

= �∗

2(1 − Q�∗)
[(eQL − e−L/�∗

) e−Qz − (eQL − e−QL) e−z/�∗
]

+
�∗

2(1 + Q�∗)
[−(e−L/�∗ − e−QL) eQz + (eQL − e−QL) e−z/�∗

], (57)

and

s−(z) =
∫ L

0
dz′ exp[−z′/�∗] sinh[Q(L − |z − z′|)]

= �∗

2(1 − Q�∗)
[(eQL + e−L/�∗

) e−Qz − (eQL + e−QL) e−z/�∗
]

+
�∗

2(1 + Q�∗)
[−(e−L/�∗

+ e−QL) eQz + (eQL + e−QL) e−z/�∗
]. (58)

Results for the current density, computed using the MRRF and the DA, are compared
in figure 6 and figure 7. In these figures, the current at various points inside and on the
surface of the slab is represented by vectors whose length is proportional to the magnitude
of the current. The incident beam enters the slab through the face z = 0 which crosses at
the origin (z, ρ) = (0, 0), as is shown by horizontal black arrows. In figure 6, the widths of
the slab are taken to be sufficiently large so that the current at the exit surface is practically
indistinguishable for both methods (the results for L = 50�∗ are not shown because a very
good agreement is already obtained for L = 10�∗). However, inside the slab, the discrepancy
in both direction and magnitude of the current can still be quite large i.e. a few �∗ from the
source. Note that on the plane of incidence (and sufficiently close to the source position), the
discrepancy is also large. This behavior is independent of the slab width and is expected to

12
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Figure 6. Current J = (Jz, Jρ) computed by the MRRF and from the DA for L = 50�∗ (a) and
L = 10�∗ (b).

remain even in the case of a half-space. In figure 7, results for thinner slabs are shown. At
L = 5�∗, the discrepancy in both magnitude and direction of the current is clearly visible at
the exit surface of the slab.

In figure 8, we plot the normal component of the current Jz at the exit face of the slab
(z = L) as a function of the transverse separation between the source and the detector, ρ.
Both the MRRF and the DA are used. It can be seen that Jz decays exponentially with ρ in
both approaches with approximately the same exponent. But when the source and the detector
are nearly on axis (ρ � �∗), the results notably differ. We note that a similar discrepancy
between the experimentally measured transmitted intensity and predictions of the DA has been
observed experimentally [33]. This discrepancy is a maximum for on-axis measurements and
could not be removed by adjusting the diffusion theory parameters.

6.5. Density

In figure 9, we compare the density of electromagnetic radiation u computed by the MRRF
and by Monte Carlo simulations for a slab with L = 10�∗. The Monte Carlo simulations were
performed with the use of the publicly available code MCML [31, 32]. In the figure, we plot
u as a function of depth z for different transverse source–detector separations. Reasonable
agreement between the two methods is obtained. The small discrepancy can be attributed to
imprecisions which are inherent in both methods of solving the RTE.

7. Summary

In this paper, we have shown that the method of rotated reference frames (MRRF) can be
used to solve the radiative transport equation in the slab geometry. Numerical results were
obtained and validated by comparison with the diffusion approximation and by Monte Carlo
simulations. The MRRF was used to compute the specific intensity, as well as the current and
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Figure 7. Same as figure 6, but for L = 7�∗ (a), L = 5�∗ (b) and L = 3�∗ (c).
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Figure 8. Current component Jz computed at the exit face of the slab (z = L) as a function of the
transverse source–detector separation ρ, for different values of L, as indicated. Solid lines—MRRF,
dotted lines—DA. Normalization factor: Z = I0/(�

∗)2.

density of electromagnetic radiation for a narrow collimated beam of light normally incident
on the slab. Note that here the specific intensity coincides (up to a multiplicative constant)
with the RTE Green’s function.

The development of the MRRF and the plane-wave decompositions which were utilized
in this paper was motivated by the problem of optical imaging in highly scattering media.
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Figure 9. Density u(z, ρ) computed by the MRRF and by Monte Carlo simulations for a slab
with L = 10�∗. From top to bottom, the curves correspond to ρ = 4�∗, ρ = 7�∗ and ρ = 10�∗.
Normalization factor: Z = I0/(�

∗)2.

The solutions we obtain here are utilized in the formulation of the linearized inverse transport
problem [19].

We have computed the current of electromagnetic energy by using the MRRF and the
diffusion approximation (DA) for slabs of varying width. When the current is evaluated on the
exit surface of the slab (this situation is typical when the transmitted intensity is measured),
agreement between the two methods is good, as long as the slab width is sufficiently large,
e.g. L � 5�∗, where �∗ is the transport mean free path. However, within the slab, the results
of MRRF and DA can differ even in very thick slabs; the largest difference is obtained close
to the source. However, we have used only the standard DA which is explained, for example,
in [6, 29, 30]. It would also be of interest to compare our method with more sophisticated
approaches to the DA such as the delta-Eddington approximation [34, 35].
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Appendix A. Wigner functions and Jacobi polynomials

The mathematical properties and various definitions of the Wigner d-functions are given in
[20]. Here we provide the analytic continuation of the Wigner d-functions expressed in terms
of Jacobi polynomials to complex angles.

First,

dl
mM(θ) = [�(M − m) + (−1)m+M�(m − M)]

×
√

s!(s + ν− + ν+)!

(s + ν−)!(s + ν+)!

(
1 − cos θ

2

)ν−/2 (1 + cos θ

2

)ν+/2

P (ν−,ν+)
s (cos θ) , (A.1)

where �(·) is the step function, ν− = |m − M|, ν+ = |m + M|, and s = l − (ν− + ν+)/2
and P

(p,q)
s (x) are the Jacobi polynomials. By analytic continuation, cos θ is replaced by

cos[iτ(x)]. Consider the factor
√

1 ± cos[iτ(x)]. We have√
1 + cos[iτ(x)] = (

√
1 + x2 + 1)1/2, (A.2)

√
1 − cos[iτ(x)] = i

√
cos[iτ(x)] − 1 = i(

√
1 + x2 − 1)1/2 (A.3)
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and, finally,

dl
mM [iτ(x)] = iν−[�(M − m) + (−1)m+M�(m − M)]

√
s!(s + ν− + ν+)!

(s + ν−)!(s + ν+)!

×
(√

1 + x2 − 1

2

)ν−/2 (√
1 + x2 + 1

2

)ν+/2

×
s∑

j=0

(s + ν−)!

(s − j)!(ν− + j)!

(s + ν+)!

j !(s + ν+ − j)!

(√
1 + x2 − 1

2

)j (√
1 + x2 + 1

2

)s−j

. (A.4)

Appendix B. Wigner d-matrix pyramid

To compute the Wigner d-functions for arbitrary indices, we start with d0
00[iτ(x)] (= 1),

d1
00[iτ(x)], d1

1−1[iτ(x)], d1
10[iτ(x)] and d1

11[iτ(x)]. These can be explicitly written as

d1
00 =

√
1 + x2, d1

1−1 = 1 −
√

1 + x2

2
, d1

10 = −i
x√
2
, d1

11 = 1 +
√

1 + x2

2
. (B.1)

Next we increase l iteratively up to lmax. For each value of l, we first compute dl
mM [iτ(x)]

(m = 0, . . . , l − 2;M = −m, . . . , m) according to

dl
mM = l(2l − 1)√

(l2 − m2)(l2 − M2)

×
[(

d1
00 − mM

l(l − 1)

)
dl−1

mM −
√

[(l − 1)2 − m2][(l − 1)2 − M2]

(l − 1)(2l − 1)
dl−2

mM

]
. (B.2)

Then we obtain dl
ll[iτ(x)] and dl

l−1,l−1[iτ(x)] as

dl
ll = d1

11d
l−1
l−1,l−1, dl

l−1,l−1 = (
ld1

00 − l + 1
)
dl−1

l−1,l−1, (B.3)

and dl
lM [iτ(x)](M = l − 1, . . . ,−l) as

dl
lM = −i

√
l + M + 1

l − M

√√√√∣∣∣∣∣d
1
1−1

d1
11

∣∣∣∣∣dl
l,M+1. (B.4)

Finally, we obtain dl
l−1,M [iτ(x)] (M = l − 2, . . . , 1 − l) from

dl
l−1,M = −i

ld1
00 − M

ld1
00 − M − 1

√
l + M + 1

l − M

√√√√∣∣∣∣∣d
1
1−1

d1
11

∣∣∣∣∣dl
l−1,M+1. (B.5)

The remaining functions dl
mM [iτ(x)] are obtained by using the symmetry properties

dl
mM = dl

−M,−m = (−1)m+Mdl
−m,−M = (−1)m+Mdl

Mm. (B.6)
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