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1 Introduction and History

The objective of this lecture is (i) to give a brief introduction to inverse problems by Carleman
estimates and (ii) to provide a minimal set of terminology and techniques which are necessary to
read research papers in this field. The lecture assumes basic calculus but advanced materials will
be explained in class.

A Carleman estimate was first used to prove uniqueness for the Cauchy problem with data on
a non-characteristic curve [1, 2]. The technique was then imported to the field of inverse problems
as a tool to determine coefficients of a partial differential equation from boundary values [3]. Since
then, inverse problems by Carleman estimates have been intensively studied. See, for example,
[4] and [5] for Carleman estimates for hyperbolic equations. See a recent review [6] for Carleman
estimates for parabolic equations. The textbook by Isakov [7] is also a good place to start.

MM learned Carleman estimates on a graduate course taught by Prof. Masahiro Yamamoto
at The University of Tokyo [8]. This lecture note is based on Prof. Yamamoto’s lecture. Here,
Carleman estimates will be explained by focusing on an inverse problem for a simple hyperbolic
equation.

2 X-ray in Biological Tissue

Let us consider the transport of X-rays in biological tissue. Since X-rays penetrate the medium
without scattering,1 it propagates along a line (say, the x-axis). The X-ray enters the medium at
x = 0, is partially absorbed, and exits at x = ℓ. This transport phenomenon is modeled by the
following transport equation in a one-dimensional random medium with the length ℓ (see [9] for
intuitive derivation of the transport equation and see [10] for rigorous derivation from the Maxwell
equations). In the equation, u(x, t) ∈ R is the intensity of the X-ray at position x ∈ (0, ℓ) and time
t ∈ (−T, T ), and p(x) ∈ R is the absorption coefficient.















∂

∂t
u(x, t) +

∂

∂x
u(x, t) + p(x)u(x, t) = 0,

u(x, 0) = a(x), 0 < x < ℓ,

u(0, t) = b(t), −T < t < T.

(2.1)

∗I gave a 2 × 1.5-hour lecture in “Methods of Applied Mathematics I: Applied Functional Analysis” (Math 556)
at University of Michigan.

1In reality, X-rays are sometimes scattered, but we can ignore such scatterings to a good approximation.
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Here a(x) (> 0) and b(t) are the initial and boundary conditions. Let us assume that p ∈ L∞(0, ℓ)
is unknown. We want to determine p(x) by the measured boundary value u(ℓ, t). Our goal is to
establish a stability estimate such as

||p− q||L2(0,ℓ) ≤ C||u[p](ℓ, t)− u[q](ℓ, t)||∗ (2.2)

with a suitable norm || · ||∗ for two different absorption coefficients p and q. At the end of the day,
we will prove Theorem 5.1. Throughout this note, we let C denote a generic positive constant.

3 Linearization

Let us put

ũ(x, t) = u[q](x, t)− u[p](x, t), f(x) = p(x)− q(x), R(x, t) = u[q](x, t). (3.1)

We then have














∂

∂t
ũ(x, t) +

∂

∂x
ũ(x, t) + p(x)ũ(x, t) = f(x)R(x, t),

ũ(x, 0) = 0, 0 < x < ℓ,

ũ(0, t) = 0, −T < t < T.

(3.2)

We assume that q(x) is known. Our job is to estimate f(x) in the source term. As we will see later,
the initial condition must be nonzero. To have a nonzero initial condition, let us differentiate the
equation with respect to t. We put

y =
∂ũ

∂t
. (3.3)

Then we have














Py(x, t) =
∂

∂t
y(x, t) +

∂

∂x
y(x, t) + p(x)y(x, t) = f(x)∂tR(x, t),

y(x, 0) = f(x)R(x, 0), 0 < x < ℓ,

y(0, t) = 0, −T < t < T,

(3.4)

where ∂tR means ∂
∂t
R. Thus, the initial condition is nonzero if R(x, 0) 6= 0.

4 Carleman Estimate

Let us define
ϕ(x, t) = (x− x0)

2 − βt2, (4.1)

where x0 /∈ [0, ℓ] and 0 < β < 1. We chose ϕ(x, t) so that we have the following inequality.

Proposition 4.1. For the function w(x, t) ∈ C1
0 ([0, ℓ]× [−T, T ]) which satisfies w(0, t) = w(x,±T ) =

0, there exist C > 0 and s0 > 0 such that

∫ ℓ

0

∫ T

−T

sw2e2sϕdxdt ≤ C

∫ ℓ

0

∫ T

−T

|Pw|2e2sϕdxdt+ Cs

∫ T

−T

w2(ℓ, t)e2sϕ(ℓ,t)dt (4.2)

for all s ≥ s0.
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Proof. We let P0 denote the principal part of the transport equation.

P0w(x, t) = ∂tw(x, t) + ∂xw(x, t), 0 < x < ℓ, −T < t < T. (4.3)

We set z = esϕw. Then we have

P0z = sA(x, t)z + esϕP0w. (4.4)

where we defined
A(x, t) = ∂tϕ+ ∂xϕ = −2βt+ 2(x− x0). (4.5)

Hence
∫ ℓ

0

∫ T

−T

|P0w|2e2sϕdxdt =

∫ ℓ

0

∫ T

−T

(P0z − sAz)2 dxdt

≥ −2s

∫ ℓ

0

∫ T

−T

A(∂tz + ∂xz)zdxdt

= −s

∫ ℓ

0

∫ T

−T

A
(

∂tz
2 + ∂xz

2
)

dxdt

= s

∫ ℓ

0

∫ T

−T

(∂tA+ ∂xA)z
2dxdt− s

∫ T

−T

A(ℓ, t)z2(ℓ, t)dt

= 2s(1− β)

∫ ℓ

0

∫ T

−T

z2dxdt− s

∫ T

−T

A(ℓ, t)z2(ℓ, t)dSdt

≥ 2s(1− β)

∫ ℓ

0

∫ T

−T

z2dxdt− Cs

∫ T

−T

z2(ℓ, t)dt. (4.6)

Thus we obtain

2(1− β)

∫ ℓ

0

∫ T

−T

sw2e2sϕdxdt ≤
∫ ℓ

0

∫ T

−T

|P0w|2e2sϕdxdt+ Cs

∫ T

−T

w2(ℓ, t)e2sϕ(ℓ,t)dt. (4.7)

Since P0w = Pw − pw, Eq. (4.2) is readily obtained from the above inequality. �

5 Lipschitz Stability

If we assume ∂tR is sufficiently small, we can derive the Lipschitz stability by energy estimates
(see Appendix A). In order not to have this (almost) unphysical condition, we need to use the
Carleman estimate, which we derived in Sec. 4.

Let us choose T such that

T >
1√
β

sup
0≤x≤ℓ

|x− x0|. (5.1)

Note that x0 /∈ [0, ℓ]. For this T , we have

ϕ(x,±T ) = (x− x0)
2 − βT 2 < 0, x ∈ [0, ℓ], (5.2)

and
ϕ(x, 0) > 0, x ∈ [0, ℓ]. (5.3)

3



Therefore, we can introduce small ε > 0, and choose small δ > 0 such that

ϕ(x, t) < −ε, −T ≤ t ≤ −T + 2δ, T − 2δ ≤ t ≤ T, x ∈ [0, ℓ], (5.4)

and
ϕ(x, t) > ε, −δ ≤ t ≤ δ, x ∈ [0, ℓ]. (5.5)

Next we introduce a cut-off function µ ∈ C∞
0 (R) which is 0 ≤ µ ≤ 1 and satisfies

µ(t) =

{

1, −T + 2δ ≤ t ≤ T − 2δ,
0, −T ≤ t ≤ −T + δ, T − δ ≤ t ≤ T.

(5.6)

We set
w = µy. (5.7)

Since Py = f∂tR, the function w(x, t) satisfies

∂tw + ∂xw + pw = µf∂tR+ (∂tµ)y, w(0, ·) = w(·,±T ) = 0. (5.8)

Let us use Proposition 4.1. for the function w;

s

∫ ℓ

0

∫ T

−T

w2e2sϕdxdt ≤ C

∫ ℓ

0
f2

(
∫ T

−T

e−2sβt2dt

)

e2sϕ(x,0)dx+ C

∫ ℓ

0

∫ T

−T

(∂tµ)
2y2e2sϕdxdt

+ Cs

∫ T

−T

w2(ℓ, t)e2sϕ(ℓ,t)dt. (5.9)

By the Lebesgue theorem2, we have

∫ T

−T

e−2sβt2dt = o(1) as s → ∞. (5.10)

Here, o is the small O (the left-hand side is asymptotically dominated by 1). By using the fact that
∂tµ 6= 0 only for −T + δ ≤ t ≤ −T + 2δ or T − 2δ ≤ t ≤ T − δ and ϕ(x, t) < −ε in these regions.
We obtain

∫ ℓ

0

∫ T

−T

(∂tµ)
2y2e2sϕdxdt ≤ Ce−2sε

∫ ℓ

0

∫ T

−T

y2dxdt. (5.11)

Therefore we have

s

∫ ℓ

0

∫ T

−T

w2e2sϕdxdt ≤ o(1)

∫ ℓ

0
f2e2sϕ(x,0)dx+ Ce−2sε

∫ ℓ

0

∫ T

−T

y2dxdt

+ CeCs

∫ T

−T

y2(ℓ, t)dt. (5.12)

2For functions ηn ∈ L1(−T, T ) such that ηn → η (a.e.), and sup
n
|ηn| ≤ M , we have η ∈ L1(−T, T ) and

lim
n→∞

∫

T

−T

ηndx =

∫

T

−T

ηdx.

See Theorem I.16 in [11] or Theorem 1.8 in [12].
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In the third term on the right-hand side of Eq. (5.12), we used s exp[2smaxt ϕ(ℓ, t)] ≤ eCs. We will
use Eq. (5.12) later.

Let us introduce
z = wesϕ = µyesϕ. (5.13)

The function z(x, t) satisfies

∂tz + ∂xz + pz = µesϕf∂tR+ (∂tµ)ye
sϕ + s(∂tϕ+ ∂xϕ)z, z(0, ·) = z(·,±T ) = 0. (5.14)

Let us multiply Eq. (5.14) by −2z and integrate the equation over x and t.

−
∫ ℓ

0

∫ T

0
∂tz

2dxdt =

∫ ℓ

0

∫ T

0
∂xz

2dxdt+

∫ ℓ

0

∫ T

0
2pz2dxdt

−
∫ ℓ

0

∫ T

0
2
{

µesϕf(∂tR)z + (∂tµ)ye
sϕz + s(∂tϕ+ ∂xϕ)z

2
}

dxdt. (5.15)

Let us introduce a0 > 0 such that R(x, 0) = a(x) ≥ a0 in [0, ℓ]. The left-hand side is calculated as

LHS =

∫ ℓ

0
z2(x, 0)dx =

∫ ℓ

0
y2(x, 0)e2sϕ(x,0)dx ≥ a20

∫ ℓ

0
f2(x)e2sϕ(x,0)dx, (5.16)

because y(x, 0) = f(x)R(x, 0). The right-hand side is estimated as

RHS ≤
∫ T

0
z2(ℓ, t)dt+ Cs

∫ ℓ

0

∫ T

0
z2dxdt

+

∫ ℓ

0

∫ T

0
(∂tµ)

2y2e2sϕdxdt+

∫ ℓ

0

∫ T

0
f2e2sϕdxdt, (5.17)

where we used the Cauchy-Bunyakovskii inequality3. Thus we have

a20

∫ ℓ

0
f2e2sϕ(x,0)dx ≤

∫ ℓ

0

∫ T

−T

f2e2sϕdxdt+

∫ ℓ

0

∫ T

−T

(∂tµ)
2y2e2sϕdxdt

+ Cs

∫ ℓ

0

∫ T

−T

w2e2sϕdxdt+

∫ T

−T

z2(ℓ, t)dt. (5.18)

We use the inequality (5.12) in Eq. (5.18) and obtain

a20

∫ ℓ

0
f2e2sϕ(x,0)dx ≤ o(1)

∫ ℓ

0
f2e2sϕ(x,0)dx+ Ce−2sε

∫ ℓ

0

∫ T

−T

y2dxdt

+ CeCs

∫ T

−T

y2(ℓ, t)dt. (5.19)

3

0 ≤

∫

(f(x) + g(x))2dx.

Therefore,

−

∫

2f(x)g(x)dx ≤

∫

f
2(x)dx+

∫

g
2(x)dx.

We do similar calculation to prove the Cauchy-Bunyakovskii-Schwarz inequality,
(∫

fgdx
)

2
≤

∫

f2dx+
∫

g2dx.
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Let us multiply Py = f∂tR in Eq. (3.4) by 2y and integrate over x.

∫ ℓ

0
∂ty

2dx+

∫ ℓ

0
∂xy

2dx+

∫ ℓ

0
2py2dx =

∫ ℓ

0
2yf∂tRdx. (5.20)

The right-hand side may be estimated using the Cauchy-Bunyakovskii inequality. Thus,

∂

∂t

∫ ℓ

0
y2dx ≤ C

∫ ℓ

0
y2dx+ C

∫ ℓ

0
f2dx, (5.21)

where we used the fact that y(0, t) = 0 and

∫ ℓ

0
∂xy

2dx = y2(ℓ, t) ≥ 0. (5.22)

Then we integrate both sides over t.

∫ ℓ

0
y2(x, t)dx ≤

∫ ℓ

0
y2(x, 0)dx+ C

∫ t

0

∫ ℓ

0
y2dtdx+ C

∫ t

0

∫ ℓ

0
f2dtdx

≤ C||f ||2L2(0,ℓ) + C

∫ t

0

∫ ℓ

0
y2dtdx. (5.23)

By using the Gronwall inequality4, we obtain

∫ ℓ

0
y2dx ≤ C||f ||2L2(0,ℓ). (5.24)

Therefore,
∫ ℓ

0

∫ T

−T

y2dxdt ≤ C||f ||2L2(0,ℓ), −T < t < T. (5.25)

Note that Eq. (5.5) implies

ϕ(x, 0) = (x− x0)
2 > ε+ βδ2. (5.26)

Using Eqs. (5.19), (5.25), and (5.26), we obtain

(

a20 − o(1)
)

e2s(ε+βδ2)

∫ ℓ

0
f2(x)dx ≤ Ce−2sε||f ||2L2(0,ℓ) + CeCs

∫ T

−T

y2(ℓ, t)dt. (5.27)

Therefore, there exists s0 such that

{

(

a20 − o(1)
)

e2s(ε+βδ2) − Ce−2sε
}

||f ||2L2(0,ℓ) ≤ CeCs

∫ T

−T

y2(ℓ, t)dt (5.28)

for s > s0. Thus we proved the following theorem.

4For

η(t) ≤ c1 + c2

∫

t

0

η(t1)dt1,

we have
η(t) ≤ c1e

c2t.

See Chapter III in [13].
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Theorem 5.1 Let y satisfy Eq. (3.4) with R, ∂tR ∈ L2(−T, T ;L∞(0, ℓ)) and p ∈ L∞(0, ℓ). We
assume R(x, 0) > 0 in [0, ℓ] and choose T > supx∈[0,ℓ] |x− x0|. Then, there exists a constant C > 0
such that

||f ||L2(0,ℓ) ≤ C||y(ℓ, ·)||L2(−T,T ) (5.29)

for any f ∈ L2(0, ℓ).

6 Conclusion

By Theorem 6.1, we immediately obtain the following Lipschitz stability, which corresponds to
Eq. (2.2)

Theorem 6.1 Let u satisfy Eq. (2.1) with |a(x)| > 0 in [0, ℓ]. Let T > ℓ. Let ||p||L∞(0,ℓ),
||q||L∞(0,ℓ) ≤ M for a constant M > 0. Then, there exists a constant C(ℓ, T, a, b,M) > 0 such that

||p− q||L2(0,ℓ) ≤ C

∣

∣

∣

∣

∣

∣

∣

∣

∂ (u[p](ℓ, ·)− u[q](ℓ, ·))
∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2(−T,T )

. (6.1)

We conclude this lecture with several remarks.

Remark 6.2 Throughout this note, time is considered in (−T, T ). When we start at t = 0 and
consider t ∈ (0, T ), we need to extend functions to (−T, T ). See [5].

Remark 6.3 In fact, our model (2.1) is almost too simple and we can solve it by the method of
characteristics [9]. However, this is a nice toy model to illustrate the key idea of inverse problems
by Carleman estimates. In general, it is very difficult to solve the transport equation because of
the integral term due to scattering.

Remark 6.4 An application of this analysis is computed tomography (CT). In a CT scan, cancer
in a human body is detected as inhomogeneity in p(x) in Eq. (2.1). To obtain tomographic images,
X-rays are sent in different directions and measured at different places. So, in addition to x and
t in the intensity u, we need to take angle (the direction in which X-rays propagate) into account
even though each X-ray penetrates without changing its direction as we assumed in this note. The
analysis which we developed in this lecture gives an “intrinsic” stability of X-ray CT.

Remark 6.5 As we saw in Eq. (5.27), R(x, 0) [= u[p](x, 0) (see Eq. (3.1))] must be nonzero. We
see that this rather strong condition seems to hold when we remember every day we are exposed
to X-rays (e.g., X-rays from 40K in a concrete wall of a building).

Remark 6.6 An alternative approach to inverse transport problems is to use the albedo operator
A, which is similar to the Dirichlet-to-Neumann map. The operator A maps u(0, t) to u(ℓ, t). See
a recent review [14] and references therein for this approach.
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A Small Business

By using energy estimates, we can show the Lipschitz stability if ∂tR(x, t) is small.
Let split y into two parts:

y(x, t) = y1(x, t) + y2(x, t), (A.1)

where y1 and y2 respectively satisfy











Py1(x, t) = f(x)∂tR(x, t),

y1(x, 0) = 0, 0 < x < ℓ,

y1(0, t) = 0, −T < t < T,











Py2(x, t) = 0,

y2(x, 0) = f(x)R(x, 0), 0 < x < ℓ,

y2(0, t) = 0, −T < t < T.

(A.2)

For y1, we have
∫ ℓ

0
2y1 (∂ty1 + ∂xy1 + py1) dx =

∫ ℓ

0
2y1f∂tRdx. (A.3)

We obtain
∂

∂t

∫ ℓ

0
y21dx ≤ C

∫ ℓ

0
y21dx+

∫ ℓ

0
(f∂tR)2 dx. (A.4)

By using the Gronwall inequality, we obtain

||y1||L1(−T,T ;L2(0,ℓ)) ≤ C||f∂tR||L1(−T,T ;L2(0,ℓ)). (A.5)

For y2, we have
∫ ℓ

0
2y2 (∂ty2 + ∂xy2 + py2) dx = 0. (A.6)

We obtain
||fR(·, 0)||L2(0,ℓ) ≤ C||y2||L1(−T,T ;L2(0,ℓ)). (A.7)

Since R(·, 0) ≥ a0 > 0, we have

a0||f ||L2(0,ℓ) ≤ ||fR(·, 0)||L2(0,ℓ)

≤ C||y − y1||L1(−T,T ;L2(0,ℓ))

≤ C||y||L1(−T,T ;L2(0,ℓ)) + C||y1||L1(−T,T ;L2(0,ℓ))

≤ C||y||L1(−T,T ;L2(0,ℓ)) + C||f ||L2(0,ℓ)||∂tR||L1(−T,T ;L∞(0,ℓ)). (A.8)

Therefore, we obtain

(

a0 − C||∂tR||L1(−T,T ;L∞(0,ℓ))

)

||f ||L2(0,ℓ) ≤ C||y||L1(−T,T ;L2(0,ℓ)). (A.9)

Theorem A.1. Let minx∈[0,ℓ] |R(x, 0)| > 0. For sufficiently small ||∂tR||L1(−T,T ;L∞(0,ℓ)), we have

||f ||L2(0,ℓ) ≤ C||y||L1(−T,T ;L2(0,ℓ)). (A.10)

We can similarly obtain the Lipschitz stability as Eq. (A.10) for other differential equations
such as the wave equation. To remove the smallness condition for ∂tR, we use Carleman estimates.
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