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We consider the quantum Hall effect of two-dimensional electrons with a periodic potential and study
the time dependence of the Hall and longitudinal currents when the electric field is applied abruptly. We
find that the currents oscillate in time with very large frequencies because of quantum fluctuation and the
oscillations eventually vanish, for their amplitudes decay as 1=t.
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1. Introduction

It is renowned that the Hall conductance in two dimen-
sional electron systems under a strong magnetic field is
quantized to an integer or a fraction multiplied by e2=h with
very high accuracy.1) The relations between the conductance
and topological numbers were discussed extensively,2–8)

since the topological numbers take quantized values ex-
actly. In the present paper, we discuss the integral quantiza-
tion in noninteracting Bloch states. Thouless, Kohmoto,
Nightingale, and den Nijs (TKNN) showed using the Kubo
formula that the quantized Hall conductivity is represented
by the Chern number, which is a topological number defined
on the two-dimensional torus (i.e., the magnetic Brillouin
zone).2,9) The same result is also obtained from the adiabatic
approximation.10–12) It would be an intriguing issue, at
least from a purely theoretical point of view, that how the
topologically quantized conductivity is modified when we go
beyond the Kubo formula or the adiabatic approach.

Interest in the TKNN theory was renewed recently in the
field of ultra-cold atomic gases. The TKNN Hamiltonian is
mapped to the Hamiltonian of a cold atomic gas trapped by a
rotating optical lattice. Rotating Bose–Einstein condensates
in a co-rotating optical lattice was indeed experimentally
realized recently,13) which fueled the interest in the TKNN
theory. The atomic gas system does not contain any
perturbative effects coming from impurities or long-range
Coulomb-type interactions. Hence, compared with the
electron system in the solid states, the atomic gas system
is clean and the theoretical results of the TKNN theory
can be applied without taking into account the corrections
from such perturbations. An alternative method of applying
an effective magnetic field to a cold atomic gas is also
proposed.14,15) This method utilizes the internal degrees of
freedom of cold atoms instead of the rotation of the system.
The Hofstadter butterfly,16) which has been observed in a
two-dimensional superlattice structure in a semiconductor
heterojunction,17–19) is predicted to be studied more easily
using cold atomic gases.

In this paper, we focus on the effect of a suddenly applied
dc electric field on the integer quantum Hall effect of Bloch
electrons.20) The results are readily applied to the cold

atomic gas trapped by a rotating optical lattice. We calcu-
late the resulting current with the Kubo formula.21–24) The
linear response theory for an abruptly applied dc field was
particularly investigated by Greenwood.24) We here follow
Greenwood’s formulation of the linear response theory.

An interesting feature of our finding is an observation
of fluctuation around the quantized conductivity, which is
normally considered a very rigid quantity; we find that
the Hall current has a time-dependent correction to the
Chern-number term in the TKNN theory. The Hall current
jx and the longitudinal current jy oscillate in time with
large frequencies because of quantum fluctuation, or oscilla-
tion between different subbands. The oscillation eventually
ceases and the time-dependent Hall current converges to the
Chern-number term of the TKNN theory. The amplitude of
the oscillation decays as 1=t. In the previous paper,20) we
already reported the existence of time-dependent correction
terms. In the present paper, we present additional calcu-
lations particularly on the long-time behavior and on the
time-dependent fields under an applied current.

This paper is organized as follows. In §2, we derive the
currents in the x and y directions following Greenwood’s
formulation of the linear response theory. We derive the
same results as in our previous paper, but under a different
gauge. We also mention the correspondence between elec-
tron gases in a magnetic field and rotating cold atomic gases.
In §3, we show that the time-dependent oscillation of the
currents decays as 1=t and eventually ceases, and the Hall
current approaches to a certain value obtained from the
TKNN theory. Finally we give conclusions. In Appendix, we
calculate electric fields under an applied current instead of
currents under an applied field. We show that the voltages
have similar time dependence.

2. Time Dependence of Currents

We consider noninteracting electrons in a periodic
potential in the x–y plane. A magnetic field B is applied in
the z direction. At time t ¼ 0, we suddenly apply an electric
field EðtÞ in the y direction. We calculate the currents of this
system with the Kubo formula. The Kubo formula for a step-
function external field is also known as the Greenwood
linear response theory.24)

Using the Landau gauge, we write the Hamiltonian of the
system as

H ¼ H0 � eyEy�ðtÞ; ð1Þ
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where

H0 ¼
1

2me

½p2
x þ ðpy þ eBxÞ2� þ Vp; ð2Þ

Vp ¼ U0 cos
2�x

a

� �
þ U0 sin

2�y

b

� �
: ð3Þ

In our previous paper,20) we treated the external field as a
time-dependent vector potential. We here use the time-
dependent scalar potential as in eq. (1). We show below that
the resulting formulae are the same.

The Hamiltonian (1) can also describe a rotating dilute
cold atomic gas trapped in an optical lattice.25) To see this
correspondence, let us consider a cold atom with mass ma

confined in a harmonic potential. The periodic optical lattice
which traps the cold atom rotates in the z direction with
angular momentum �. At t ¼ 0, the optical lattice is tilted
along the y-axis or accelerated in the y direction. The
Hamiltonian of this system is written in the rotating frame as

~HH ¼ 1

2ma

ðp2
x þ p2

yÞ �� � Lþ
1

2
ma�

2ðx2 þ y2Þ

þ Vp � yVy�ðtÞ; ð4Þ

where � ¼ tð0; 0;�Þ and L ¼ p� x. We note that the
centrifugal force is canceled because the frequency of the
harmonic trap is the same as the frequency of the rotation,
and the interactions between atoms are neglected. Equa-
tion (4) is also expressed as

~HH ¼
1

2ma

½ðpx � m�yÞ2 þ ðpy þ m�xÞ2�

þ Vp � yVy�ðtÞ; ð5Þ

By substituting me, eB=2me, and eEy for ma, �, and Vy,
respectively (see Table I), we have

~HH ¼ eiðeB=2h� ÞyxHe�iðeB=2h� Þyx: ð6Þ

Thus, moving from the Landau gauge to the symmetric
gauge by the operator exp½iðeB=2h� Þyx�, we see that the
Hamiltonian (1) for an electron gas is identical to the
Hamiltonian (4) for a cold atomic gas.

We consider the ratio � ð¼ �=�0Þ of the flux � ð¼ BabÞ
per unit cell to the flux quanta �0 ð¼ h=eÞ. We put

� ¼
p

q
; ð7Þ

where p and q are coprime integers. Because of the presence
of the periodic potential, each Landau level splits into p

sublevels.
Let us first consider H0. We write the eigenvalues and

eigenfunctions of H0 as

H0 j�Nmi ¼ ENm j�Nmi; ð8Þ

where the subscript N labels Landau levels and the subscript
m labels sublevels in a Landau level (1 � m � p). We define

the generalized crystal momentum h�k in the magnetic
Brillouin zone:2) 0 � kx < 2�=qa and 0 � ky < 2�=b. Note
that eikxqa and eikyb are the eigenvalues of the translational
operator. We define

H0k � e�ik�xH0e
ik�x;

j�Nmi � eik�xjuNmðkÞi;
ð9Þ

which satisfy

H0k juNmðkÞi ¼ ENmðkÞ juNmðkÞi: ð10Þ

We thus block-diagonalized the Hamiltonian H0 into each
subspace of k.

Let us consider small U0 and treat the periodic potential as
a perturbation in the subspace of a crystal momentum.
Taking the lowest-order terms into account, we obtain the
wave function as2)

uNmðk; x; yÞ ¼
Xp�1

n¼0

dnm

X1
s¼�1

�N x� qas�
qan

p
þ ky‘

2

� �

� e�ikxðx�qas�qan=pÞe�2�iðspþnÞy=b; ð11Þ

where ‘ ¼
ffiffiffiffiffiffiffiffiffiffi
h�=eB
p

is the cyclotron radius and �NðxÞ satisfies

@2x�NðxÞ ¼
x2

‘4
�

2N þ 1

‘2

� �
�NðxÞ: ð12Þ

We note that uNmðk; x; yÞ in eq. (11) satisfies the magnetic
Bloch theorem:

uNmðk; xþ qa; yÞe2�ipy=b ¼ uNmðk; x; yÞ
¼ uNmðk; x; yþ bÞ: ð13Þ

We have the eigenenergy within the perturbation as

ENmðkÞ ¼ h�!c N þ
1

2

� �
þ �mðkÞ; ð14Þ

where !c is the cyclotron frequency. Here, �mðkÞ and dnm sat-
isfy the following secular equation (the Harper equation):2,10)

U0e
��qb=ð2paÞ cos

2�q

p
n�

qbky

p

� �
dnm

þ
U0

2
e��qa=ð2pbÞ½dnþ1

m eikxqa=p þ dn�1
m e�ikxqa=p�

¼ �mðkÞdnm: ð15Þ
The coefficients satisfy dnþpm ¼ dnm and each Landau level
splits into p subbands.

We consider the currents caused by the electric field
Ey�ðtÞ. In cold atomic gases, we can apply an effective
electric field corresponding to Ey�ðtÞ either by making use of
the gravitational force tilting the harmonic potential26) or by
accelerating the optical lattice.27) We calculate the currents
in the � ð¼ x; yÞ direction in the form

j�ðtÞ ¼ Tr �ðtÞ
ev�

qab
; ð16Þ

where

vx ¼
1

me

px; vy ¼
1

me

ðpy þ eBxÞ: ð17Þ

Here �ðtÞ is the density operator.
Following Greenwood,24) we expand �ðtÞ with respect to

the electric field Ey and take the zeroth- and first-order terms
into account:

Table I. Correspondence between Hamiltonians (1) and (4).

Electron gas in

a magnetic field

Rotating cold

atomic gas

me ma

eB=2me �

eEy Vy
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�ðtÞ ’ �0 þ �1ðtÞ: ð18Þ

The zeroth-order term �0 is the initial density operator,
e�	H0=Tr e�	H0 . With the help of the von Neumann equation
for the density operator, �1 is calculated as

�1ðtÞ ¼
1

ih�

Z t

�1
dt0 eiH0ðt0�tÞ=h� �eyEy�ðt0Þ; �0

� �
e�iH0ðt0�tÞ=h�

¼
eEy

ih�

Z t

0

dt0 eiH0ðt0�tÞ=h� �y; �0

� �
e�iH0ðt0�tÞ=h� : ð19Þ

We note that the lower bound of the integral on the second
line of eq. (19) is zero because of the step function in the
perturbation, whereas the lower bound is negative infinity in
the TKNN theory.2) By taking the trace in eq. (16) with
respect to the states in eq. (11), we obtain the currents as

j�ðtÞ ¼ Tr �1ðtÞ
ev�

qab

¼ ih�
Eye

2

qab

X
Nm

X
N0m0

Z 2�=qa

0

dkx

2�=qa

Z 2�=b

0

dky

2�=b

fF ENmðkÞð Þ
ENmðkÞ � EN0m0 ðkÞ½ �2

� huNmðkÞjvykjuN0m0 ðkÞihuN 0m0 ðkÞjv�kjuNmðkÞi 1� e�iðENmðkÞ�EN0m0 ðkÞÞt=h�
� �

� c.c.
� �

¼ �Ey

e2

2�h�

X
Nm

X
N 0m0

Z
MBZ

dk

2�
fF ENmðkÞð Þ � fF EN0m0 ðkÞð Þ
� �

� Im
@uNmðkÞ
@ky

				 uN0m0 ðkÞ

 �

uN0m0 ðkÞ
				 @uNmðkÞ@k�


 �
1� e�iðENmðkÞ�EN0m0 ðkÞÞt=h�
� �

; ð20Þ

where fF denotes the Fermi distribution and MBZ stands for the magnetic Brillouin zone. Here we usedHk ¼ e�ik�xHeik�x and

v�k ¼ e�ik�xv�e
ik�x ¼

1

h�

@Hk
@k�

: ð21Þ

Furthermore, noting the relation vy ¼ ½y;H0�, we used

huNmðkÞje�ik�xyeik�xjuN0m0 ðkÞi ¼
ih�

EN0m0 ðkÞ � ENmðkÞ
huNmðkÞjvykjuN0m0 ðkÞi: ð22Þ

Let us put the Fermi energy in a finite gap between the m0th and ðm0 þ 1Þst subbands which belong to the lowest Landau
level (N ¼ 0). We consider the zero temperature. Hence the Fermi distribution satisfies fFðENmÞ ¼ 1 if N ¼ 0 and m � m0,
and fFðENmÞ ¼ 0 otherwise. Thus we obtain

j�ðtÞ ¼ �2Ey

e2

2�h�

Z
MBZ

dk

2�
Im

(X
m�m0

X
m0>m0

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �

u0m0 ðkÞ
				 @u0mðkÞ

@k�


 �
1� e�iðE0mðkÞ�E0m0 ðkÞÞt=h�
� �

þ
X
m�m0

X
N0	1;m0

@u0mðkÞ
@ky

				 uN 0m0 ðkÞ

 �

uN 0m0 ðkÞ
				 @u0mðkÞ

@k�


 �
1� e�iðE0mðkÞ�EN0m0 ðkÞÞt=h�
� �)

¼ �2Ey

e2

2�h�

Z
MBZ

dk

2�
Im

(X
m�m0

X
m0>m0

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �

u0m0 ðkÞ
				 @u0mðkÞ

@k�


 �
1� e�iðE0mðkÞ�E0m0 ðkÞÞt=h�
� �

þ
‘2

2

X
m�m0

ði
�x þ 
�yÞ 1� e�iðE0mðkÞ�E1mðkÞÞt=h�
� �)

; ð23Þ

where we used the fact that for N 0 	 1, we have

@u0mðkÞ
@ky

				 uN 0m0 ðkÞ

 �

uN 0m0 ðkÞ
				 @u0mðkÞ

@k�


 �
¼
‘2

2
ði
�x þ 
�yÞ
N01
mm0 : ð24Þ

We can see that the time dependence of the current is due to the quantum fluctuations, or quantum oscillations between
various sets of discrete levels. We ignore the quantum fluctuation between E0mðkÞ and E1mðkÞ because its frequency, which is
proportional to E0mðkÞ � E1mðkÞ, is very large compared to the frequency of the fluctuation between different subbands of the
lowest Landau level, which is proportional to E0mðkÞ � E0m0 ðkÞ. Thus we obtain

jxðtÞ ¼
Eye

2

2�h�
NCh þ��xðtÞ½ �; ð25Þ

jyðtÞ ¼
Eye

2

2�h�
��yðtÞ; ð26Þ

where

NCh ¼
X
m�m0

Z
MBZ

d2k

2�i

@u0mðkÞ
@kx

				 @u0mðkÞ
@ky


 �
� c.c.

� �
; ð27Þ
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��xðtÞ ¼
X
m�m0

X
m0>m0

Z
MBZ

d2k

�
Im

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �

u0m0 ðkÞ
				 @u0mðkÞ

@kx


 �
eið�m0 ðkÞ��mðkÞÞt=h� ; ð28Þ

��yðtÞ ¼
X
m�m0

X
m0>m0

Z
MBZ

d2k

�

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �				

				
2

sin �m0 ðkÞ � �mðkÞð Þt=h�
� �

: ð29Þ

Note that NCh is the Chern number and takes integer
values.2,9) The time-dependent correction terms ��xðtÞ and
��yðtÞ express quantum fluctuation between different sub-
bands of the lowest Landau level. These are expressed as the
sum of different oscillating modes whose frequencies are
determined by the energy difference �m0 ðkÞ � �mðkÞ.

Hereafter, we show results of numerical calculation of the
currents jxðtÞ and jyðtÞ. Numerical calculation is carried out
in a way similar to the Kubo formula for a dc field:28,29) the
integrals in eqs. (27), (28), and (29) are performed with ran-
dom sampling of kx and ky. In the calculation, we set a ¼ b.
We here consider, for example, the following three cases: (i)
p=q ¼ 5=4 and m0 ¼ 2 (NCh ¼ 2), (ii) p=q ¼ 7=6 and m0 ¼
3 (NCh ¼ 3), and (iii) p=q ¼ 7=6 and m0 ¼ 1 (NCh ¼ 1).

The band structure in the case (i) is shown in Fig. 1. In the
figure, the Fermi energy that we choose is plotted with the
dashed line. Figure 2 shows the currents jxðtÞh=e2Ey and
jyðtÞh=e2Ey in the case (i). In the calculation, we put U0 ¼ 0:1
meV and a ¼ b ¼ 100 nm as tipical values for quantum Hall
systems on a semiconductor heterojunction. The currents
oscillate irregularly reflecting the fact that the energy spectra
�m¼2ðkÞ and �m¼3ðkÞ in Fig. 1 strongly depend on k, and
��xðtÞ and ��yðtÞ are written as the sum of sinusoidal
functions with different frequencies [eqs. (28) and (29)].
The insets show the long-time behavior of the currents.
As we show in the next section, ��xðtÞ and ��yðtÞ vanish for
large t.

Similarly, the band structure in the cases (ii) and (iii) is
shown in Fig. 3. Since NCh in eq. (27) depends on m0, NCh

changes when we change the Fermi energy. In the figure, the
Fermi energy for the case (ii) is plotted with the dashed line
and that for the case (iii) is plotted with the dotted line.
Figure 4 shows the currents jxðtÞh=e2Ey and jyðtÞh=e2Ey in
the case (ii). The currents oscillate irregularly because of
contributions from different frequencies. The insets show
the long-time behavior of the currents. Figure 5 shows the
currents jxðtÞh=e2Ey and jyðtÞh=e2Ey in the case (iii). In this
case, the currents oscillate rather regularly because the first
and second subbands in Fig. 3 are almost flat, and ��xðtÞ
and ��yðtÞ are almost monochromatic. The insets show the
long-time behavior of the currents.

We remark the following three points. Firstly, the currents
jxðtÞ and jyðtÞ are gauge invariant. We can also obtain the
same results by using the time-dependent vector potential as
we did in the previous paper.20) Secondly, if a dc current
instead of a voltage is abruptly turned on, the voltages in the
x and y directions temporarily vary in the same manner
as eqs. (25) and (26), i.e., the period of the oscillation is
given by the energy difference between two sublevels (see
Appendix). Finally, although the electric field is given by
the step function here, we are able to calculate the time
dependence of the currents for an arbitrarily time-dependent
electric field by following the machinery of the Kubo
formula [see eq. (A·2) below].
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Fig. 1. Case (i): The band structure of �m as functions of kx (left) and ky (right). The flux ratio p=q ¼ 5=4. We place the Fermi energy (the dashed line)

between the second and third subbands.
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Fig. 2. Case (i): The currents jxðtÞh=e2Ey and jyðtÞh=e2Ey are shown as functions of time. We set p=q ¼ 5=4, m0 ¼ 2, U0 ¼ 0:1 meV, and a ¼ b ¼ 100 nm.

The dashed lines show the convergent values of jxðtÞh=e2Ey and jyðtÞh=e2Ey [NCh ð¼ 2Þ and 0, respectively]. The insets show long-time behaviors of

jxðtÞh=e2Ey and jyðtÞh=e2Ey.
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3. Long-Time Behavior of Currents

Let us study the currents after a long time. We show that
j��xðtÞj and j��yðtÞj decay as 1=t using the Riemann–
Lebesgue theorem:30) limt!1

R !b

!a
gð!Þei!t d! ¼ 0, where

gð!Þ is uniformly convergent.
Both ��xðtÞ and ��yðtÞ are expressed as (� ¼ x; y)

���ðtÞ

¼
X
m�m0

X
m0>m0

Z
MBZ

d2k Im �ggð�Þmm0 ðkÞe
ið�m0 ðkÞ��mðkÞÞt=h� : ð30Þ

We define

!mm0 ðkÞ �
�m0 ðkÞ � �mðkÞ

h�
; ð31Þ

!0 � !mm0 ðkx ¼ 0; kyÞ;
!�=qa � !mm0 ðkx ¼ �=qa; kyÞ:

ð32Þ

Hence,

���ðtÞ ¼ 2
X
m�m0

X
m0>m0

Z 2�=b

0

dky

Z !�=qa

!0

d!mm0
@!mm0

@kx

				
				�1

Im �ggð�Þmm0 ðkx; kyÞe
i!mm0 t

¼
X
m�m0

X
m0>m0

Im

Z 2�=b

0

dky

Z !b

!a

d!mm0 g
ð�Þ
mm0 ð!mm0 ; kyÞei!mm0 t; ð33Þ
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Fig. 3. Cases (ii) and (iii): The band structure of �m as functions of kx (left) and ky (right). The flux ratio p=q ¼ 7=6. We place the Fermi energy for the case

(ii) between the third and forth subbands (the dashed line), and the Fermi energy for the case (iii) between the first and second subbands (the dotted line).
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where !a ¼ minð!0; !�=qaÞ and !b ¼ maxð!0; !�=qaÞ.
We note that

R !b

!a
d!ei!t ¼ ðei!bt � ei!atÞ=it and therefore this integral decays as 1=t. We express gð�Þmm0 ð!Þ as

gð�Þmm0 ð!Þ ¼ ½u>ð!Þ þ u<ð!Þ� þ i½v>ð!Þ þ v<ð!Þ�; ð34Þ

where u> and v> are positive and u< and v< are negative in !a < ! < !b. We write the maximum and minimum of these
functions as umax

> � max ju>ð!Þj, umin
> � min ju>ð!Þj, etc. Then we see the integrals,

R !b

!a
d! umin

> ei!t,
R !b

!a
d! umax

> ei!t, etc. also
decay as 1=t. We have Z !b

!a

d!mm0 u
min
> ei!mm0 t

				
				 �

Z !b

!a

d!mm0 u>ð!Þei!mm0 t

				
				 �

Z !b

!a

d!mm0 u
max
> ei!mm0 t

				
				; ð35ÞZ !b

!a

d!mm0 u
min
< ei!mm0 t

				
				 �

Z !b

!a

d!mm0 u<ð!Þei!mm0 t

				
				 �

Z !b

!a

d!mm0 u
max
< ei!mm0 t

				
				; ð36Þ

etc. Therefore Z !b

!a

d!mm0 g
ð�Þ
mm0 ð!Þe

i!mm0 t

				
				 
 1

t
: ð37Þ

Thus we have shown

j���ðtÞj 

1

t
ð� ¼ x; yÞ: ð38Þ

In Figs. 6, 7, and 8, we show logarithmic plots of j��xðtÞj
and j��yðtÞj in the three cases (i) p=q ¼ 5=4 and m0 ¼ 2

(NCh ¼ 2), (ii) p=q ¼ 7=6 and m0 ¼ 3 (NCh ¼ 3), and (iii)
p=q ¼ 7=6 and m0 ¼ 1 (NCh ¼ 1). In all cases, j��xðtÞj and
j��yðtÞj indeed decay as 1=t. Thus, the response of the system
to the temporal change of the external field disappears in
nano-second order even if there is no dissipative mechanism.

Since the correction terms ��xðtÞ and ��yðtÞ decay as 1=t,
in the limit t!1, we obtain

jxðt!1Þ ¼
Eye

2

2�h�
NCh;

jyðt!1Þ ¼ 0: ð39Þ

This Hall current was first obtained by Thouless et al.2)

When the bands �mðkÞ and �m0 ðkÞ are nearly flat as in the
case (iii), we can explicitly calculate the time dependence of
���ðtÞ. In this case, !b � !a is very small and eq. (33) can
be approximated as

���ðtÞ

’
X
m�m0

X
m0>m0

Im

Z 2�=b

0

dky ~ggð�Þmm0 ðkyÞ
Z !b

!a

d!mm0 e
i!mm0 t; ð40Þ

where ~ggð�Þmm0 ðkyÞ ½¼ gð�Þmm0 ð!mm0 ; kyÞ� is independent of !mm0 .
We note thatZ !b

!a

d! ei!t ¼
2

t
sin

!b � !a

2
t

� �
eið!bþ!aÞt=2: ð41Þ

This integral decays as 1=t and its amplitude has two kinds
of oscillations. The period of one oscillation is inversely
proportional to !b � !a and the period of the other is
inversely proportional to !b þ !a. We note that the differ-
ence !b � !a is very small and !a ’ !b. Therefore, the
frequency of exp½ið!b þ !aÞt=2� is given by the energy
difference between �mðkÞ and �m0 ðkÞ, and the period of the
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Fig. 6. Case (i): Logarithmic plots of the long-time behavior of j��xðtÞj and j��yðtÞj. We also draw the dashed lines 0:4=t (left) and 0:6=t (right) to see

j��xðtÞj and j��yðtÞj decay as 1=t. The parameters are the same as in Fig. 2.
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J. Phys. Soc. Jpn., Vol. 77, No. 2 M. MACHIDA et al.

024713-6



beat 4�=ð!b � !aÞ is very long. The 1=t decay is revealed
for a time longer than the period of the beat.

Thus, in nearly flat-band cases, it is easier to observe the
1=t dependence because j��xðtÞj and j��yðtÞj decay rather
slowly and survive for a long time as is seen in Fig. 8.

4. Conclusions

Using the Greenwood linear response theory, we studied
the time dependence of the currents in the quantum Hall
effect when the electric field is suddenly turned on. We
found that both jxðtÞ and jyðtÞ oscillate because of the
quantum fluctuation between two subbands which straddle
the Fermi energy. These oscillations decay as 1=t and
eventually cease. In the limit t!1, jxðt!1Þ is given as
the Chern number NCh multiplied by e2=h as Thouless
et al.2) obtained. As is discussed in Appendix, the electric
fields oscillate in time in the same way as jxðtÞ and jyðtÞ
when, in reverse, the current is applied abruptly at t ¼ 0.

We showed that the ratio of the Hall current and the
suddenly applied dc field is decomposed into the sum of a
constant term and a time-dependent term [eq. (25)]. The
constant term is the conductivity for the dc field applied
for infinite time and given by the Chern number NCh. Thus,
the time-dependent term ��xðtÞ expresses a correction to the
Chern number term. In other words, ��xðtÞ can be regarded
as the fluctuation around the Chern number. It will be
remarkable to observe the fluctuation experimentally, since
the quantization to the Chern number is normally regarded
as very rigid. This fluctuation, which stems from transitions
between different subbands, decays as 1=t.

Thus, the response of the system to the temporal change of
the external field decays as 1=t even if there is no dissipative
mechanism. The amplitude of the decay gets large if the
bands that give large contribution to ��xðtÞ are nearly flat. In
this case, the 1=t-behavior survives for a long time. In a
quantum Hall system on a semiconductor heterojunction, this
power-law decay of the order of nano-second might be dif-
ficult to observe experimentally because relaxation time due
to impurity scattering, etc. is of pico-second order.31) Cold
atomic systems under an artificial magnetic field may over-
come these difficulties. In experiments of a Rubidium cold
atomic gas trapped by a rotating optical lattice, the time scale
of the power-law decay is of the order of millisecond for
a ¼ b 
 1 mm, U0 
 0:1 neV, and large � so that p=q 
 1.
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Appendix: Measuring Electric Fields under an Applied
Current

Here, we calculate the voltage for the applied dc current
that is switched on abruptly. This situation matches current-
controlled experiments. (For theoretical reasons, in the main
body of the paper, we calculate the current under the applied
voltage.) We find that the voltage also oscillates. Both
temporal oscillations of the current and voltage are caused
by the quantum fluctuation between two subbands.

We apply the current suddenly at t ¼ 0 in the y direction,
jxðtÞ ¼ 0, jyðtÞ ¼ Jy�ðtÞ, and obtain ExðtÞ and EyðtÞ. This may
be closer to the experimental situation.

Since we assume linear response, we have (� ¼ x; y)

j�ðtÞ ¼
X
	¼x;y

Z 1
�1

dt0 ��	ðt � t0ÞE	ðt0Þ: ðA:1Þ

By the Fourier transform, we obtain

~||�ð!Þ ¼
X
	¼x;y

~���	ð!þ i�Þ ~EE	ð!Þ; ðA:2Þ

where ~||�ð!Þ ¼
R
j�ðtÞei!t dt, etc. We put an infinitesimally

small � > 0 to ensure the causality: ��	ðtÞ ¼ 0 for t < 0. We
define the resistivity ~���	 as

~EE�ð!Þ ¼
X
	¼x;y

~���	ð!þ i�Þ~||	ð!Þ; ðA:3Þ

where

~��xyð!þ i�Þ ¼
� ~��xyð!þ i�Þ

~��2
xyð!þ i�Þ þ ~��2

yyð!þ i�Þ
;

~��yyð!þ i�Þ ¼
~��yyð!þ i�Þ

~��2
xyð!þ i�Þ þ ~��2

yyð!þ i�Þ
:

ðA:4Þ

Therefore we obtain electric fields as
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ExðtÞ

¼
1

2�

Z
d!

� ~��xyð!þ i�Þ
~��2
xyð!þ i�Þ þ ~��2

yyð!þ i�Þ
~||yð!Þe�i!t; ðA:5Þ

EyðtÞ

¼
1

2�

Z
d!

~��yyð!þ i�Þ
~��2
xyð!þ i�Þ þ ~��2

yyð!þ i�Þ
~||yð!Þe�i!t; ðA:6Þ

where

~||yð!Þ ¼
iJy

!þ i�
: ðA:7Þ

We obtain the conductivities ~��xyð!Þ and ~��yyð!Þ with the
help of the calculation in §2. We first note that

~EEyð!Þ ¼
Z

dt Ey�ðtÞeið!þi�Þt ¼
iEy

!þ i�
: ðA:8Þ

Using eqs. (25) and (26), we have

~��xyð!þ i�Þ ¼
~||xð!Þ
~EEyð!Þ

¼
e2

2�ih�
ð!þ i�Þ

"
iNCh

!þ i�
þ

X
m�m0

X
m0>m0

�
X
m>m0

X
m0�m0

 !Z
MBZ

d2k

2�

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �

u0m0 ðkÞ
				 @u0mðkÞ

@kx


 �

�
1

!þ i�þ ½�m0 ðkÞ � �mðkÞ�=h�

#
ðA:9Þ

~��yyð!þ i�Þ ¼
~||yð!Þ
~EEyð!Þ

¼
e2

2�ih�
ð!þ i�Þ

X
m�m0

X
m0>m0

�
X
m>m0

X
m0�m0

 !Z
MBZ

d2k

2�

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �				

				
2

�
1

!þ i�þ ½�m0 ðkÞ � �mðkÞ�=h�
: ðA:10Þ

By plugging eqs. (A·9) and (A·10) into eqs. (A·5) and (A·6), we obtain the electric fields:

ExðtÞ ¼
2�h�

e2
Jy

Z
d2k

�

X
m�m0

X
m0>m0

~SS
�m0 ðkÞ � �mðkÞ

h�

� �
Im

@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �

u0m0 ðkÞ
				 @u0mðkÞ

@kx


 �
ei½�m0 ðkÞ��mðkÞ�t=h� ; ðA:11Þ

EyðtÞ ¼
2�h�

e2
Jy

Z
d2k

�

X
m�m0

X
m0>m0

~SS
�m0 ðkÞ � �mðkÞ

h�

� �
@u0mðkÞ
@ky

				 u0m0 ðkÞ

 �				

				
2

sin
½�m0 ðkÞ � �mðkÞ�t

h�

� 
; ðA:12Þ

where

~SSð!Þ�1 ¼ �
2�h�

e2

� �2

~��2
xyð!Þ þ ~��2

yyð!Þ
h i

: ðA:13Þ

Note that ExðtÞ and EyðtÞ have the same time dependence as jxðtÞ and jyðtÞ in §2; the period of the oscillation is dominantly
given by the energy difference between two subbands which straddle the Fermi energy.
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