
Chapter 7

Time-dependent differential equations

Euler’s method

First-order ordinary differential equations (ODE) are written as







dx

dt
= f (x), t > 0,

x(0) = x0.

If x(t) is the position of a particle moving on the x-axis at time t, then dx/dt is

the velocity of the particle, which depends on the position in general. The initial

position of the particle is x0.

Example 1. Let us look at a few examples.

dx

dt
= x, x(0) = 1 ⇒ x(t) = et ,

dx

dt
= x2, x(0) = 1 ⇒ x(t) =

1

1− t
,

dx

dt
= sinx, x(0) = 1 ⇒ x(t) =?.

The solution to the last equation is not obvious1.

Sometimes it is enough to obtain numerical solutions. Moreover in many cases,

only numerical solutions are available.

The simplest numerical method is Euler’s method.
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1 The last example is not too difficult. We define y = tan(x/2). We have 1 + y2 =
[

cos2(x/2)
]−1

, dy/dx = (1 + y2)/2, and sin(x) = 2sin(x/2)cos(x/2) = 2cos2(x/2) tan(x/2) =

2y/
[

cos2(x/2)
]−1

= 2y/(1 + y2). Hence we obtain dy/dt = (dy/dx)(dx/dt) = (1/2)(1 +

y2)sin(x) = y. We obtain y = Cet with a constant C. The initial condition x(0) = 1 implies

y(0) = tan(x(0)/2) = tan(1/2) =C. Finally we obtain x(t) = 2tan−1 (et tan(1/2)).

1
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We choose time step ∆ t and discretize the time t as ti = i∆ t (i = 0,1, . . .n). In

Euler’s method, numerical solution wi ≈ x(ti) is obtained as

wi+1 −wi

∆ t
= f (wi) ⇐⇒ wi+1 = wi +∆ t f (wi).

Starting from w0 = x0, we can compute w1,w2, . . . .

The error for Euler’s method is given as

|x(ti)−wi| ≤C∆ t,

where C > 0 is a constant.

Runge-Kutta methods

Second order

Euler’s method is an O(∆ t) approximation. Let us consider higher order approxi-

mations.

We consider

wi+1 −wi

∆ t
= φ(wi) = a1 f (wi)+a2 f (wi +δ f (wi)). (7.1)

We want to choose a1,a2,δ so that the right-hand side provides an O
(

(∆ t)2
)

ap-

proximation. This method is called the second-order Runge-Kutta method.

Let us look at
x(ti+1)− x(ti)

∆ t
= φ(x(ti))+ τi, (7.2)

where τi is the error. Suppose

|τi| ≤ M,

for all i = 0,1, . . . ,n. We can show that

|x(ti)−wi| ≤
etiL −1

L
M, (7.3)

where L is a constant such that |φ(x(ti))− φ(wi)| ≤ L|x(ti)−wi| (we assume that

φ satisfies the Lipschitz condition). This is proved as follows. From (7.1) we have

wi+1 = wi +∆ t φ(wi). From (7.2) we have x(ti+1) = x(ti)+∆ tφ(x(ti))+∆ tτi. By

subtraction we obtain

x(ti+1)−wi+1 = x(ti)−wi +∆ t [φ(x(ti))−φ(wi)]+∆ tτi.
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Thus,

|x(ti+1)−wi+1| ≤ |x(ti)−wi|+∆ t |φ(x(ti))−φ(wi)|+∆ t|τi| ≤ a|x(ti)−wi|+b,

where a = 1+∆ tL, b = ∆ tM. We obtain

|x(ti+1)−wi+1| ≤ a|x(ti)−wi|+b ≤ a(a|x(ti−1)−wi−1|+b)+b ≤ ·· ·

≤ ai+1|x(t0)−w0|+(1+a+a2 + · · ·+ai)b = ai+1|x(t0)−w0|+
ai+1 −1

a−1
b

= ai+1

(

|x0 −w0|+
b

a−1

)

−
b

a−1

=
[

(1+∆ tL)i+1 −1
] ∆ tM

∆ tL
.

We note that 1+∆ tL ≤ e∆ tL (use Taylor series) and (i+1)∆ t = ti+1. We obtain

|x(ti+1)−wi+1| ≤
(

eti+1L −1
)M

L
.

Thus (7.3) was proved. From (7.3), we see that an O
(

(∆ t)2
)

approximation is ob-

tained if M = O
(

(∆ t)2
)

.

Let us consider (7.2). We will choose a1,a2,δ so that τi = O
(

(∆ t)2
)

. The Taylor

series of x(t) about ti is written as

x(t) = x(ti)+
dx

dt

∣

∣

∣

∣

ti

(t − ti)+
1

2

d2x

dt2

∣

∣

∣

∣

ti

(t − ti)
2 + · · · .

Evaluating the resulting expression at t = ti+1, we obtain

x(ti+1)− x(ti)

∆ t
=

dx

dt
(ti)+

1

2

d2x

dt2
(ti)∆ t + · · ·

= f (x(ti))+
1

2
∆ t

d f

dx
(x(ti)) f (x(ti))+ · · · . (7.4)

By setting ∆x = δ f (x(ti)), we obtain

φ(x(ti)) = a1 f (x(ti))+a2 f (x(ti)+∆x)

= a1 f (x(ti))+a2

[

f (x(ti))+∆x
d f

dx

∣

∣

∣

∣

x(ti)

+
(∆x)2

2

d2 f

dx2

∣

∣

∣

∣

x(ti)

+ · · ·

]

= (a1 +a2) f (x(ti))+a2δ
d f

dx
(x(ti)) f (x(ti))

+
a2

2
δ 2 d2 f

dx2
(x(ti)) f (x(ti))

2 + · · · . (7.5)

By using (7.4) and (7.5), we obtain τi in (7.2) as
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τi =
x(ti+1)− x(ti)

∆ t
−φ(x(ti))

= f (x(ti))+
1

2
∆ t

d f

dx
(x(ti)) f (x(ti))− (a1 +a2) f (x(ti))−a2δ

d f

dx
(x(ti)) f (x(ti))

−
a2

2
δ 2 d2 f

dx2
(x(ti)) f (x(ti))

2 + · · · .

Therefore by choosing a1,a2,δ such that

a1 +a2 = 1, a2δ =
∆ t

2
,

we have τi = O
(

(∆ t)2
)

and the method becomes an O
(

(∆ t)2
)

approximation:

|x(ti)−wi|= O
(

(∆ t)2
)

.

Although there are infinitely many second-order Runge-Kutta methods, there are

a few common choices of a1,a2,δ

The modified Euler method

Let us set

a1 = 0, a2 = 1, δ =
∆ t

2
.

We have
wi+1 −wi

∆ t
= f

(

wi +
∆ t

2
f (wi)

)

.

The formula is understood as follows. By the midpoint integration we have

x(ti+1)− x(ti) =
∫ ti+1

ti

x′dt ≈ (ti+1 − ti)x′
(

ti + ti+1

2

)

= ∆ t x′
(

ti +
∆ t

2

)

.

By Euler’s method with step ∆ t/2 we have

x

(

ti +
∆ t

2

)

≈ x(ti)+
∆ t

2
f (x(ti)).

Therefore,

x(ti+1)− x(ti)≈ ∆ t f

(

x(ti)+
∆ t

2
f (x(ti))

)

.

The algorithm is summarized as follow.

With the modified Euler method, we obtain wi ≈ x(ti) by the following two

steps.
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• w̃ = wi +
∆ t

2
f (wi) Euler’s method with step ∆ t/2

• wi+1 = wi +∆ t f (w̃) Midpoint integration

Heun’s method

Here we set

a1 = a2 =
1

2
, δ = ∆ t.

We have
wi+1 −wi

∆ t
=

1

2
[ f (wi)+ f (wi +∆ t f (wi))] .

The formula is understood as follows. By the trapezoidal integration we have

x(ti+1)−x(ti) =
∫ ti+1

ti

x′dt ≈
ti+1 − ti

2

[

x′(ti)+ x′(ti+1)
]

=
∆ t

2
[ f (x(ti))+ f (x(ti+1))] .

By Euler’s method with step ∆ t we have

x(ti+1)≈ x(ti)+∆ t f (x(ti)).

Therefore,

x(ti+1)− x(ti)≈
∆ t

2
[ f (x(ti))+ f (x(ti)+∆ t f (x(ti))] .

This is also an improved Euler’s method

The algorithm is summarized as follow.

With the Heun method, we obtain wi ≈ x(ti) as

wi+1 = wi +
1

2
(k1 + k2),

where

k1 = ∆ t f (wi), k2 = ∆ t f (wi + k1).



6 Math 471

Fourth order

We can also construct the fourth-order Runge-Kutta method. The scheme is sum-

marized as follows.

The fourth-order Runge-Kutta method updates the approximate solution at

each time step according to the formula

wi+1 = wi +
1

6
(k1 +2k2 +2k3 + k4),

where

k1 =∆ t f (wi), k2 =∆ t f

(

wi +
k1

2

)

, k3 =∆ t f

(

wi +
k2

2

)

, k4 =∆ t f (wi+k3).

The error is O
(

(∆ t)4
)

:

|x(ti)−wi| ≤C(∆ t)4,

where C is a positive constant.

The procedure is explained as follows. We begin with

x(ti+1)− x(ti) =
∫ ti+1

ti

dx

dt
dt =

∫ ti+∆ t

ti

x′(t)dt.

By Simpson’s rule, we have

x(ti+1)− x(ti) ≈
∆ t

6

[

x′(ti)+4x′
(

ti +
∆ t

2

)

+ x′(ti+1)

]

=
∆ t

6

[

x′(ti)+2x′
(

ti +
∆ t

2

)

+2x′
(

ti +
∆ t

2

)

+ x′(ti+1)

]

.

We replace the four terms on the right-hand side with k1,k2,k3,k4 as follows.

∆ t x′(ti) = ∆ t f (x(ti))≈ ∆ t f (wi) = k1,

∆ t x′
(

ti +
∆ t

2

)

= ∆ t f

(

x(ti +
∆ t

2
)

)

= ∆ t f

(

x(ti)+

∫ ti+
∆ t
2

ti

x′(t)dt

)

≈ ∆ t f

(

x(ti)+
∆ t

2
x′(ti)

)

≈ ∆ t f

(

wi +
k1

2

)

= k2.
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∆ t x′
(

ti +
∆ t

2

)

= ∆ t f

(

x(ti +
∆ t

2
)

)

= ∆ t f

(

x(ti)+
∫ ti+

∆ t
2

ti

x′(t)dt

)

≈ ∆ t f

(

x(ti)+
∆ t

2
x′(ti +

∆ t

2
)

)

≈ ∆ t f

(

wi +
k2

2

)

= k3.

∆ t x′(ti+1) = ∆ t f (x(ti+1)) = ∆ t f

(

x(ti)+
∫ ti+∆ t

ti

x′(t)dt

)

≈ ∆ t f

(

x(ti)+∆ t x′(ti +
∆ t

2
)

)

≈ ∆ t f (wi + k3) = k4.


