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We study the quantum localization phenomena for a random matrix model belonging to the Gaussian
orthogonal ensemble (GOE). An oscillating external field is applied on the system. After the transient
time evolution, energy is saturated to various values depending on the frequencies. We investigate the
frequency dependence of the saturated energy. This dependence cannot be explained by a naive picture
of successive independent Landau–Zener transitions at avoided level crossing points. The effect of
quantum interference is essential. We define the number of Floquet states which have large overlap with
the initial state, and calculate its frequency dependence. The number of Floquet states shows
approximately linear dependence on the frequency, when the frequency is small. Comparing the
localization length in Floquet states and that in energy states from the viewpoint of the Anderson
localization, we conclude that the Landau–Zener picture works for the local transition processes between
levels.
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1. Introduction

The diffusive phenomena have been actively studied in
quantum systems with a complex level structure in the
presence of a periodic external field. Under a periodic
perturbation, when a system shows so-called quantum
chaotic nature, it is widely believed that energy diffusion
of the system eventually ceases and the energy saturates at a
finite value. So far, only limited number of these systems
have been actually studied. The kicked rotator model1) and
the kicked top model2) are typical quantum models which
show the quantum chaotic nature under a periodic external
field. The difference between classical and quantum energy
diffusion has been discussed by investigating these models.
In the quantum kicked rotator model, starting initially from
the ground state, the system evolves diffusively only for a
finite time. After then the diffusive time-evolution ceases
and the average energy is saturated to a finite value. That is,
the system cannot absorb energy after that time. This is a
remarkable difference from the classical diffusion, where the
energy increases unlimitedly. The mechanism of this
quantum localization in the model was discussed in the
context of the Anderson localization.3,4) Recently the kicked
rotator model is experimentally realized using Hydrogen and
Sodium atoms, and the quantum localization is observed.5–9)

It is known that random matrices well describe character-
istics of the level statistics of the systems which show
chaotic nature in the corresponding classical models.10,11)

Therefore we study the quantum localization process of
random matrices to extract universal features. In this paper,
we investigate the time evolution of a system whose
Hamiltonian is taken from the Gaussian orthogonal en-
semble (GOE) with a periodic perturbation, and try to
capture the universal features on the relation between the
saturated energy and the frequency of the perturbation. So
far, several types of time-dependent random matrices are
adopted to study the quantum diffusion process.12–15)

Wilkinson calculated the energy diffusion constant using
the Landau–Zener transition formula16–18) when the pertur-
bation acts on the system linearly in time.13) He clarified the
difference of diffusion constants between GOE and the
Gaussian unitary ensemble (GUE). Wilkinson neglected the
effect of interference of quantum phase, which plays a
crucial role in the quantum localization in the presence of
periodic perturbation.14) Cohen and Kottos considered the
energy diffusion before the saturation in the Wigner’s
banded random matrix (WBRM) model with an oscillating
perturbation, and calculated the diffusion coefficient as a
function of the amplitude and frequency of the perturba-
tion.12) Taking these previous studies into account, we study
how the Landau–Zener picture is related to the quantum
localization by investigating the dependence of the saturated
energy on the frequency of the perturbation.

We first numerically demonstrate that the quantum
localization occurs in the system, which cannot be explained
by a naive application of an independent Landau–Zener
picture to the system. In order to understand the quantum
localization intuitively, we consider the overlap between
Floquet eigenstates and the initial ground state, and find that
the overlap exponentially decays in the Hilbert space
spanned by Flouqet eigenstates, which directly means that
the ground state is localized in this representation. We define
the relevant number of Floquet eigenstates which has a large
overlap with the initial ground state. This number was
originally introduced as a quantity which corresponds to the
Lyapunov exponent in the quantum kicked top model by
Haake et al.2) The dependence of the relevant number on the
frequency is numerically investigated. We numerically find
that this number linearly depends on the frequency of the
perturbation in small frequency regime. Employing a
plausible proportional relation between the localization
length in the energy space and that in the Floquet space,
which is also adopted in the case of the kicked rotator model,
and taking account of this linear dependence, we find the
Landau–Zener mechanism works in the view of the
Anderson localization.!E-mail: machida@spin.t.u-tokyo.ac.jp
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This paper is organized in the following way. In §2, we
explain the random matrix model and the numerical method
of time evolution. In §3, we study the frequency dependence
of the saturated average energy. In §4, we discuss the
quantum localization by introducing the number of relevant
Floquet states. Finally in §5, we give summary and
discussion.

2. Model and Method

We consider time-reversal invariant systems in an
oscillating external field. The random matrix ensemble
appropriate for describing the spectral statistics of these
systems is the Gaussian orthogonal ensemble (GOE).
Random matrices well describe characteristics of energy
spectra of complex quantum systems which have no
conserved quantities.

We shall consider the total Hamiltonian given by

HðtÞ ¼ H0 þ !ðtÞV ; ð1Þ

where H0 denotes the non-perturbed part of the Hamiltonian,
and !ðtÞV is the perturbation part with a time-dependent
parameter !ðtÞ. We take H0 and V from the ensemble of the
GOE random matrices with the dimension N. This model
corresponds to the realistic systems such as billiard systems
with a time-dependent boundary, or complex spin systems
with a time-dependent external field. Matrix elements H0ij

and Vij are taken from independent Gaussian random
variables with mean zero and with the variance: varðH0ijÞ ¼
1þ "ij and varðVijÞ ¼ 1þ "ij. Note that both of the non-
perturbed and perturbed terms have the same statistical
properties. The density of states #ðEÞ at the energy E is given
by Wigner’s semicircle law for large N,19)

#ðEÞ ¼
1

2$N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N & E2
p

: ð2Þ

In this paper, we confine !ðtÞ to the sinusoidal form,
!ðtÞ ¼ A sinð!tÞ with A ¼ 0:5. Eigenvalues of a GOE
random matrix show a structure with level repulsion as a
function of !. Energy spectrum of a system of N ¼ 500
around the ground state, and around the center (E ¼ 0) are
depicted in Figs. 1(a) and 1(b), respectively. Many avoided

crossings are seen in Fig. 1. There are no degeneracies of
levels although some energy levels are seen to be crossing
due to the line width.

Now we consider the time evolution of a state j i of the
system;

i
@

@t
j i ¼ HðtÞj i: ð3Þ

Here we take h! ¼ 1 and the initial state j 0i is taken to be
the ground state. The state j 1i after a period T ¼ 2$=!
from t ¼ 0 is expressed using the Floquet operator20) F;

j 1i ¼ Fj 0i; F ' T exp &i

Z 2$=!

0

HðtÞdt
" #

; ð4Þ

where T means the time ordered product. Therefore the state
after the nth period j ni is written as

j ni ¼ Fnj 0i: ð5Þ

Floquet eigenvectors fj%ig form a complete set in the Hilbert
space, and Floquet eigenvalues are aligned on a unit circle of
the complex plane;

Fj%i ¼ ei&% j%i: ð6Þ

We calculate F numerically by integrating the Schrödinger
equation (3) for a period using the fourth order decomposi-
tion of time-evolution operator.21) The time evolution of
energy is expressed in terms of Floquet eigenvalues and
eigenstates. The energy after the nth period is expressed
using the Floquet operator;

h njHj ni ¼ h 0jðFyÞnHFnj 0i

¼
X

%0;%

einð&%&&%0 Þh 0j%0ih%j 0ih%0jHj%i: ð7Þ

3. Esat as a Function of !

3.1 Numerical results
We define gð%; %0Þ and Esat as,

gð%; %0Þ ' h 0j%ih%jH0j%0ih%0j 0i;

Fig. 1. Energy spectrum of H for N ¼ 500 as a function of ! around (a) the ground state and (b) the center.
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Esat '
X

%

gð%; %Þ; ð8Þ

and rewrite eq. (7) as,

h njH0j ni ¼
X

%0 ;%

ei nð&%0&&%Þgð%; %0Þ

¼ Esat þ
X

%<%0
ei nð&%0&&%Þgð%; %0Þ þ c.c.
$ %

:
ð9Þ

In the second term of the right-hand side of eq. (9), the
expectation values of terms for f% 6¼ %0g oscillates with the
period 2$=ð&%0 & &%Þ. Thus, we see h njH0j ni fluctuates
around Esat. Therefore, Esat is regarded as the saturated value
of the energy.

Figure 2 shows the time evolution of h njH0j ni (zigzag
curve), and the corresponding Esat (horizontal line) with
respect to !=$ ¼ 0:02, 0.1, 0.2, 0.4, and 1.0 for N ¼ 500.
Figure 3 shows Esat as a function of ! obtained from five
samples for N ¼ 256, 500, and 700. We should note that the
maximal saturated energy is zero because the energy
spectrum is symmetric about zero energy (E ¼ 0), and this
maximal energy corresponds to the high temperature limit.
Here we normalize Esat such that the distance between E ¼ 0
and the ground state is 1. Indeed in classical systems, the
energy diffusion continues forever, which means that Esat

converges to 0.
On the other hand, when ! is very small (! ¼ 0:02$), the

time evolution of the system is almost adiabatic, and the
average energy changes little.22) When ! becomes slightly
larger (! ¼ 0:1$ and 0.2$), transitions between levels begin
to occur at avoided crossings (that is, nonadiabatic
transitions). Thus the system absorbs energy and EðtÞ
increases. However EðtÞ saturates before it reaches to 0.
The value of Esat gradually approaches to the center of the
energy spectrum (Esat ¼ 0) as ! grows larger (! ¼ 0:4$ and
1.0$). These finite saturations of Esat are caused by the

Fig. 2. Zigzag curves represent the time evolution of the average energy
EðtÞ. Horizontal lines represent Esat. A pair of EðtÞ and Esat denotes, from
the bottom, data for ! ¼ 0:02$, 0:1$, 0:2$, 0:4$, and 1:0$.

Fig. 3. Esat as a function of ! for (a) N ¼ 256, (b) N ¼ 500, and (c) N ¼ 700. Errorbars show the variance among the data obtained
from five samples.
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quantum effects, and this feature is called the quantum
localization.1,10) The quantum localization was first dis-
covered in the kicked rotator model, which shows chaotic
motion in the classical limit.1)

3.2 Failure of a picture of independent Landau–Zener
transitions

As shown in the previous section, the energy is saturated
to a finite value. We here show that this saturation cannot be
realized without considering the quantum interference effect.
Let us consider the small frequency regime where transitions
between energy levels take place only between the two
levels at an avoided level crossing point. In such a region,
we can introduce the well-known Landau–Zener picture for
each transition. Wilkinson proposed a theory of the
evolution of the energy in a random matrix model with a
time-dependent perturbation.13) His theory assumes that
transitions take place only at avoided crossings and the
transition probability is determined by the Landau–Zener
formula.17) This implies that the sweeping speed of the
parameter is sufficiently slow, and that multiple level
scatterings are not relevant. In the case that the field
increases linearly in time, he found that this approximation
of independent Landau–Zener scattering gives a good
result.14)

If we apply a simple independent Landau–Zener picture to
our case, we will find,

Esat ¼ 0: ð10Þ

In what follows, we derive eq. (10). We assume that each
transition occurs at an avoided level crossing point and the
probability is given by the Landau–Zener formula. Let us
consider the transition rate R which is the probability per
unit time that the system makes a transition to one of the two
neighboring states. This quantity R was already given for the
case where the external field increases linearly in time.13)

We apply the known expression to the present oscillating
case. The transition rate R is determined by statistical
distributions of the energy gaps and the asymptotic slopes at
avoided crossing points. The average speed of the parameter
!ðtÞ is denoted by j !_!!_!!j. For the present oscillating field, j !_!!_!!j is
roughly estimated as j !_!!_!!j ’ A!. In addition, let # denote the
density of states and !'' denote the typical difference between
the asymptotic slopes of an avoided crossing. Under the
conditions of slow speed, h! !''j !_!!_!!j#2 ( 1, which corresponds
to the situation that transitions of states only occur at
avoided crossings to the adjacent levels, R is expressed as,

R / h!
1=2 !''1=2j !_!!_!!j3=2#2 / h!

1=2j !_!!_!!j3=2#3=2: ð11Þ

We consider the time evolution of the occupation probability
for the eigenstate with energy E at time t, f ðE; tÞ. We can
derive the diffusion equation for the occupation probability
f ðE; tÞ of the state by extending Wilkinson’s theory to the
case that #ðEÞ is not constant;

@#f

@t
þ j !_!!_!!j

@

@E

dE

d!
#f

& '

¼
@

@E
D#

@f

@E

" #

; ð12Þ

where D ¼ R=#2. Using the equation of continuity:

@#

@t
þ j !_!!_!!j

@

@E

dE

d!
#

& '

¼ 0; ð13Þ

eq. (12) is rewritten as,

#
@f

@t
¼ &j !_!!_!!j

dE

d!
#
@f

@E
þ
@

@E
D#

@f

@E

" #

: ð14Þ

Let us consider the steady state f ðEÞ ¼ f ðE;1Þ. Then the
left-hand side of eq. (14) gives zero. Note that # is given by
the semicircle law (2), #ðEÞ ¼ 1

2$N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 & E2
p

ðL ¼ 2
ffiffiffiffi

N
p

Þ
when N is very large. Therefore, f ðEÞ is solved as

f ðEÞ ¼
Z E

&L

c1 exp

Z E0

&L

kð(Þd(
" #

dE0 þ c0; ð15Þ

where c0 and c1 are constants of integration, and

kðEÞ '
1

D
j !_!!_!!j

dE

d!
& #&1 @ðD#Þ

@E

& '

: ð16Þ

When we integrate eq. (15), the second term of kð(Þ
diverges, because

Z E0

&L

&
1

D#

@D#

@(
d( / &

Z E0

&L

d ln #

d(
d( ! &1; ð17Þ

where we used D ¼ R=#2 and eq. (11). Therefore,

f ðEÞ ¼ c0: ð18Þ

As a result, the average energy always becomes 0 (the center
of the energy spectrum);

Esat ¼
Z

E#f ðEÞdE ¼ 0: ð19Þ

Thus we find that the idea of independent Landau–Zener
scattering is not applicable at least to a periodic system.14,23)

We cannot ignore the quantum mechanical interference
effect on the quantum localization.

3.3 Phenomenological interpretation of the quantum
localization in analogy to the Anderson localization

We here phenomenologically interpret the quantum
localization. The quantum localization in the present system
reminds us the Anderson localization where a particle in the
presence of a random potential is spatially localized.24) The
system for the Anderson localization is described by the
Hamiltonian:

HA ¼
X

i

vijiihijþ t
X

hi;i0i

jiihi0j: ð20Þ

Here, jii means the state of the particle at the ith site, vi is the
value of a random potential at the site i which is uniformly
distributed with a width W , and t represents hopping to one
of the nearest neighbor sites. In this particle system, the
average hopping probability pA is expressed as pA ) jtj=W .
The probability pAðmÞ that the particle exists on the mth site
from the initial (0th) site is estimated as pAðmÞ )
pmA ) expð&m logðW=jtjÞÞ.25) That is, the particle is localized
in the space exponentially. This localization is caused by the
quantum interference effects.

Let us consider the analogy to the Anderson localization
in the quantum localization of the present model. We
associate the state jii in eq. (20) with the ith adiabatic state
of H0. Furthermore we focus on the frequency regime where
transitions between levels take place only at avoided
crossings. We numerically confirmed that this situation is
actually realized for small !. In this case, we define a
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transition probability pQ between adjacent levels, which
corresponds to pA in the Anderson localization, and we find
the common characteristics between the present situation in
the random matrices and the Anderson localization. That is,
the localization occurs due to the quantum inference effect
among many transitions between states. We may write the
occupation probability pQðmÞ that a state is on the mth level
as pQðmÞ ) pmQ, where pQ is a transition probability between
the states. Actually fast relaxation is observed numerically in
pQðmÞ of a typical example, which is depicted in Fig. 4.

If we assume an exponential form in the analogy to the
Anderson localization, the saturation energy Esat is written
as,

Esat ¼
X

N

m¼1

pðm&1Þ
Q Em=Z; ð21Þ

where Em is the mth eigenvalue of H0 and Z is the
normalization factor, Z ¼

PN
m¼1 p

m&1
Q . Equation (21) gives a

finite saturation value of Esat.

4. The Relevant Number of Floquet Eigenstates

In previous sections, we showed the quantum localization
in the random matrix model and considered an intuitive
interpretation. In this section, we consider the quantum
localization from the viewpoint of the Floquet theory. As
seen in eq. (8), the quantum dynamics is determined by the
overlaps between the initial state and Floquet eigenstates,
i.e., jh%j 0ij2, and Esat is obtained by Floquet eigenstates.
Thus we here discuss this overlap.

We found numerically that the distribution of jh%j 0ij2

decays approximately following an exponential function
when we arrange the states in order of the magnitude of the
overlap as is shown in Fig. 5. This property is one of the
characteristics of the quantum localization. We study how
many Floquet states are involved in the ground state, and
define the minimal number Nmin of the Floquet states by
which the initial state j 0i is covered within a ratio r:

Nmin ¼
1

N
min

(

Nmin :
X

Nmin

%¼1

jh 0j%ij2 > r; jh 0j%ij2

* jh 0j%þ 1ij2
)

:

ð22Þ

This quantity is the same as the quantity used in the different
context by Haake, Kus, and Scharf.2) Here, we take
r ¼ 0:99. Figure 6 shows Nmin as a function of !=$ obtained
from five samples for N ¼ 256, 500, and 700.

We introduce the fitting function for Nminð!Þ in the form:

Nminð!Þ ¼ N!
min 1&

1

ð!=!!Þa þ 1
( )b

( )

: ð23Þ

This function fits the data quite well. In eq. (23), N!
min, a, b,

and !! are determined from the least-squares method. The
results are shown in Table I. From eq. (23), Nminð!Þ is
extremely small when !( !!. This is partially because the
energy gaps in lower energy region are so large comparing
with ! that transition to higher levels from the ground state
seldom occurs [see Fig. 1(a)], and therefore the system
behaves almost adiabatically.22) On the other hand, Nminð!Þ
is well fitted by a linear function (dashed line) for the region
of ! ) !!.

So far, we observed localization in the energy space and
also in the space of Floquet states. Now we discuss on
localization length of the two localizations. In particular, we
focus on the linear dependence of Nminð!Þ on ! in the small
! region. We employ a phenomenological argument using
the analogy to the Anderson localization as explained in
§3.3. Let us express the transition probability pQ using some
function "ð!Þ in the form:

pQ ) exp½&"&1ð!Þ,: ð24Þ

The occupation probability pQðmÞ that a stationary state is on
the mth level is expressed as pQðmÞ ) pmQ )
exp½&"&1ð!Þm,. Thus we can regard "ð!Þ as the localiza-
tion length in the energy space. Now let l denote the

Fig. 4. The probability PQðmÞ that the state is on the mth level of the
system (1) for N ¼ 500 and ! ¼ 0:1$. It is obtained after 600 periods. Fig. 5. The dependence of the overlap jh%j 0ij2 on the number %.

jh%j 0ij2 is arranged in order of the magnitude. The overlap decays
exponentially. Here ! ¼ 0:1$ and N ¼ 500.

Table I. Values of the parameters in eq. (23) obtained by the least-squares
method.

Variables Dim (256) Dim (500) Dim (700)

N!
min 0.79 0.80 0.80

a 2.3 2.6 3.0

b 0.67 0.47 0.54

!!=$ 0.15 0.10 0.11
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localization length in the Floquet space, i.e.,
jh%j 0ij2 ’ ce&%=l, where c is the normalization constant.
From the definition (22), Nmin is expressed using the length l
as

Nmin ’ &
l

N
lnð1& rÞ / l: ð25Þ

Since we now focus on the linear dependence of Nmin on !,
we write,

Nmin ¼ )!þ *; ð26Þ

where ) and * are constants. We note that * is negligibly
small. Then we have

l / !: ð27Þ

As has been assumed in the the kicked rotator model to
discuss the diffusion constant,26) we assume the proportion-
ality between l and "ð!Þ,

l / "ð!Þ: ð28Þ

Then, we obtain from eqs. (27) and (28),

"ð!Þ ¼ !=h: ð29Þ

Here h is an unknown amplitude which may depend on N, A,
the typical size !(( of gaps at avoided crossings, and the
difference !'' of the two asymptotic slopes at an avoided
crossing. This ! dependence is consistent with that of the

Landau–Zener formula, because eqs. (24) and (29) give

pQ ) exp &
h

!

" #

: ð30Þ

Actually, we numerically confirmed that transitions between
levels take place only at avoided crossings in the region
where Nmin linearly depends on !. Thus we suppose that the
amplitude of local transition probability is originated in the
Landau–Zener transition, although the phase interference
has an important effect on the global phenomena.

5. Summary and Discussion

We have studied numerically the time evolution of the
average energy of the GOE random matrix model under a
perturbation of a sinusoidal function of time. In §3, we
showed that the quantum localization occurs in this model.
We have also studied the frequency dependence of the
saturated energy Esat, and we showed that we can not rely on
the picture of independent occurrence of Landau–Zener
transitions in the present case because the suppression of the
quantum diffusion is essentially due to the phase interference
effect of quantum mechanics. We discuss this quantum
localization in analogy to the Anderson localization. In §4,
we introduced the relevant number of Floquet states Nmin,
and proposed a form of Nmin as a function of !. Nmin is
almost zero when ! is nearly zero, and it saturates when ! is
sufficiently large. In the intermediate region, Nmin grows

Fig. 6. Nmin as a function of !=$ for (a) N ¼ 256, (b) N ¼ 500, and (c) N ¼ 700. Errorbars show the variance among the data obtained
from five samples. The fitted line and also linear fitting in the intermediate region are shown in each graph.
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linearly as ! increases. This linear dependence of Nmin on !
implies that the localization length l in the Floquet
eigenstates also depends linearly on ! [eq. (25)]. On
condition that " / l, the localization length " of the
eigenstates of the Hamiltonian is also proportional to !.
This dependence of " on ! implies the Landau–Zener
mechanism governs the local transitions.
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