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We consider the frequency at which avoided crossings appear in an energy-level structure when an external
field is applied to a quantum chaotic system. The distribution of the spacing in the parameter between two
adjacent avoided crossings is investigated. Using a random matrix model, we find that the distribution of these
spacings is well fitted by a power-law distribution for small spacings. The powers are 2 and 3 for the Gaussian
orthogonal ensemble and Gaussian unitary ensemble, respectively. We also find that the distributions decay
exponentially for large spacings. The distributions in concrete quantum chaotic systems agree with those of the
random matrix model.
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I. INTRODUCTION

The avoided crossing is a ubiquitous structure in energy
levels of quantum chaotic systems with external perturbation
�1�. As the time-dependent external perturbation is applied to
the system, the quantum state changes nonadiabatically. Es-
pecially when the perturbation changes linearly and slowly
in time, nonadiabatic transitions can be described by the
Landau-Zener transitions �2� at avoided crossings. Using this
microscopic mechanism, the nonadiabatic change of the total
quantum state might be understood. Energy diffusion phe-
nomena have been intensively studied from this point of
view �3–6�. To understand macroscopic phenomena such as
energy diffusion, it is important to study universal aspects of
avoided crossings in quantum systems. Thus, using random
matrices �7,8�, various distributions concerning avoided
crossings have been studied �9�. For example, the distribu-
tions of the energy-level curvature �10–14�, the difference
between the slopes of the asymptotic lines �15,16�, and the
minimum-energy gap �16,17� are derived at avoided cross-
ings, and their universalities are confirmed in concrete quan-
tum systems �11,12,16–18�.

In this paper, we consider another distribution related to
the structure of avoided crossings. We study the distribution
of the spacing in a parameter space of perturbation, which is
measured as the distance between two adjacent avoided
crossings involved in two neighboring energy levels �ex-
amples of this spacing are depicted in Fig. 1�. We call this
distribution the avoided-crossing spacing distribution
�ACSD�. Only a few qualitative studies related to the ACSD
have been published. Goldberg and Schweizer obtained the
ACSD of the hydrogen atom in a magnetic field and that of
the Africa billiard to estimate the statistical error of the gap
distribution �19�. Wilkinson and Austin discussed the density
of avoided crossings in quantum systems with two free pa-
rameters, although the distribution of the spacing between
avoided crossings was not discussed �20�. The main aim of

this paper is to obtain the quantitative properties of the
ACSD.

We first consider the Hamiltonian taken from random ma-
trices to extract the general features of the ACSD. We calcu-
late the ACSD’s for the Gaussian orthogonal ensemble
�GOE� and the Gaussian unitary ensemble �GUE� by a pre-
cise numerical calculation. We find that, for small spacings,
the ACSD for the GOE �GUE� shows a power-law behavior
with power 2 �3�. For large spacings, the ACSD’s decay ex-
ponentially. We then consider two concrete quantum
systems—i.e., the coupled rotators model and the Aharonov-
Bohm billiard—and find that the ACSD’s of these systems
agree with those predicted by simulations using random ma-
trices.

This paper is constructed as follows. In Sec. II, we obtain
the ACSD’s of a random matrix model for the GOE and
GUE, and discuss differences between them, focusing espe-
cially on the powers of the distributions. In Secs. III and IV,
we present the ACSD’s of two concrete models and show
that they are identical to those of the corresponding random
matrix models. Finally, in Sec. V, we give a summary.

II. RANDOM MATRIX MODEL

Let us consider an N�N Hamiltonian matrix H��� in-
cluding a parameter � as an external field. In order to cap-
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FIG. 1. The scaled energy spectrum for HRM��� of the GOE as
a function of �. Three examples of avoided-crossing spacings are
also shown.

PHYSICAL REVIEW E 72, 056206 �2005�

1539-3755/2005/72�5�/056206�5�/$23.00 ©2005 The American Physical Society056206-1

http://dx.doi.org/10.1103/PhysRevE.72.056206


ture general features of the ACSD, we take H��� from ran-
dom matrix ensembles �1,7�. We prepare random matrices
H0

RM and VRM of N=1000. We consider the following ran-
dom matrix model:

HRM��� = H0
RM cos � + VRM sin � . �1�

Note that this model keeps the variance of matrix elements
unchanged as the parameter varies �16�.

If we take both H0
RM and VRM from the GOE, the Hamil-

tonian HRM��� represents quantum systems invariant under
an antiunitary transformation such as the time-reversal trans-
formation. On the other hand, if we take both of them from
the GUE, the Hamiltonian represents quantum systems that
have no symmetries for antiunitary transformations �1,8,21�.
We let � move from 0.5 to 1.5. The variance �RM

2 of diago-
nal elements of H0

RM and VRM is 2.
First of all, we need to scale � and Ej��� �the jth eigen-

value of the instantaneous Hamiltonian H���� in order to
eliminate the dependence of the parameters on the external
field and energy �22–26�. Following Simons and Altshuler
�22�, we define the scaled parameter � and scaled energy � j
as

� j��� = �1��� + �
i=1

j−1
Ei+1��� − Ei���

�i���
,

�
kj

= �
0j

+ �
k�=1

k−1

��
k�+1

− �
k�

����	 ��
j
���

��
	

�
k�



2

� ,

�2�

where � j��� is the mean level spacing at Ej��� and �¯

denotes a statistical average over a typical range of levels
and �. We put �1���=0�=const�, which is followed by
��� j��� /��
=0. �0j is set to �0. Thus, we obtain the scaled
energy level flow � j���. We show the scaled energy spectrum
� j��� for HRM��� of the GOE in Fig. 1. Some avoided cross-
ings look like crossings indeed, but this is due solely to the
linewidth. In Fig. 1, three distances �the right and left ar-
rows� are shown as examples of avoided-crossing spacing.

An avoided-crossing spacing is defined by the spacing
between two neighboring avoided crossings on the same en-
ergy level flow. Now, �kj is identified as the position of an
avoided crossing on the jth energy level flow if
� j+1��k−1,j+1�−� j��k−1,j��� j+1��k,j+1�−� j��k,j� and
� j+1��k+1,j+1�−� j��k+1,j��� j+1��k,j+1�−� j��k,j� are satisfied.
By taking the differences in positions between two adjacent
avoided crossings, avoided-crossing spacings S� are ob-
tained. We thereby obtain the ACSD P�S��—i.e., the prob-
ability that the spacing in the parameter space of the adjacent
avoided crossings is S�. Here P�S�� satisfies the following
normalization conditions:

�
0

�

P�S��dS� = 1, �
0

�

S�P�S��dS� = 1. �3�

Hereafter, we distinguish between the GOE and GUE by
the superscript 	. We have 	=1 for the GOE and 	=2 for
the GUE. That is, PRM

�	� �S�� denotes the ACSD of model �1�
for the GOE and GUE. We take the parameter slice ��
��k+1−�k to be 0.001, which is small enough. We find
4.0�105 �3.5�105� avoided-crossing spacings in 50
samples of HRM�S�� for the GOE �GUE�.

We also define the cumulative distribution IRM
�	� �S�� of the

ACSD of HRM��� for the GOE and GUE as IRM
�	� �S��

=�0
S�PRM

�	� �S���dS��. Figure 2 shows log-log plots of IRM
�	� �S��.

The solid lines in the figures are obtained by fitting the data
in the small-S� region by the least-squares method. Conse-
quently, we find that IRM

�1� �S�� behaves as 1.1�S�
3.0 and that

IRM
�2� �S�� behaves as 1.7�S�

4.0. Therefore, we may write

PRM
�	� �S�� � S�

	+1 �S� 
 1� . �4�

To study how the ACSD decays, we compare PRM
�	� �S��

with the following trial function:

Ptrial
�	� �S�� =

a	S�
	+2

sinh b	S�

. �5�

Here, the coefficients a	 and b	 are determined from the
normalization conditions �3�: a1= �8/�4�b1

4, b1=372��5� /�4,
a2= �2/93��5��b2

5, and b2=�6 /186��5�. In Figs. 3�a� and
3�b�, we see that PRM

�	� �S�� is well approximated by Ptrial
�	� �S��

for large S�. Since Eq. �5� implies that PRM
�	� �S�� decays ex-

FIG. 2. Log-log plots of the cumulative distributions �a�
IRM
�1� �S�� and �b� IRM

�2� �S��.
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ponentially for large S�, we may conclude that no correlation
exists between avoided crossings for large S�. Note that, for
small S�, we have Ptrial

�1� �S���5.1S�
2 and Ptrial

�2� �S���64S�
3,

which do not reproduce the numerical data.
We also obtained the ACSD of the following random ma-

trix Hamiltonian:

HRM0��� = H0
RM + �VRM. �6�

We checked that the ACSD of this model is the same as that
of HRM��� in Eq. �1�.

III. COUPLED ROTATORS MODEL

As an example of quantum systems for the GOE, we con-
sider the coupled-rotators model �27�. We shall show that the
ACSD of this model is well approximated by PRM

�1� �S��. The
Hamiltonian of the system is given by

HCRT��� = L1
xL2

x + ��L1
z + L2

z� , �7�

where L1 and L2 are angular momenta with l1 and l2—i.e.,
the eigenvalues of L1

2 and L2
2 are l1�l1+1�
2 and l2�l2+1�
2,

respectively. Since 
 is a dimensionless parameter in the
present unit, we put 
=0.158 75 so that the corresponding
classical system becomes strongly chaotic �28�. Noting that
HCRT��� changes the z component of the total angular mo-
mentum �Jz=L1

z +L2
z� by 0, ±2
 �29�, the Hilbert space is

divided into two subspaces corresponding to even Jz /
 and
odd Jz /
. Here, we take the subspace in which Jz /
 is even.
Furthermore, we divide this subspace into two more sub-

spaces corresponding to the states symmetric and antisym-
metric under the exchange of L1

z and L2
z . Here, we choose the

subspace corresponding to the symmetric states. In this sub-
space, we have 1024 levels with no degeneracies when we
set l1= l2=31. We have confirmed that the energy-level spac-
ing distribution of the coupled rotators model is well ap-
proximated by the eigenvalue distribution of random matri-
ces taken from the GOE in the whole range of �
� �0.5,1.5�.

After the scaling �2�, we find 9094 avoided-crossing spac-
ings. Thus, we obtain the ACSD of the coupled-rotators
model PCRT�S�� and the cumulative distribution ICRT�S��
��=�0

S�PCRT�S���dS���. In Fig. 4�a�, we show PCRT�S�� to-
gether with PRM

�1� �S��. We see that PCRT�S�� is roughly equal
to PRM

�1� �S��. In Fig. 4�b�, we show ICRT�S�� with IRM
�1� �S�� and

IRM
�2� �S��. The inset, which shows the magnified figure with a

log-log plot, shows that ICRT�S�� follows IRM
�1� �S��. Therefore,

we classify PCRT�S�� as PRM
�1� �S��.

IV. AHARONOV-BOHM BILLIARD

Now we consider the Aharonov-Bohm billiard as an ex-
ample of a quantum system corresponding to the GUE
�30–32�. We shall show that the ACSD of this system is well
approximated by PRM

�2� �S��. In the billiard, a charged particle
with mass m and charge q moves inside the boundary �D.
The domain D is threaded by a magnetic flux � at the origin.
The Schrödinger equation of this system is written as

FIG. 3. �a� For 	=1, PRM
�	� �S�� is compared with Ptrial

�	� �S��. �b�
The same as �a� except 	=2.

FIG. 4. �a� Histogram of PCRT�S�� with PRM
�1� �S��. �b� ICRT�S��

together with IRM
�1� �S�� and IRM

�2� �S��. The inset shows the magnified
figure with a log-log plot near the origin.
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1

2m
�− i
�uv − qA�r��2��r� = E��r�

�uv � A�r� = n̂���u���v� , �8�

where r= �u ,v�, ��r�=0 on �D, and n̂ is the unit vector per-
pendicular to the billiard. The domain D is determined by the
following conformal transformation in the complex plane
w=u+iv:

w = z + �z2 + �ei�/3z3. �9�

Here, z�=x+iy� is a complex value in the unit disk ��z��1�.
The parameter � determines the shape of the billiard. Figure
5 shows the boundaries of the billiard when �=0.15, 0.2,
and 0.25.

Let us introduce two new parameters:

� �
q�

2�

, k2 �

2mE



. �10�

The value of � is restricted to the range �0, 1
2
� from the

symmetry of the system �30�. We put �= 1
4 , with which the

corresponding classical system becomes most strongly cha-
otic �30�. Now, the problem with getting the energy E of the
system in the Schrödinger equation �8� results in the follow-
ing eigenvalue problem by expanding the wave function with
the Bessel function �30�:

�
n�l�

cn�l�Mn�l�nl��� =
cnl

k2 . �11�

Here, �cnl� are components of the eigenvectors and

Mn�l�nl��� =
NnlNn�l�

anlan�l�
�

0

1

drr�
0

2�

d�ei�l−l���J�l−���anlr�J�l�−��

��an�l�r��w��z��2, �12�

where anl is the nth zero of the Bessel function J�l−���x� and

Nnl =
1

��
�J�l−��� �anl��−1. �13�

Thus, we obtain the energy eigenvalues of the system by
diagonalizing the Hermitian matrix M���.

We make a 2000�2000 matrix as M��� and use the low-
est 550 levels �31�. We have confirmed that the energy-level
spacing distribution of the system is well approximated by
the eigenvalue distribution of the GUE in the whole range of
�� �0.15,0.25�.

After the scaling �2�, we find 1050 avoided-crossing spac-
ings. Thus, we obtain the ACSD of the Aharonov-Bohm bil-
liard PAB�S�� and the cumulative distribution IAB�S��

��=�0
S�PAB�S���dS���. In Fig. 6�a�, we show PAB�S�� together

with PRM
�2� �S��. We see that PAB�S�� is roughly equal to

PRM
�2� �S��. In Fig. 6�b�, we show IAB�S�� with IRM

�1� �S�� and
IRM

�2� �S��. The inset, which shows the magnified figure with a
log-log plot, reveals that IAB�S�� follows IRM

�2� �S��. Therefore,
we conclude that the ACSD of the Aharonov-Bohm billiard
is classified as PRM

�2� �S��.

V. SUMMARY

We have studied the ACSD in quantum chaotic systems.
The distribution PRM

�	� �S�� of the random matrix model was
numerically obtained. We found power-law behavior for
small spacings and exponential decay for large spacings. For
small spacings, we found that the powers for the GOE and
GUE are 2 and 3, respectively. The exponential decay im-
plies that the correlation between two avoided crossings van-
ishes for large spacings. Although these properties are estab-
lished numerically, an analytical proof for them remains to
be completed. In Secs. III and IV, we have shown by accu-
rate numerical calculations that the distributions predicted by

FIG. 5. Boundaries of the Aharonov-Bohm
billiard with �= �a� 0.15, �b� 0.2, and �c� 0.25.

FIG. 6. �a� Histogram of PAB�S�� with PRM
�2� �S��. �b� IAB�S��

together with IRM
�1� �S�� and IRM

�2� �S��. The inset shows the magnified
figure with a log-log plot near the origin.
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the random matrix model are indeed realized in concrete
quantum chaotic systems.

The ACSD may play an important role in the quantum
dynamics of finite fermion systems such as quantum billiards
�4�. It is especially worthwhile to consider the time duration
until the system starts diffusing after the external perturba-
tion is applied at zero temperature. As the perturbation is
applied, pairs of neighboring levels in the energy level flow
form avoided crossings. The quantum state at the Fermi level
changes over time by making a nonadiabatic transition at the
avoided crossing. The distribution of the time duration until
the Fermi level encounters the first avoided crossing would
be related to the ACSD. It is interesting to experimentally

observe the time duration and to understand it in the context
of the ACSD.
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