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We study the quantum localization of a GOE random matrix model driven by a periodic
external field. After the diffusion is suppressed, the average energy oscillates around some
finite value Esat. We study how Esat depends on the frequency of the external field. In order
to investigate this phenomenon, we also study the frequency dependence of the relevant
number of Floquet states Nmin, and discuss its dependence in the view of the Anderson
localization in the region where the frequency is not large.

Recently active research has been done on the dynamical nature of quantum
systems whose energy levels have complex structures. Especially, the quantum lo-
calization is known to take place in these systems under a periodic external field. The
quantum localization was first predicted theoretically 1) and also realized experimen-
tally. 2) - 6) Although the quantum localization has mainly studied for simple models
such as the kicked rotator model 1) and the kicked top model, 7) some studies have
recently done on random matrix models which take account of many-body interac-
tion. 8), 9) In this paper, we investigate the frequency dependence of the quantum
localization of the system of a random matrix model.

We consider time-reversal invariant systems under an oscillating external field.
The random matrix ensemble appropriate for describing the spectral statistics of
these systems is Gaussian orthogonal ensemble (GOE). 10) Eigenvalues of a GOE
random matrix repulse each other, and they never degenerate. Points where energy
levels nearly degenerate are called avoided crossings. We take H0 and V to be
GOE random matrices. Elements of these matrices are taken from the Gaussian
distribution. The mean value of each element is zero, and the variance is 1 for
diagonal element and 2 for off-diagonal element. Using H0 and V , the Hamiltonian
is given as follows;

H(t) = H0 + λ(t)V (1)

with λ(t) = A sin(ωt) (A = 0.5).
We take the ground state as the initial state |ψ0〉 at time t = 0. State |ψ1〉 after

a period is expressed by operating the time-evolution operator for a period F (the
Floquet operator 11)); |ψ1〉 = F |ψ0〉. Eigenfunctions of F form the complete set of
the Hilbert space and eigenvalues of F are aligned on a unit circle in the complex
plane;

F |ν〉 = eiφν |ν〉. (2)
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In the same way, the state after the nth period is expressed as, |ψn〉 = Fn|ψ0〉.
Therefore, the average energy after the nth period is written as,

〈ψn|H0|ψn〉 =
∑
ν′,ν

ein(φν−φν′)〈ψ0|ν ′〉〈ν|ψ0〉〈ν ′|H0|ν〉. (3)

Note that H(t = 0) = H0.
In this equation, the energy oscillates around

Esat ≡
∑
ν

|〈ν|ψ0〉|2〈ν|H0|ν〉, (4)

after the diffusion is suppressed. Hence, we regard Esat as the saturated energy.
In the present study, we normalize Esat such that the distance between E = 0
and the ground state is 1. Figure 1 shows Esat as a function of ω for systems
of several sizes. When ω is very small, the average energy hardly changes due
to the adiabatic theorem: 12) when ω gets slightly larger, transfers of occupation
probabilities of energy levels begin to occur at avoided crossings. We see that Esat

approaches to the center of the energy spectrum (Esat = 0) asymptotically as ω
grows. Note that the energy spectrum is symmetric about its center.

As is seen in Eq. (4), most of the ω-dependence of Esat is determined by |〈ν|ψ0〉|2
because Eq. (4) is approximately rewritten as Esat � ∑

ν |〈ν|ψ0〉|2Eν , where Eν is
eigenvalue of H0 whose eigenvector is the closest to |ν〉. Therefore we focus on this
overlap and employ the minimal number Nmin of Floquet eigenvectors necessary to
cover the initial state |ψ0〉 to within a ratio r. 7) That is, we define Nmin as follows;

Nmin =
1
N

min


Nmin :

Nmin∑
ν=1

|〈ψ0|ν〉|2 > r; |〈ψ0|ν〉|2 ≥ |〈ψ0|ν + 1〉|2

 , (5)

where N is the size of the Hamiltonian. We take r = 0.99. Figure 2 shows Nmin as
a function of ω for N = 256, 500 and 700. In Fig. 2, when ω is nearly zero, Nmin
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Fig. 1. Esat as a function of ω. The Esat for 256, 500 and 700 dimension are shown respectively.

The inset also shows Esat as a function of ω for a wide range of ω.
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Fig. 2. Nmin as a function of ω. The Nmin for 256, 500 and 700 dimension are shown respectively.

The inset also shows Nmin as a function of ω for a wide range of ω.

is close to zero because almost no transitions of states occur due to the adiabatic
theorem. 12) On the other hand, Nmin is approximately constant when ω is sufficiently
large because the occupation probability is spread over almost the whole states before
the quantum diffusion is suppressed.

In Fig. 2, we also find empirically that the form of Nmin(ω) is fitted by

Nmin(ω) = N∗
min

{
1− 1

[(ω/ω∗)a + 1]b

}
. (6)

Table I. Values of the parameters in Eq. (6).

They are obtained by the least-squares

method.

parameter dim(256) dim(500) dim(700)

N∗
min 0.79 0.80 0.80

a 2.3 2.6 3.0

b 0.67 0.47 0.54

ω∗ 0.15 0.10 0.11

The values of a, b and ω∗ obtained from
the least-squares method are shown in
Table I. In Eq. (6), Nmin(ω) has a linear
shape in the intermediate region around
the inflection point (ω ∼ 0.1π). Hence,
we regard the tangential line at the in-
flection point as Nmin(ω) in the interme-
diate region. The tangential line at the
inflection point of Nmin in Eq. (6) in the
case N = 700 is also depicted in Fig. 2.

Now, we focus on the intermediate region, where Nmin grows linearly. We find
numerically that transitions of states take place only at avoided level crossings when
ω ∼ 0.1π. We investigate the quantum localization in the following way, since a
direct application of the Landau-Zener transition 13) does not explain the observed
ω-dependence of Esat and Nmin. 14), 15) For the localization, the effect of quantum
interference takes important role. In the following, we associate the quantum local-
ization of the system with the Anderson localization. 16) Here we study the case with
small ω, where the Landau-Zener transition gives main mechanism of level transfer.

The corresponding system, which shows the Anderson localization, has random
potential U with the width W and constant hopping t. Since transitions occur at
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avoided crossings, we believe that the Landau-Zener transition takes place and the
transition probability at each avoided crossing is proportional to exp

(
− πε2

2σAω cos ωt

)
,

where ε is the size of gaps of avoided crossings, and σ is the size of the difference of
slopes of two asymptotic lines at avoided crossings. We assume that the correspond-
ing hopping constant t after a period of the external field has the form

t ∼ exp

[
−h(N,A) ε̄

2

σ̄
ω−1

]
, (7)

where h(N,A) is some function of N and A, ε̄ is the typical size of ε, and σ̄ is the
typical size of σ. The probability pm that the state occupies the mth site from the
initial 0th site is given in the study of the Anderson localization by 17)

pm ∼
( |t|
W

)m

∼ exp

[
−h(N,A) ε̄

2

σ̄
ω−1m

]
. (8)

On the other hand, the probability to find the state at the mth level of H(t) is found
to be proportional to exp (−Γm), where Γ−1 is the localization length. Comparing
them, we have, Γ ∼ h(N,A) ε̄2

σ̄ ω
−1. Using the fact Nmin ∼ Γ−1, we obtain

Nmin ∼ σ̄

ε̄2
ω. (9)

Equation (9) suggests linear dependence of Nmin on ω. In Fig. 2, we find this relation
except for very small value of ω.
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