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We study a nonadiabatic effect on the conductances in the quantum Hall effect of two-dimensional
electrons with a periodic potential. We found that the Hall and longitudinal conductances oscillate in
time with very large frequencies due to quantum fluctuation.
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Two years after the discovery of the quantum Hall
effect,1,2) Thouless, Kohmoto, Nightingale and den Nijs
(TKNN)3,4) theoretically studied the quantum Hall effect in
two-dimensional electrons with a periodic potential. They
expressed the Hall conductance as an integer multiplied by
e2=h. The integer is a topological invariant called the Chern
number. Such a system has been experimentally realized
as a superlattice structure in a semi-conductor heterojunc-
tion.5–7)

We can treat the electric field as a time-dependent vector
potential. Then adiabatic approximation gives the same
expression of the Hall conductance as in the TKNN
theory.8,9) In this Letter, we consider the conductances of
the same system taking a nonadiabatic effect into account.
We determine the quantum fluctuation of the Hall con-
ductance �xy and the longitudinal conductance �yy; i.e., �xy
and �yy oscillate in time with very large frequencies.

We consider the nonadiabatic effect on the conductances
with the help of the Greenwood linear-response theory10) and
study a correction to the adiabatic approximation. Wagner
studied the failure of the Kubo formula due to a nonadiabatic
effect on the dc current in a finite system.11,12) Grimaldi et al.
explained the high-Tc superconductivity of fullerene com-
pounds by taking nonadiabatic effects into account.13)

This Letter is organized as follows. We first calculate
the conductances beyond the adiabatic approximation and
obtain correction terms to �xy and �yy of the TKNN theory.
We then evaluate the oscillations in these correction terms
numerically.

We consider noninteracting electrons in a periodic po-
tential in the x–y plane. A magnetic field is applied in the z

direction, and an electric field is applied in the y direction.
We treat the electric field as a vector potential. Using
the Landau gauge, we express the Hamiltonian of the system
as

HðtÞ ¼
1

2me

pþ eAðtÞ
� �2þUðxÞ; ð1Þ

where

AðtÞ ¼ Bx� Eyt
� �

ey;

UðxÞ ¼ Ux cos
2�x

a

� �
þ Uy cos

2�y

b

� �
: ð2Þ

We consider the flux per unit cell of UðxÞ to be the
rational number p=q in the unit of the flux quantum, which
produces p subbands. We label each subband by m (1 �
m � p) hereafter. Then we obtain the generalized crystal
momentum h�k defined in the magnetic Brillouin zone.14)

0 � kx < 2�=qa and 0 � ky < 2�=b.
We define HkðtÞ as

HkðtÞ � e�ik�xHðtÞeik�x: ð3Þ

The instantaneous Hamiltonian HkðtÞ is diagonalized as

HkðtÞjumkðx; tÞi ¼ �mkðtÞjumkðx; tÞi: ð4Þ

Since HkðtÞ ¼ Hkx;ky�eEyt=h� ð0Þ, we obtain for m 6¼ n

�mkðtÞ ¼ �mkð0Þ þ OðEyÞ;
humkðx; tÞj _uunkðx; tÞi

¼
eEy

h�

@umkðx; 0Þ
@ky

����unkðx; 0Þ
� �

þ O E2
y

	 

; ð5Þ

where the dot indicates the time derivative. We note that,
by fixing the arbitrary phase in each time, we can always
achieve humkðx; tÞj _uumkðx; tÞi ¼ 0:

The time evolution of the density operator is given by the
von Neumann equation

d

dt
�ðtÞ ¼

1

ih�
½HðtÞ; �ðtÞ�: ð6Þ

Following the Greenwood linear-response theory,10) we
expand the density operator with respect to the electric field
and take the zeroth- and first-order terms into account

�ðtÞ ¼ �ð0Þ þ Ey�
ð1ÞðtÞ: ð7Þ

Thus, the matrix elements

�mnk � humkðx; tÞje�ik�x�ðtÞeik�xjunkðx; tÞi ð8Þ

are approximated using

�mnk ¼ �ð0Þmnk þ Ey�
ð1Þ
mnk

¼ fm�mn þ Ey�
ð1Þ
mnk; ð9Þ

where fm [¼ f ð�mkÞ] is the Fermi distribution. Hereafter, we
let �mk denote �mkð0Þ and jumki denote jumkðx; 0Þi.
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The time evolution of the off-diagonal elements (m 6¼ n)
is given by

d

dt
�ð1Þmnk ¼

1

ih�
ð�mk � �nkÞ�ð1Þmnk

þ
e

h�
ð fm � fnÞ

@umk

@ky

����unk
� �

: ð10Þ

Therefore, we obtain the matrix elements of the density
operator as

�ð1Þmnk ¼ �ie
@umk

@ky

����unk
� �

fm � fn

�mk � �nk
1� e�ið�mk��nkÞt=h�
� �

ðm 6¼ nÞ; ð11Þ
�ð1Þmmk ¼ const. ð12Þ
Let us calculate the current J� (� ¼ x; y) using

J� � Re hJ�ðEyÞi � hJ�ð0Þi
� �

; ð13Þ

hJ�ðEyÞi ¼ Tr �ðtÞ
@HðtÞ
@A�ðtÞ

� �

¼
e

h�
Tr �kðtÞ

@HkðtÞ
@k�

� �
: ð14Þ

By plugging eqs. (11) and (12) into eq. (14), we obtain

J� ¼
e2

h�
Ey Re

Z
MBZ

d2k

ð2�Þ2
X
m 6¼n

ið fm � fnÞ

�
@umk

@ky

����unk
� �

unk

���� @umk@k�

� �
1� e�ið�mk��nkÞt=h�
� �

; ð15Þ

where MBZ denotes the magnetic Brillouin zone. After
some tedious but straightforward calculation, we obtain the
conductances �xy and �yy in the forms

�xy �
Jx

Ey

¼
e2

2�h�
NCh þ

e2

h�

Z
MBZ

d2k

ð2�Þ2
X
m 6¼n
ð fm � fnÞrmnðkÞ

� sin ð�mk � �nkÞt=h� � �mnðkÞ
� �

;

�yy �
Jy

Ey

¼
e2

h�

Z
MBZ

d2k

ð2�Þ2
X
m 6¼n

@umk

@ky

����unk
� �����

����
2

fm � fn
� �

� sinð�mk � �nkÞt=h� ; ð16Þ
where rmnðkÞ and �mnðkÞ are the real numbers that satisfy

rmnðkÞei�mnðkÞ �
@umk

@ky

����unk
� �

unk

���� @umk@kx

� �
: ð17Þ

Here, NCh is the Chern number with a finite-temperature
correction

NCh �
X
m

fm

Z
MBZ

d2k

�
Im

@umk

@ky

���� @umk@kx

� � �
: ð18Þ

We note that if we ignore the time dependence of �ð1Þmnk in
eq. (10), we obtain �xy ¼ ðe2=2�h� ÞNCh and �yy ¼ 0, which
are consistent with the TKNN theory.

The above-mentioned equations imply that we obtain
sinusoidally oscillating terms in addition to the Chern-
number term in the Hall conductance �xy due to quantum
fluctuation. The longitudinal conductance �yy also oscillates
with zero mean. The oscillation period is determined by the

energy-gap size.
Equation (16) is also a gauge invariant. We observe this

by treating the electric field as the scalar potential A0ðtÞ ¼
�eEyy exp½�i!t� instead of the vector potential. The first-
order time-dependent perturbation theory gives eqs. (15) and
(16) in the limit of !! 0.

To demonstrate the oscillation numerically, we assume
that the state lies in the lowest Landau level. Moreover, we
assume that the flux � (¼ abB) is given by the unit flux �0

(¼ 2�h�=e) multiplied by the rational number p=q as

�

�0

¼
abeB

2�h�
¼

p

q
; ð19Þ

where p and q are coprime. Due to the periodic potential
Uðx; yÞ, each Landau level splits into p subbands with a
q-fold degeneracy in each subband.

In the weak-potential limit jUðxÞj 	 h�eB=me, the pertur-
bation theory gives the instantaneous eigenfunction jumkðxÞi
as3)

jumkðxÞi ¼
1ffiffiffiffiffi
N
p

Xp
	¼1

d	mðkÞ
X1
‘¼�1

� exp �
eB

2h�

� �
xþ

h�ky

eB
� ‘qa�

	qa

p

� �2
" #

� exp �ikx x� ‘qa�
	qa

p

� � �

� exp �2�iy
‘pþ 	

b

� �
; ð20Þ

where N is the normalization factor. Here, the coefficients
fd	mg and first-order energy shift �ð1Þmk are determined by the
following secular equation.


d	�1
m ðkÞ þ �	d

	
mðkÞ þ 


�d	þ1
m ðkÞ ¼ �

ð1Þ
mkd

	
mðkÞ: ð21Þ

Here,

�	 ¼ Uxe
��qb=2pa cosð�qbky=pþ 2�	q=pÞ;


 ¼
Uy

2
e��qa=2pbe�iqakx=p: ð22Þ

Note that the unperturbed energy �ð0Þmk is independent of
m and k; i.e., �mk � �nk ¼ �ð1Þmk � �

ð1Þ
nk . After straightforward

calculation, we obtain

@umk

@kx

���� @umk@ky

� �
¼
Xp
	¼1

dd	m
dkx

� ��dd	m
dky
� i

h�

eB
; ð23Þ

unk

���� @umk@kx

� �
¼
Xp
	¼1

d	n
� ��dd	m

dkx
; ð24Þ

unk

���� @umk@ky

� �
¼
Xp
	¼1

d	n
� ��dd	m

dky
: ð25Þ

Thus, we can calculate the conductances �xy and �yy in
eq. (16) using the eigenvalues and eigenvectors in eq. (21).

As typical values, we use a ¼ 100 nm, b ¼ 130 nm, and
Ux ¼ Uy ¼ 0:1 meV. We assume p=q ¼ 65=2, implying
B ¼ 10:4 T. With this flux ratio, the lowest Landau level
splits into 65 subbands. We note that the p subbands in the
lowest Landau level range from 0.240 to 0.948 meV. The
center of the next Landau level is located at 1.78 meV. In
the numerical calculation, we obtain the derivatives of d	mðkÞ
by the finite-difference method. We consider the slices �kx
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and �ky to be 2�=100qa and 2�=100b, respectively. The
Chern number term is obtained by Fukui, Hatsugai and
Suzuki’s method.15)

First, we make the Fermi energy �F lie between the 33rd
and 34th levels, as shown in Fig. 1. The fluctuations of
�xy and �yy in Fig. 2 consist of the oscillations corresponding
to the energy gaps between levels higher than �F and levels
lower than �F. Figure 2 shows that the time resolution
required to detect the quantum fluctuation is about 10 ps.
Secondly, we make �F lie between the second and third
levels, as shown in Fig. 3. Then we obtain almost periodic
oscillations of �xy and �yy (Fig. 4) in contrast to the
seemingly random oscillation in the former case. This is
because the energy gaps are almost constant in the latter
case.

To summarize, we studied a nonadiabatic effect on the
conductances in the TKNN theory. We found that both �xy
and �yy oscillate due to quantum fluctuation. The oscillation
period is of the order of 100 ps to 1 ns. It is a challenging but
interesting issue to detect these oscillations experimentally.

Although we studied the time dependence of currents at
a constant electric field, by similar calculation, we observe
that constant currents in reverse produce a time-dependent
electric field. In this case, the oscillation period is also
determined by the energy-gap size.
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Fig. 1. The energy levels around the center of the p (¼ 65) subbands are

shown as functions of (a) qakx and (b) bky. The flux ratio p=q ¼ 65=2

corresponds to B ¼ 10:4 T. We use Ux ¼ Uy ¼ 0:1 meV, a ¼ 100 nm,

and b ¼ 130 nm. The Fermi energy (the dashed line) lies between the

33rd and 34th levels.
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Fig. 2. Conductances corresponding to the situation in Fig. 1. In the upper

panel, the solid line shows �xy as a function of time, and the dashed line

shows the Chern number term �Ch ¼ ðe2=2�h� ÞNCh. In this case, NCh ¼ 1.

The lower panel shows �yy as a function of time.

 0.2

 0.3

 0.4

2ππ0

E
ne

rg
y 

[m
eV

]

qakx

 0.2

 0.3

 0.4

2ππ0

E
ne

rg
y 

[m
eV

]

bky

Fig. 3. The energy levels in the lowest part of the p (¼ 65) subbands are

shown as functions of (a) qakx and (b) bky. The flux ratio p=q ¼ 65=2
corresponds to B ¼ 10:4 T. We use Ux ¼ Uy ¼ 0:1 meV, a ¼ 100 nm,

and b ¼ 130 nm. The Fermi energy (the dashed line) lies between the

second and third levels. In each panel, the lowest solid line below the

dashed line expresses the degenerate first and second levels.
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Fig. 4. Conductances corresponding to the situation in Fig. 3. In the upper

panel, the solid line shows �xy as a function of time, and the dashed line

shows the Chern number term �Ch ¼ ðe2=2�h� ÞNCh. In this case, NCh ¼ 0.

The lower panel shows �yy as a function of time.
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