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Temperature Dependence of ESR Intensity for the Nanoscale Molecular Magnet V15
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The electron spin resonance (ESR) of nanoscale molecular magnet V15 is studied. Since the
Hamiltonian of V15 has a large Hilbert space and numerical calculations of the ESR signal
evaluating the Kubo formula with exact diagonalization method is difficult, we implement the
formula with the help of the random vector technique and the Chebyshev polynominal expan-
sion, which we name the double Chebyshev expansion method. We calculate the temperature
dependence of the ESR intensity of V15 and compare it with the data obtained in experiment.
As another complementary approach, we also implement the Kubo formula with the subspace
iteration method taking only important low-lying states into account. We study the ESR ab-
sorption curve below 100K by means of both methods. We find that side peaks appear due to
the Dzyaloshinsky-Moriya interaction and these peaks grows as temperature decreases.
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The V15 molecule is the complex of formula
K6

[
VIV

15 As6O42 (H2O)
]
· 8H2O. Since Müller and Döring

synthesized this molecule for the first time,1–5) V15 has
been studied intensively as one of promising nanometer-
scale molecular magnets. In V15, fifteen 1/2 spins of
vanadium ions are arranged almost on a sphere. The
triangle cluster with three spins is sandwiched by the
upper and lower hexagons. In experiment, an adiabatic
change of the magnetization has been observed in a fast
sweeping field.6–8) In a slow sweeping field, an interest-
ing magnetic plateau appears. This phenomenon, called
the phonon bottleneck effect, is due to an effect of con-
tact with thermal bath,6, 7) and also theoretically ana-
lyzed from a general viewpoint of the magnetic Foehn ef-
fect.9) Since the magnetization changes smoothly at zero
field from −1/2 to 1/2 when the field is swept adiabat-
ically at low temperatures, the gap between the ground
state and the lowest excited state at zero field is be-
lieved to open. The most plausible origin of the gap is the
Dzyaloshinsky-Moriya (DM) interaction.8, 10–14) Around
2.8T, the ground state magnetization changes from 1/2
to 3/2. This change also occurs smoothly, and this broad-
ness of the change is also considered to be caused by the
DM interaction.7) However, the detail of the mechanism
of this broad change is not fully understood yet.15, 16)

One possible way to determine the mechanism of adi-
abatic change in V15 is that we compare the numerically
obtained ESR absorption curve of V15 with the experi-
mentally obtained one. With this motivation, in this pa-
per, we establish numerical methods to study the ESR
absorption curve obtained from the model Hamiltonian
of V15. The ESR absorption curve is calculated by the
Kubo formula in theory.17, 18) The direct implementation

∗E-mail address: machida@iis.u-tokyo.ac.jp
†E-mail address: tiitaka@riken.jp
‡E-mail address: miya@spin.phys.s.u-tokyo.ac.jp

of the Kubo formula is to diagonalize the Hamiltonian
matrix.19) However, this direct method is impossible in
most cases because the dimension of the Hilbert space is
quite large. For example, it is 215 = 32768 for V15.

In this paper, we study the ESR absorption curve of
V15 by proposing two methods: one is the double Cheby-
shev expansion method (DCEM) and the other is the sub-
space iteration method (SIM). Relying on these methods,
we reveal the temperature dependence of the intensity of
V15, and find side peaks due to the DM interaction which
allows transitions between excited states otherwise for-
bidden.

The magnetic interactions in V15 are described by the
following Hamiltonian15, 16)

H = −
∑
〈i,j〉

JijSi ·Sj +
∑
〈i,j〉

Dij · [Si × Sj ]−
∑
i

HS ·Si.

(1)
We show the interactions between spins in Fig. 1. For
Jij , we have three different values J , J1, and J2 (|J | >
|J2| > |J1|) with respect to the bonds on the upper
and lower hexagons. Three spins on the triangle between
two hexagons interact with the hexagons by J1 and J2.
The interactions between the three spins are negligibly
small. Here we take J = −800K, J2 = −350K, and
J1 = −225K.14) The second term on the right-hand side
in Eq. (1) describes the DM interaction. DM vectors are
considered to exist on the two hexagons in the bonds
with J . We take the reference DM vector D1,2 to be
Dx

1,2 = Dy
1,2 = Dz

1,2 = 40K.15) The other DM vectors
on the upper hexagon are obtained by rotating D1,2 by
2π/3 and 4π/3, i.e., Dx

3,4 = 14.641K, Dy
3,4 = −54.641K,

Dz
3,4 = 40K, Dx

5,6 = −54.641K, Dy
5,6 = 14.641K, and

Dz
5,6 = 40K. If we assume the D3 symmetry of V15,1) the

lower hexagon differs from the upper hexagon by rota-
tion π/6, and the z components of the DM vectors on the
lower hexagon have opposite sign from those of the DM
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Fig. 1. The figures on the left show interactions within each
hexagon. The interaction within the triangle is negligibly small.
The figure on the top right shows interactions between the tri-
angle and the upper and lower hexagons.

vectors on the upper hexagon. Thus, the DM vectors on
the lower hexagon are obtained as Dx

10,11 = −54.641K,
Dy

10,11 = −14.641K, Dz
10,11 = −40K, Dx

12,13 = 40K,
Dy

12,13 = −40K, Dz
12,13 = −40K, Dx

14,15 = 14.641K,
Dy

14,15 = 54.641K, and Dz
14,15 = −40K. We assume

the magnetic field is applied parallel to the c-axis of
the molecule (z-axis) and set HS = (0, 0, HS). We take
HS = 4T throughout the paper (see also Fig. 4(b)).

Double Chebyshev expansion method (DCEM). —
This method realizes O(N) calculation with the help
of the random vector technique20, 21) and the Cheby-
shev polynomial expansion of exponential operators. The
DCEM is an extension of the Boltzmann-weighted time-
dependent method (BWTDM) developed by Iitaka and
Ebisuzaki.22) We briefly review the BWTDM. The pro-
cedure of the BWTDM is divided by the following five
steps. By adopting the unit in Ref. 22, we have dimen-
sionless energy, time, and temperature. At the first step,
we prepare a random vector |Φ〉. For a given basis |n〉
of the Hilbert space, this random vector is given by
|Φ〉 =

∑N
n=1 |n〉 ξn. Here, the dimension of the Hilbert

space is N and the statistical average of the complex
random coefficients {ξn} satisfies 〈〈ξ∗n′ξn〉〉 = δn′n. At the
second step, we obtain the Boltzmann-weighted random
vector |ΦBoltz〉 = e−βH/2 |Φ〉 making use of the Cheby-
shev polynomial expansion. Here, β(= 1/T ) is the inverse
temperature. To this end, we divide the Hamiltonian by
constant Δλ as Hsc = H/Δλ so that the largest eigen-
value of Hsc does not exceed unity. Then, we expand
e−βH/2 as follows.

e−βH/2 = I0 (−βΔλ/2)T0(Hsc)

+ 2
kmax∑
k=1

Ik (−βΔλ/2)Tk(Hsc), (2)

where Ik(x) is the modified Bessel function and Tk(Hsc)
is the Chebyshev polynomial, which satisfies Tk(Hsc) =
2HscTk−1(Hsc)−Tk−2(Hsc), T0(Hsc) = 1, and T1(Hsc) =

Hsc. By this procedure, we obtained e−βH/2 with-
out diagonalization. At the third step, we obtain time
evolutions of vectors |ΦBoltz; t〉 = e−iHt |ΦBoltz〉 and
|ΦMx ; t〉 = e−iHt |ΦMx〉, where |ΦMx〉 = Mx |ΦBoltz〉 and
Mx =

∑Nspin
j=1 Sxj . In the BWTDM, the time evolution

is performed by the leap frog method,23) which evolves
state |φ; t〉 as

|φ; t+ Δt〉 = −2iHΔt |φ; t〉+ |φ; t−Δt〉 . (3)

Note that the condition EmaxΔt� 1 should be satisfied,
where Emax is the largest eigenvalue of the Hamiltonian.
At the fourth step, we calculate the correlation function

g(t;T ) = 〈MxMx(t)〉

= Tr
[
e−βHMxeiHtMxe−iHt] /Tr

[
e−βH

]
=

〈〈 〈ΦMx ; t|Mx |ΦBoltz; t〉 〉〉
〈〈 〈ΦBoltz|ΦBoltz〉 〉〉

, (4)

where the trace was replaced by the inner product of
random vectors. Finally, the imaginary part of the dy-
namical susceptibility χ′′(ω;T ) is obtained by the Fourier
transform of g(t;T ).

χ′′(ω;T ) =
(
1− e−βω

)
Re
∫ ∞

0

g(t;T )e−iωtdt

=
(
1− e−βω

)
Re
∫ Tmax

0

g(t;T )e−iωte−η
2t2/2dt. (5)

Here, we introduced the Gaussian filter with variance
1/η2. This η determines the frequency resolution. The
upper limit of the integral Tmax satisfies Tmax ∼ 1/η in
order to avoid the Gibbs oscillation. Also η should satisfy
0 < η � 1, η � HS, and βη2 � HS. The average energy
absorption per unit time I(ω;T ) is given by

I(ω;T ) =
ωH2

R

2
χ′′(ω;T ). (6)

The DCEM is almost the same as the BWTDM. Only
the third step is different. In the DCEM, we make use
of the Chebyshev polynomial expansion not only in the
second step obtaining e−βH/2, but also in the third step
of time evolution. State vector |φ; t〉 is evolved with the
Chebyshev polynomials as

|φ; t+ τ〉 = e−iτΔλHsc |φ; t〉

= J0(τΔλ)T0(Hsc) |φ; t〉

+ 2
kmax∑
k=1

(−i)kJk(τΔλ)Tk(Hsc) |φ; t〉 , (7)

where Jk(x) is the Bessel function. Note that time step
τ is not necessarily small. In the ESR experiment for
V15, magnetic field HS (∼ 1K) is usually much smaller
than the strongest coupling Jmax(= |J |) between spins
(∼ 103K). That is why the frequency of precession of the
spins is rather small. This means that we need to evolve
state vectors long time but do not need fine resolution
of time step in order to detect small frequencies of spin
precession. Since it is possible for time step τ to have
larger value than time step Δt, the DCEM is more ef-
ficient than the BWTDM for low magnetic fields. Table
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Table I. Typical computation times of two methods at various
magnetic fields.

1000(T) 100(T) 10(T)

Chebyshev 126(min) 187(min) 430(min)

Leap-frog 11(min) 165(min) 1326(min)
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Fig. 2. The temperature dependence of the intensity of V15 is
shown. Solid circles denote data by the DCEM and open squares
denote data by the SIM with the lowest eight levels. Dashed lines

denote, from the bottom, intensities of independent 1, 2, 3, and
15 spins, respectively.

I shows typical computation times with the DCEM and
the BWTDM. Using asymptotic behavior of the Bessel
function, the ratio of two computation times is evaluated
as

[Chebyshev]
[Leap-frog]

∼ aHS

Jmax
ln
[

b

HS/Jmax

]
, (8)

where a and b are constants.
We first study the temperature dependence of the in-

tensity I(T )
(
=
∫∞
0
I(ω;T )dω

)
using the DCEM. In

Fig. 2, we show the temperature dependence of I(T ).
The intensity I(T ) obtained by the DCEM is denoted
by solid circles. The open squares in Fig. 2 denote data
obtained by the subspace iteration method, which we
will explain below. At very high temperatures, each spin
in V15 acts as an isolated spin. Therefore, the intensity
should be given by the multiplication of I1(T ) by 15,
where I1(T ) = π

8H
2
RHS tanh (βHS/2) is the intensity of

an isolated spin. In Fig. 2, 15×I1(T ), 3×I1(T ), 2×I1(T ),
and 1 × I1(T ) are also shown by dash-dotted line, dot-
ted line, short-dashed line, and dashed line, respectively.
As temperature decreases, the effective number of spins
changes from 15 to 3. Note that the ground state mag-
netization is 3/2 in the present case of HS = 4T (see
also the energy diagram in Fig. 4(b)). In experiment,
the intensity starts deviating the curve for three spins at
around 200K.24) Here we confirm that the intensity ac-
tually follows the curve for independent 15 spins at high
temperatures.

Subspace iteration method (SIM). — We explain an-
other method obtaining the ESR absorption curve of
large molecules. At low temperatures, the ESR absorp-
tion occurs only from transitions among low-lying energy

levels because states of the system are confined near the
ground state. The SIM is a numerical method that takes
a small subspace of the total Hilbert space which con-
cerns only low-lying states.25, 26) Within this subspace,
the ESR absorption curve is obtained by the explicit
formulation of the Kubo formula. That is, by direct di-
agonalization of the small Hamiltonian. We obtain the
eigenvalues and eigenvectors of the subspace and obtain
the imaginary part of the susceptibility χ′′(ω);19)

χ′′(ω) =
π

Z

∑
m,n

(
e−βEm − e−βEn

)
| 〈ψm|Mx |ψn〉 |2

×δ(ω − (En − Em)), (9)

where Z is the partition function.
The calculation in the DCEM is numerically exact, but

it generally requires longer computation time than that
of the SIM. On the other hand, the calculation in the
SIM is carried out shorter time for a moderate value of
Ñ , which is enough to study the property at low tem-
peratures. However, it ignores higher states completely.
The two methods are complementary to each other.

In Fig. 2, the intensities obtained by the SIM with the
lowest eight levels (Ñ = 8) are plotted by open squares.
Those are consistent with the solid circles obtained by
the DCEM at temperatures lower than 200K. Although
the data of the DCEM start deviating from the line of
three spins at around 200K, the data of the SIM stay
at the line, which reflects the fact that the SIM consid-
ers only the lowest eight levels. Here we confirm that the
SIM can reproduce the data of the DCEM at low temper-
atures with a shorter computation time. Thus, in Fig. 2,
we can have more points at low temperatures.

We point out the following two points, which will be
discussed in more detail elsewhere.27) First, the data
slightly deviate from the dotted line at low tempera-
tures as seen in the experiment by Sakon et al.28) For the
present field (HS = 4T), i.e., the ground state magneti-
zation is 3/2, the ratio I(T )/I1(T ) takes values smaller
than 3 at low temperatures due to the DM interaction.
Second, in the experiment by Ajiro, et al.,24) the intensity
follows the line of an isolated 1/2 spin (I(T )/I1(T ) = 1).
This is because the ground state magnetization is 1/2 in
the field weaker than 2.8T.

Finally, let us study the absorption curve I(ω;T ). Fig-
ure 3 compares I(ω;T = 32K) and I(ω;T = 64K) ob-
tained by the DCEM. Note that the widths of the peaks
are solely due to the finite frequency resolution of the
DCEM given by η. We see that the peaks grow as temper-
ature decreases. In the upper panel in Fig. 3, intensities
with and without the DM interaction are compared. We
conclude that the side peaks near the main peak around
110GHz(� 4T) appear due to the DM interaction.

Figures 4(a) and 4(b) show results obtained by the
SIM. In Fig. 4(a), the ESR absorptions by the lowest
eight levels (Ñ = 8) are calculated at 32K. The height of
pulses shows the value of coefficients of delta functions
of the absorptions. The peak around 110GHz consists of
three resonant peaks, whereas each side peak consists of
single resonant peak. Figure 4(b) shows the lowest eight
energy levels of V15 as a function of field HS. Each la-
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Fig. 3. The upper and lower panels show the ESR absorption
curves of V15 at 4T and at 32K and 64K, respectively. In the
upper panel, the dashed curve shows the absorption curve ob-
tained from the Hamiltonian without the DM interaction.

 0

 5

 10

 70  80  90  100  110  120  130  140
ω [GHz]

a

e
 0

 5

 10

 109.4  109.6  109.8
ω [GHz]

b
c d

(a)

-3665

-3660

-3655

-3650

-3645

 0  1  2  3  4  5  6

E
ne

rg
y 

[K
]

Hs [T]

(b)

a

b

c

d

e

Fig. 4. (a) The ESR absorptions calculated by the SIM at 4T
and 32K are shown. The height of the pulse at each resonant fre-
quency expresses the value of the coefficient of the delta function

of the absorption. The inset shows the magnified figure around
110GHz. (b) The lowest eight energy levels of V15. The vertical
dashed line at HS = 4T shows the magnetic field applied to V15.
The arrows denote transitions corresponding peaks labeled by a
through e in (a).

beled peak in Fig. 4(a) comes from the corresponding la-

beled transition between energy levels shown in Fig. 4(b).
Thus, the combination of the DCEM and the SIM pro-

vides a powerful method to elucidate the ESR of large
molecular magnets such as V15.
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2) A. Müller, J. Döring, and M. Penk: Z. Anorg. Allg. Chem. 595
(1991) 251.

3) D. Gatteschi, L. Pardi, A. L. Barra, A. Müller and J. Döring:
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J. Am. Chem. Soc. 114 (1992) 8509.

5) D. Gatteschi, L. Pardi, A. L. Barra, and A. Müller: Mol. Eng.
3 (1993) 157.

6) I. Chiorescu, W. Wernsdorfer, A. Müller, H. Bögge, and B
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