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1. Introduction

The radiative transport equation or the linear Boltzmann equation is used, for
example, to describe light transport in random media or neutron transport in reactors.
The equation can be solved with separation of variables§ if its coefficients are constant.
For simplicity let us consider light transport in an infinite medium. Moreover in this
note we assume planar symmetry, i.e., the specific intensity u(x, µ) depends on x ∈ R

and µ ∈ [−1, 1], where µ = cos θ with θ the polar angle in three dimensions. Assuming
isotropic scattering, the radiative transport equation is given by

µ
∂u

∂x
(x, µ) + u(x, µ) =

̟

2

∫ 1

−1

u(x, µ′) dµ′ + S(x, µ), (1)

where S(x, µ) is the source term. The parameter ̟ ∈ (0, 1), which is the ratio between
the scattering coefficient and the total attenuation, is called the albedo for single
scattering. The solution u to (1) is obtained as a linear combination of eigenmodes
or separated solutions. This u is the specific intensity of light at position x ∈ R and
direction θ ∈ [0, π]. The method of solving (1) with separation of variables is called
Case’s method‖. As we will see, the eigenmodes are singular and given by generalized
functions.

2. Eigenvalues and Singular Eigenfunctions

Separated solutions are solutions of the homogeneous radiative transport equation,

µ
∂u

∂x
(x, µ) + u(x, µ) =

̟

2

∫ 1

−1

u(x, µ′) dµ′. (2)

To find solutions to (2), we assume u of the form

uν(x, µ) = φν(µ)e
−x/ν , (3)

‡ This note was written for a 1.5-hour lecture in Math 651 (Waves and Imaging in Random Media)
at University of Michigan.
§ “Separation of variables is of very limited utility but when it works it is very informative.” Jeffrey
Rauch (Partial Differential Equations, Springer-Verlag, p. 211)
‖ Kenneth Myron Case was a professor of physics at the University of Michigan between 1951 and
1969. In 1960, he published the paper “Elementary Solutions of the Transport Equation and Their
Applications” (Ann. Phys. 9 (1960) 1–23). In 1967, he wrote the textbook “Linear Transport Theory”
with Paul F. Zweifel and explained his method, which is now called Case’s method. Sometimes the
word Caseology is used. The method is explained also in the book “Transport Theory” by Duderstadt
and William R. Martin.

Case was born on September 23, 1923 in New York, NY and passed away on February 1, 2006. He
received his Ph. D. in physics at Harvard University in 1948 under the supervision of J. S. Schwinger
(Nobel Prize in physics in 1965 with R. Feynman and S. Tomonaga). After spending some time at
Institute for Advanced Study, UC Berkeley, and University of Rochester, he arrived at Ann Arbor
as a young assistant professor. Then he became a professor of physics. He left the town in 1969 and
became a professor of physics at Rockefeller University.
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where ν is a separation constant. We call uν eigenmodes. We normalize φν as
∫ 1

−1

φν(µ
′) dµ′ = 1. (4)

By substituting uν in (3) for u in (2), we obtain

(ν − µ)φν(µ) =
̟ν

2
. (5)

By carefully looking at (5), we find φν as

φν(µ) =
̟ν

2
P

1

ν − µ
+ λ(ν)δ(ν − µ), (6)

where

λ(ν) = 1−
̟ν

2
P

∫ 1

−1

1

ν − µ
dµ.

Here P denotes the Cauchy principal value and δ(·) is the Dirac delta function. These
φν are called Case’s singular eigenfunctions (Note that they are actually generalized
functions). We have

λ(ν) = 1−̟ν tanh−1 ν.

2.1. Discrete Eigenvalues

For ν /∈ [−1, 1], we have

φν(µ) =
̟ν

2

1

ν − µ
.

In this case, ν is obtained as a solution to

Λ(ν) = 0. (7)

Here Λ(z) is defined for z ∈ C as

Λ(z) = 1−
cz

2

∫ 1

−1

1

z − µ
dµ.

We calculate Λ(z) as

Λ(z) = 1−
̟z

2
ln

[

1 + 1/z

1− 1/z

]

= 1−̟z tanh−1 1

z
.

The function Λ(z) has two roots ±ν0. In biological tissue, ̟ is close to 1. In such a
case, we have

̟

3ν20
= 1−̟

[

1 +
1

5ν40
+

1

7ν60
+ · · ·

]

.

Therefore ν0 ≃ 1/
√

3(1−̟) (0 < 1 − ̟ ≪ 1). These ±ν0 are called discrete
eigenvalues.
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2.2. Continuous Spectrum

Any ν on (−1, 1) labels φν in (6). Using the residue theorem, for ν ∈ (−1, 1) we have

Λ±(ν) = lim
ǫ→0+

Λ(ν ± iǫ) = λ(ν)±
iπ̟ν

2
. (8)

Hence we have

Λ+(ν)− Λ−(ν) = iπ̟ν, (9)

λ(ν) =
1

2

[

Λ+(ν) + Λ−(ν)
]

. (10)

3. Orthogonality and Normalization

Theorem 3.1. (Orthogonality). The functions φν(µ) are orthogonal to each other.
∫ 1

−1

µφν(µ)φν′(µ) dµ = 0, ν 6= ν′, (11)

where ν, ν′ are discrete eigenvalues or in the continuous spectrum.

Proof. We multiply (5) by φν′(µ).
(

1−
µ

ν

)

φν(µ)φν′(µ) =
̟

2
φν′(µ).

Similarly we write (5) with ν′ and multiply it by φν(µ).
(

1−
µ

ν′

)

φν′(µ)φν(µ) =
̟

2
φν(µ).

By subtraction we have
( µ

ν′
−
µ

ν

)

φν(µ)φν′(µ) =
̟

2
[φν′(µ)− φν(µ)] .

By integrating over µ and using (4), we find
(

1

ν′
−

1

ν

)
∫ 1

−1

µφν(µ)φν′(µ) dµ = 0.

This proves the orthogonality theorem.

Theorem 3.2. (Normalization). The functions φν(µ) are orthogonal to each other.
∫ 1

−1

µφν(µ)φν′(µ) dµ = N (ν)δνν′ , (12)

where ν, ν′ are discrete eigenvalues or in the continuous spectrum, and δνν′ is the
Kronecker delta. If both ν, ν′ are in the continuous spectrum, δνν′ is read as the Dirac
delta δ(ν − ν′). Here

N (ν) =

{

±N0 ν = ±ν0,

N(ν) ν ∈ (−1, 1),

where

N0 =
̟ν20
2

dΛ(z)

dz

∣

∣

∣

∣

∣

z=ν0

=
̟ν30
2

(

̟

ν20 − 1
−

1

ν20

)

,

and

N(ν) = νΛ+(ν)Λ−(ν) = ν

[

(̟πν

2

)2

+
(

1−̟ν tanh−1 ν
)2
]

.
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Proof. Since we have (11), we will focus on two cases: ν, ν′ /∈ [−1, 1] and ν, ν′ ∈
(−1, 1). Consider

∫ 1

−1

µ

z − µ
dµ =

∫ 1

−1

µ− z

z − µ
dµ+

∫ 1

−1

z

z − µ
dµ =

2

̟
(1−̟)−

2

̟
Λ(z).

Let us define

J(z, z′) =

∫ 1

−1

1

z − µ

1

z′ − µ
µdµ.

We have

J(z, z′) =
1

z − z′

∫ 1

−1

(

1

z′ − µ
−

1

z − µ

)

µdµ =

(

2

̟

)

Λ(z)− Λ(z′)

z − z′
.

We set z = ±ν0 and let z′ → ±ν0. We obtain
∫ 1

−1

µφ20±(µ) dµ =
(̟ν0

2

)2

J(±ν0,±ν0) = ±
̟ν20
2

dΛ(z)

dz

∣

∣

∣

∣

∣

z=ν0

= ∓
̟2ν20
2

d

dz
z tanh−1 1

z

∣

∣

∣

∣

∣

z=ν0

= ±
̟2ν20
2

(

ν0
ν20 − 1

−
1

̟ν0

)

= ±N0,

where we used Λ(ν0) = 0 ⇔ tanh−1(1/ν0) = 1/̟ν0.
Next we suppose ν, ν′ ∈ (−1, 1) and ν 6= ν′. We have

∫ 1

−1

µφν(µ)φν′(µ) dµ =
(̟

2

)2

νν′
∫ 1

−1

P

ν − µ

P

ν′ − µ
µdµ

+
̟ν

2
λ(ν′)

∫ 1

−1

P

ν − µ
δ(ν′ − µ)µdµ

+
̟ν′

2
λ(ν)

∫ 1

−1

δ(ν − µ)
P

ν′ − µ
µdµ

+ λ(ν)λ(ν′)

∫ 1

−1

δ(ν − µ)δ(ν′ − µ)µdµ. (13)

We use the Poincaré-Bertrand formula¶ (Appendix C),

P

ν − µ

P

ν′ − µ
=

1

ν − ν′

(

P

ν′ − µ
−

P

ν − µ

)

+ π2δ(ν − µ)δ(ν′ − µ).(14)

The first term of the right-hand side of (13) is obtained as

First term =
(̟

2

)2

νν′

[

1

ν − ν′

(

P

∫ 1

−1

µ

ν′ − µ
dµ− P

∫ 1

−1

µ

ν − µ
dµ

)

+ π2

∫ 1

−1

δ(ν − µ)δ(ν′ − µ)µdµ

]

=
(̟

2

)2

νν′
[

1

ν − ν′
2

̟

(

λ(ν)− λ(ν′)
)

+ π2νδ(ν − ν′)

]

=
̟νν′

2

λ(ν)− λ(ν′)

ν − ν′
+
(̟π

2

)2

ν3δ(ν − ν′).

¶ See for example “Singular Integral Equations” by Muskhelishvili.
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The second and third terms of the right-hand side of (13) are calculated as
(̟νν′/2)λ(ν′)/(ν − ν′) and (̟νν′/2)λ(ν)/(ν′ − ν), respectively. By taking the limit
ν′ → ν, we obtain

∫ 1

−1

µφν(µ)φν′(µ) dµ =

[

(̟πν

2

)2

+ λ(ν)2
]

νδ(ν − ν′)

= νΛ+(ν)Λ−(ν)δ(ν − ν′)

= N(ν)δ(ν − ν′),

where we used (8).

4. The Green’s Function in the Free Space

Let us consider the Green’s function G(x, µ;x0, µ0) (x, x0 ∈ (−∞,∞) and µ, µ0 ∈
[−1, 1]) which obeys

µ
∂

∂x
G(x, µ;x0, µ0)+G(x, µ;x0, µ0) =

̟

2

∫ 1

−1

G(x, µ′;x0, µ0) dµ
′+

1

2π
δ(x−x0)δ(µ−µ0),(15)

with

lim
|x|→∞

G(x, µ;x0, µ0) = 0. (16)

Equation (15) can be rewritten as

µ
∂

∂x
G(x, µ;x0, µ0) +G(x, µ;x0, µ0) =

̟

2

∫ 1

−1

G(x, µ′;x0, µ0) dµ
′,

with the jump condition

G(x0 + 0, µ;x0, µ0)−G(x0 − 0, µ;x0, µ0) =
1

2πµ
δ(µ− µ0). (17)

Since singular eigenfunctions φν(µ) form a complete set (Appendix D), we can
expand G(x, µ;x0, µ0) using φν(µ). To satisfy (16) we look for a solution of the form

G(x, µ;x0, µ0) =



















a0+u0+(x, µ) +

∫ 1

0

A(ν)uν(x, µ) dν, x > x0,

−a0−u0−(x, µ)−

∫ 0

−1

A(ν)uν(x, µ) dν, x < x0,

where a0± and A(ν) will be determined from (17). As x→ x0,

G(x0 + 0, µ;x0, µ0) = a0+φ0+(µ)e
−x0/ν0 +

∫ 1

0

A(ν)φν(µ)e
−x0/ν dν, x > x0,

G(x0 − 0, µ;x0, µ0) = −a0−φ0−(µ)e
−x0/ν0 −

∫ 0

−1

A(ν)φν(µ)e
−x0/ν dν, x < x0.

Thus the jump condition reads

1

2πµ
δ(µ−µ0) = a0+φ0+(µ)e

−x0/ν0 +a0−φ0−(µ)e
−x0/ν0 +

∫ 1

−1

A(ν)φν(µ)e
−x0/ν dν.(18)

By multiplying (18) by µφν(µ) and integrating over µ, we obtain

a0± =
±1

2πN0
φ0±(µ0)e

x0/ν0 ,

A(ν) =
1

2πN(ν)
φν(µ0)e

x0/ν0 .
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The Green’s function is obtained as

G(x, µ;x0, µ0) =
1

2π

[

1

N0
φ0±(µ0)φ0±(µ)e

−|x−x0|/ν0

+

∫ 1

0

1

N(ν)
φ±ν(µ)φ±ν(µ0)e

−|x−x0|/ν dν

]

.

5. Diffusion Limit

Let us consider the specific intensity (angular flux) u for an isotropic source at the
origin δ(x)/2π. If x≫ 1 (diffusion limit), we have

u(x, µ) =

∫ 1

−1

G(x, µ; 0, µ0) dµ0 ≃
φ0(µ)

2πN0
e−x/ν0 .

The density U(x) and current J(x) are defined as

U(x) = 2π

∫ 1

−1

u(x, µ) dµ, J(x) = 2π

∫ 1

−1

µu(x, µ) dµ.

When we observe a point x which is far away from the source, they are calculated as

U(x) ≃
1

N0
e−x/ν0 ≡ Ud(x),

J(x) ≃
1

N0
e−x/ν0

∫ 1

−1

µφ0(µ) dµ =
(1−̟)ν0

N0
e−x/ν0 ≡ Jd(x).

Note that (ν0 − µ)φ0(µ) = ̟ν0/2 implies
∫ 1

−1
µφ0(µ) dµ = (1 − ̟)ν0. Therefore we

obtain

Jd(x) = −D
dUd(x)

dx
, D = (1−̟)ν20 .

This is Fick’s law of diffusion.

Appendix A. The Hölder Condition

Let f(µ) be a function on an arc L. The function f(µ) is said to satisfy a Hölder
condition on L if for any two points µ, µ′ of L

|f(µ)− f(µ′)| ≤ C|µ− µ′|θ,

where C > 0 and θ ∈ (0, 1] are constants.

Appendix B. Plemelj’s Formulae

Let L be a smooth line or contour. Let f(ν) satisfy the Hölder condition on L. Suppose
µ does not coincide with those end points at which f(µ) 6= 0. Consider

Φ(z) =
1

2πi

∫

L

f(ν)

ν − z
dν.

Let Φ±(µ) = Φ(µ ± 0) be the limiting values of Φ(z) from the left and from
the right of L, respectively. If µ coincides with an end, where f(µ) = 0, then
Φ+(µ) = Φ−(µ) = Φ(µ). We obtain Plemelj’s formulae

Φ±(µ) = ±
1

2
f(µ) +

1

2πi
P

∫

L

f(ν)

ν − µ
dν, (B.1)
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or

Φ+(µ)− Φ−(µ) = f(µ), (B.2)

Φ+(µ) + Φ−(µ) =
1

iπ
P

∫

L

f(ν)

ν − µ
dν. (B.3)

The proof is done with the residue theorem. We can formally express Plemelj’s
formulae as

1

ν − µ± i0
=

P

ν − µ
∓ iπδ(ν − µ). (B.4)

Appendix C. Poincaré-Bertrand Formula

Let L be a smooth arc or contour. Let f(ν, ν′) be a function of ν, ν′ on this line L,
satisfy the Hölder condition with respect to ν and ν′. We suppose µ is a fixed point on
L not coinciding with one of its ends. We will show the Poincaré-Bertrand formula,

P

∫

L

1

ν − µ

(

P

∫

L

f(ν, ν′)

ν′ − ν
dν′
)

dν = −π2f(µ, µ)

+ P

∫

L

(

P

∫

L

f(ν, ν′)

(ν − µ)(ν′ − ν)
dν

)

dν′. (C.1)

Equation (C.1) implies (14).
To prove (C.1), let us introduce

Φ(z) =

∫

L

1

ν − z

(

P

∫

L

f(ν, ν′)

ν′ − ν
dν′
)

dν,

Ψ(z) =

∫

L

(

P

∫

L

f(ν, ν′)

(ν − z)(ν′ − ν)
dν

)

dν′,

where z /∈ L. Since z is not on L, we can change the order of integrals, and we have

Φ(z) = Ψ(z). (C.2)

To consider (C.2), for the moment we assume that L is the segment [0, ℓ] on the real
axis. Then 0 ≤ ν ≤ ℓ and 0 ≤ ν′ ≤ ℓ cover the square region Q = [0, ℓ] × [0, ℓ]. We
consider the strip q whose area is calculated as

∫ ℓ

0

(

∫ min(ν+ε,ℓ)

max(ν−ε,0)

dν′

)

dν =

∫ ℓ

0

(

∫ min(ν′+ε,ℓ)

max(ν′−ε,0)

dν

)

dν′ = 2εℓ− ε2.

We can express Φ(z) and Ψ(z) as

Φ(z) = I0 + I1, Ψ(z) = I0 + I2,

where

I0 =

∫

Q−q

f(ν, ν′)

(ν − z)(ν′ − ν)
dνdν′,

I1 =

∫ ℓ

0

1

ν − z

(

∫ min(ν+ε,ℓ)

max(ν−ε,0)

f(ν, ν′)

ν′ − ν
dν′

)

dν,

I2 =

∫ ℓ

0

(

∫ min(ν′+ε,ℓ)

max(ν′−ε,0)

f(ν, ν′)

(ν − z)(ν′ − ν)
dν

)

dν′.
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By noticing, for example,
∫ min(ν+ε,ℓ)

max(ν−ε,0)

f(ν, ν′)

ν′ − ν
dν′ =

∫ min(ν+ε,ℓ)

max(ν−ε,0)

f(ν, ν′)− f(ν, ν)

ν′ − ν
dν′

+ f(ν, ν)

∫ min(ν+ε,ℓ)

max(ν−ε,0)

1

ν′ − ν
dν′,

we see that I1 → 0 and I2 → 0 as ε → 0. This discussion can be readily generalized
to an arbitrary smooth line L. Thus we have (C.2).

By virtue of the Plemelj formula (B.3), we have

Φ+(µ) + Φ−(µ) = 2 P

∫

L

1

ν − µ

(

P

∫

L

f(ν, ν′)

ν′ − ν
dν′
)

dν. (C.3)

Furthermore we write Ψ(z) as

Ψ(z) =

∫

L

ψ(ν′, z)

ν′ − z
dν′,

where

ψ(ν′, z) =

∫

L

(

1

ν − z
−

1

ν − ν′

)

f(ν, ν′) dν.

Define ψ±(ν′, µ) = ψ(ν′, µ± 0). By Plemelj’s formulae (B.2) and (B.3), we obtain

ψ+(ν′, µ)− ψ−(ν′, µ) = 2πif(µ, ν′),

ψ+(ν′, µ) + ψ−(ν′, µ) = 2 P

∫

L

(

1

ν − µ
−

1

ν − ν′

)

f(ν, ν′) dν

= 2(ν′ − µ) P

∫

L

f(ν, ν′)

(ν − µ)(ν′ − ν)
dν.

We note that
{

ψ(ν′, z) = ψ+(ν′, µ) + ε+ if z is to the left of L,

ψ(ν′, z) = ψ−(ν′, µ) + ε− if z is to the right of L,

where ε± → 0 as z → µ. We see that
∫

L

ε±

ν′ − z
dν′ → 0,

when z → µ along a straight line forming a finite angle with the tangent at µ. Using
this fact together with Plemelj’s formulae (B.1), we obtain

Ψ±(µ) = ±iπψ±(µ, µ) + P

∫

L

ψ±(ν′, µ)

ν′ − µ
dν′.

Hence,

Ψ+(µ) + Ψ−(µ) = −2π2f(µ, µ) + 2 P

∫

L

(

P

∫

L

f(ν, ν′)

(ν − µ)(ν′ − ν)
dν

)

dν′. (C.4)

By (C.2), (C.3), and (C.4), we obtain (C.1).
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Appendix D. Completeness

Definition. Let f(µ) on [−1, 1] satisfy the Hölder condition. We further suppose that
f(µ) is bounded everywhere on [−1, 1] with the possible exception of a finite number
of points t1, t2, . . .; however

|f(µ)| ≤
C

|µ− t|α
,

where C > 0, 0 < α < 1, and t stands for any of t1, t2, . . .. Then we say f(µ) is in
class G.

Theorem Appendix D.1. (Completeness). The functions φ0±(µ) and φν(µ) are
complete for functions f(µ) of class G on [−1, 1].

Proof. Let f(µ) be a given function of class G. Let a0± be constants and A(ν) be
a function of class G. We will show that for any f(µ) there exist a0± and A(ν) such
that

f(µ) = a0+φ0+(µ) + a0−φ0−(µ) +

∫ 1

−1

A(ν)φν(µ) dν. (D.1)

Let us first assume that we have a function f(µ) in the form

f(µ) =

∫ 1

−1

A(ν)φν(µ) dν. (D.2)

Using (6) and (10), we have

f(µ) =
1

2

[

Λ+(µ) + Λ−(µ)
]

A(µ) +
̟

2
P

∫ 1

−1

νA(ν)

ν − µ
dν.

Let us define

n(z) =
1

2πi

∫ 1

−1

̟

2

νA(ν)

ν − z
dν z ∈ C. (D.3)

We note that n(z) is analytic in C excluding [−1, 1] and n(z) = O
(

1
|z|

)

as |z| → ∞.

Also by the Plemelj formulae (B.1), we have for µ ∈ (−1, 1),

n+(µ) = n(µ+ 0) =
̟

4
µA(µ) +

1

2πi
P

∫ 1

−1

̟

2

νA(ν)

ν − µ
dν,

n−(µ) = n(µ− 0) = −
̟

4
µA(µ) +

1

2πi
P

∫ 1

−1

̟

2

νA(ν)

ν − µ
dν.

We readily have

n+(µ) + n−(µ) =
1

iπ
P

∫ 1

−1

̟

2

νA(ν)

ν − µ
dν,

n+(µ)− n−(µ) =
̟

2
µA(µ).

Thus,

̟µ

2
f(µ) =

1

2

[

Λ+(µ) + Λ−(µ)
] [

n+(µ)− n−(µ)
]

+
iπ̟µ

2

[

n+(µ) + n−(µ)
]

.

Using (9), we have
̟µ

2
f(µ) = Λ+(µ)n+(µ)− Λ−(µ)n−(µ). (D.4)
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We define

J(z) = Λ(z)n(z)−
1

2πi

∫ 1

−1

̟µ

2

f(µ)

µ− z
dµ.

Note that J(z) is analytic in C excluding [−1, 1] and J(z) = O
(

1
|z|

)

as |z| → ∞.

Using (D.4), we have

J+(µ)− J−(µ) = Λ+(µ)n+(µ)− Λ−(µ)n−(µ)−
̟µ

2
f(µ) = 0.

That is, J(z) has no discontinuity across the cut (−1, 1), and hence is analytic
everywhere. Therefore, from Liouville’s theorem,

J(z) = 0 z ∈ C,

or

n(z) =
1

2πiΛ(z)

∫ 1

−1

̟µ

2

f(µ)

µ− z
dµ. (D.5)

Here we notice a contradiction. Although n(z) is analytic in C excluding [−1, 1], n(z)
in (D.5) has poles at ±ν0 (see (7)) unless

∫ 1

−1

̟µ

2

f(µ)

µ± ν0
dµ = 0. (D.6)

Equation (D.6) does not hold in general. The first assumption (D.2) must be modified.
We adopt (D.1). Then (D.6) can be written as

∫ 1

−1

µf(µ)

µ± ν0
dµ =

∫ 1

−1

µ

µ± ν0
[a0+φ0+(µ) + a0−φ0−(µ)] dµ. (D.7)

The right-hand side of (D.7) is expressed as
∫ 1

−1

µf(µ)

µ+ ν0
dµ =

2

̟ν0

∫ 1

−1

µ [a0+φ0−(µ)φ0+(µ) + a0−φ0−(µ)φ0−(µ)] dµ

= −
2

̟ν0
a0−N0,

∫ 1

−1

µf(µ)

µ− ν0
dµ =

−2

̟ν0

∫ 1

−1

µ [a0+φ0+(µ)φ0+(µ) + a0−φ0+(µ)φ0−(µ)] dµ

= −
2

̟ν0
a0+N0.

Thus we obtain

a0± =
±1

N0

∫ 1

−1

µφ0±(µ)f(µ) dµ.

With these a0±, (D.1) holds for any f(µ).


