## Chapter 7

## Time-dependent differential equations

## Euler's method

First-order ordinary differential equations (ODE) are written as

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x), \quad t>0 \\
x(0)=x_{0}
\end{array}\right.
$$

If $x(t)$ is the position of a particle moving on the $x$-axis at time $t$, then $\mathrm{d} x / \mathrm{d} t$ is the velocity of the particle, which depends on the position in general. The initial position of the particle is $x_{0}$.

Example 1. Let us look at a few examples.

$$
\begin{array}{cccc}
\frac{\mathrm{d} x}{\mathrm{~d} t}=x, & x(0)=1 & \Rightarrow & x(t)=\mathrm{e}^{t}, \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}=x^{2}, & x(0)=1 & \Rightarrow & x(t)=\frac{1}{1-t}, \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}=\sin x, & x(0)=1 & \Rightarrow & x(t)=? .
\end{array}
$$

The solution to the last equation is not obvious ${ }^{1}$.
Sometimes it is enough to obtain numerical solutions. Moreover in many cases, only numerical solutions are available.

The simplest numerical method is Euler's method.

[^0]We choose time step $\Delta t$ and discretize the time $t$ as $t_{i}=i \Delta t(i=0,1, \ldots n)$. In Euler's method, numerical solution $w_{i} \approx x\left(t_{i}\right)$ is obtained as

$$
\frac{w_{i+1}-w_{i}}{\Delta t}=f\left(w_{i}\right) \quad \Longleftrightarrow \quad w_{i+1}=w_{i}+\Delta t f\left(w_{i}\right)
$$

Starting from $w_{0}=x_{0}$, we can compute $w_{1}, w_{2}, \ldots$

The error for Euler's method is given as

$$
\left|x\left(t_{i}\right)-w_{i}\right| \leq C \Delta t,
$$

where $C>0$ is a constant.

## Runge-Kutta methods

## Second order

Euler's method is an $O(\Delta t)$ approximation. Let us consider higher order approximations.

We consider

$$
\begin{equation*}
\frac{w_{i+1}-w_{i}}{\Delta t}=\phi\left(w_{i}\right)=a_{1} f\left(w_{i}\right)+a_{2} f\left(w_{i}+\delta f\left(w_{i}\right)\right) \tag{7.1}
\end{equation*}
$$

We want to choose $a_{1}, a_{2}, \delta$ so that the right-hand side provides an $O\left((\Delta t)^{2}\right)$ approximation. This method is called the second-order Runge-Kutta method.

Let us look at

$$
\begin{equation*}
\frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{\Delta t}=\phi\left(x\left(t_{i}\right)\right)+\tau_{i} \tag{7.2}
\end{equation*}
$$

where $\tau_{i}$ is the error. Suppose

$$
\left|\tau_{i}\right| \leq M,
$$

for all $i=0,1, \ldots, n$. We can show that

$$
\begin{equation*}
\left|x\left(t_{i}\right)-w_{i}\right| \leq \frac{\mathrm{e}^{t_{i} L}-1}{L} M, \tag{7.3}
\end{equation*}
$$

where $L$ is a constant such that $\left|\phi\left(x\left(t_{i}\right)\right)-\phi\left(w_{i}\right)\right| \leq L\left|x\left(t_{i}\right)-w_{i}\right|$ (we assume that $\phi$ satisfies the Lipschitz condition). This is proved as follows. From (7.1) we have $w_{i+1}=w_{i}+\Delta t \phi\left(w_{i}\right)$. From (7.2) we have $x\left(t_{i+1}\right)=x\left(t_{i}\right)+\Delta t \phi\left(x\left(t_{i}\right)\right)+\Delta t \tau_{i}$. By subtraction we obtain

$$
x\left(t_{i+1}\right)-w_{i+1}=x\left(t_{i}\right)-w_{i}+\Delta t\left[\phi\left(x\left(t_{i}\right)\right)-\phi\left(w_{i}\right)\right]+\Delta t \tau_{i} .
$$

Thus,

$$
\left|x\left(t_{i+1}\right)-w_{i+1}\right| \leq\left|x\left(t_{i}\right)-w_{i}\right|+\Delta t\left|\phi\left(x\left(t_{i}\right)\right)-\phi\left(w_{i}\right)\right|+\Delta t\left|\tau_{i}\right| \leq a\left|x\left(t_{i}\right)-w_{i}\right|+b
$$

where $a=1+\Delta t L, b=\Delta t M$. We obtain

$$
\begin{aligned}
\left|x\left(t_{i+1}\right)-w_{i+1}\right| & \leq a\left|x\left(t_{i}\right)-w_{i}\right|+b \leq a\left(a\left|x\left(t_{i-1}\right)-w_{i-1}\right|+b\right)+b \leq \cdots \\
& \leq a^{i+1}\left|x\left(t_{0}\right)-w_{0}\right|+\left(1+a+a^{2}+\cdots+a^{i}\right) b=a^{i+1}\left|x\left(t_{0}\right)-w_{0}\right|+\frac{a^{i+1}-1}{a-1} b \\
& =a^{i+1}\left(\left|x_{0}-w_{0}\right|+\frac{b}{a-1}\right)-\frac{b}{a-1} \\
& =\left[(1+\Delta t L)^{i+1}-1\right] \frac{\Delta t M}{\Delta t L}
\end{aligned}
$$

We note that $1+\Delta t L \leq \mathrm{e}^{\Delta t L}$ (use Taylor series) and $(i+1) \Delta t=t_{i+1}$. We obtain

$$
\left|x\left(t_{i+1}\right)-w_{i+1}\right| \leq\left(\mathrm{e}^{t_{i+1} L}-1\right) \frac{M}{L}
$$

Thus (7.3) was proved. From (7.3), we see that an $O\left((\Delta t)^{2}\right)$ approximation is obtained if $M=O\left((\Delta t)^{2}\right)$.

Let us consider (7.2). We will choose $a_{1}, a_{2}, \delta$ so that $\tau_{i}=O\left((\Delta t)^{2}\right)$. The Taylor series of $x(t)$ about $t_{i}$ is written as

$$
x(t)=x\left(t_{i}\right)+\left.\frac{\mathrm{d} x}{\mathrm{~d} t}\right|_{t_{i}}\left(t-t_{i}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\right|_{t_{i}}\left(t-t_{i}\right)^{2}+\cdots
$$

Evaluating the resulting expression at $t=t_{i+1}$, we obtain

$$
\begin{align*}
\frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{\Delta t} & =\frac{\mathrm{d} x}{\mathrm{~d} t}\left(t_{i}\right)+\frac{1}{2} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\left(t_{i}\right) \Delta t+\cdots \\
& =f\left(x\left(t_{i}\right)\right)+\frac{1}{2} \Delta t \frac{\mathrm{~d} f}{\mathrm{~d} x}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right)+\cdots \tag{7.4}
\end{align*}
$$

By setting $\Delta x=\delta f\left(x\left(t_{i}\right)\right)$, we obtain

$$
\begin{align*}
\phi\left(x\left(t_{i}\right)\right) & =a_{1} f\left(x\left(t_{i}\right)\right)+a_{2} f\left(x\left(t_{i}\right)+\Delta x\right) \\
& =a_{1} f\left(x\left(t_{i}\right)\right)+a_{2}\left[f\left(x\left(t_{i}\right)\right)+\left.\Delta x \frac{\mathrm{~d} f}{\mathrm{~d} x}\right|_{x\left(t_{i}\right)}+\left.\frac{(\Delta x)^{2}}{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}\right|_{x\left(t_{i}\right)}+\cdots\right] \\
& =\left(a_{1}+a_{2}\right) f\left(x\left(t_{i}\right)\right)+a_{2} \delta \frac{\mathrm{~d} f}{\mathrm{~d} x}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right) \\
& +\frac{a_{2}}{2} \delta^{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right)^{2}+\cdots \tag{7.5}
\end{align*}
$$

By using (7.4) and (7.5), we obtain $\tau_{i}$ in (7.2) as

$$
\begin{aligned}
\tau_{i} & =\frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{\Delta t}-\phi\left(x\left(t_{i}\right)\right) \\
& =f\left(x\left(t_{i}\right)\right)+\frac{1}{2} \Delta t \frac{\mathrm{~d} f}{\mathrm{~d} x}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right)-\left(a_{1}+a_{2}\right) f\left(x\left(t_{i}\right)\right)-a_{2} \delta \frac{\mathrm{~d} f}{\mathrm{~d} x}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right) \\
& -\frac{a_{2}}{2} \delta^{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}\left(x\left(t_{i}\right)\right) f\left(x\left(t_{i}\right)\right)^{2}+\cdots
\end{aligned}
$$

Therefore by choosing $a_{1}, a_{2}, \delta$ such that

$$
a_{1}+a_{2}=1, \quad a_{2} \delta=\frac{\Delta t}{2}
$$

we have $\tau_{i}=O\left((\Delta t)^{2}\right)$ and the method becomes an $O\left((\Delta t)^{2}\right)$ approximation:

$$
\left|x\left(t_{i}\right)-w_{i}\right|=O\left((\Delta t)^{2}\right) .
$$

Although there are infinitely many second-order Runge-Kutta methods, there are a few common choices of $a_{1}, a_{2}, \delta$

## The modified Euler method

Let us set

$$
a_{1}=0, \quad a_{2}=1, \quad \delta=\frac{\Delta t}{2}
$$

We have

$$
\frac{w_{i+1}-w_{i}}{\Delta t}=f\left(w_{i}+\frac{\Delta t}{2} f\left(w_{i}\right)\right)
$$

The formula is understood as follows. By the midpoint integration we have

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} x^{\prime} \mathrm{d} t \approx\left(t_{i+1}-t_{i}\right) x^{\prime}\left(\frac{t_{i}+t_{i+1}}{2}\right)=\Delta t x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right) .
$$

By Euler's method with step $\Delta t / 2$ we have

$$
x\left(t_{i}+\frac{\Delta t}{2}\right) \approx x\left(t_{i}\right)+\frac{\Delta t}{2} f\left(x\left(t_{i}\right)\right)
$$

Therefore,

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right) \approx \Delta t f\left(x\left(t_{i}\right)+\frac{\Delta t}{2} f\left(x\left(t_{i}\right)\right)\right)
$$

The algorithm is summarized as follow.

With the modified Euler method, we obtain $w_{i} \approx x\left(t_{i}\right)$ by the following two steps.

- $\tilde{w}=w_{i}+\frac{\Delta t}{2} f\left(w_{i}\right) \quad$ Euler's method with step $\Delta t / 2$
- $w_{i+1}=w_{i}+\Delta t f(\tilde{w}) \quad$ Midpoint integration


## Heun's method

Here we set

$$
a_{1}=a_{2}=\frac{1}{2}, \quad \delta=\Delta t .
$$

We have

$$
\frac{w_{i+1}-w_{i}}{\Delta t}=\frac{1}{2}\left[f\left(w_{i}\right)+f\left(w_{i}+\Delta t f\left(w_{i}\right)\right)\right] .
$$

The formula is understood as follows. By the trapezoidal integration we have
$x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} x^{\prime} \mathrm{d} t \approx \frac{t_{i+1}-t_{i}}{2}\left[x^{\prime}\left(t_{i}\right)+x^{\prime}\left(t_{i+1}\right)\right]=\frac{\Delta t}{2}\left[f\left(x\left(t_{i}\right)\right)+f\left(x\left(t_{i+1}\right)\right)\right]$.
By Euler's method with step $\Delta t$ we have

$$
x\left(t_{i+1}\right) \approx x\left(t_{i}\right)+\Delta t f\left(x\left(t_{i}\right)\right) .
$$

Therefore,

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right) \approx \frac{\Delta t}{2}\left[f\left(x\left(t_{i}\right)\right)+f\left(x\left(t_{i}\right)+\Delta t f\left(x\left(t_{i}\right)\right)\right] .\right.
$$

This is also an improved Euler's method
The algorithm is summarized as follow.

With the Heun method, we obtain $w_{i} \approx x\left(t_{i}\right)$ as

$$
w_{i+1}=w_{i}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where

$$
k_{1}=\Delta t f\left(w_{i}\right), \quad k_{2}=\Delta t f\left(w_{i}+k_{1}\right)
$$

## Fourth order

We can also construct the fourth-order Runge-Kutta method. The scheme is summarized as follows.

The fourth-order Runge-Kutta method updates the approximate solution at each time step according to the formula

$$
w_{i+1}=w_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

where
$k_{1}=\Delta t f\left(w_{i}\right), \quad k_{2}=\Delta t f\left(w_{i}+\frac{k_{1}}{2}\right), \quad k_{3}=\Delta t f\left(w_{i}+\frac{k_{2}}{2}\right), \quad k_{4}=\Delta t f\left(w_{i}+k_{3}\right)$.

The error is $O\left((\Delta t)^{4}\right)$ :

$$
\left|x\left(t_{i}\right)-w_{i}\right| \leq C(\Delta t)^{4}
$$

where $C$ is a positive constant.
The procedure is explained as follows. We begin with

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int_{t_{i}}^{t_{i}+\Delta t} x^{\prime}(t) \mathrm{d} t .
$$

By Simpson's rule, we have

$$
\begin{aligned}
x\left(t_{i+1}\right)-x\left(t_{i}\right) & \approx \frac{\Delta t}{6}\left[x^{\prime}\left(t_{i}\right)+4 x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)+x^{\prime}\left(t_{i+1}\right)\right] \\
& =\frac{\Delta t}{6}\left[x^{\prime}\left(t_{i}\right)+2 x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)+2 x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)+x^{\prime}\left(t_{i+1}\right)\right]
\end{aligned}
$$

We replace the four terms on the right-hand side with $k_{1}, k_{2}, k_{3}, k_{4}$ as follows.

$$
\begin{gathered}
\Delta t x^{\prime}\left(t_{i}\right)=\Delta t f\left(x\left(t_{i}\right)\right) \approx \Delta t f\left(w_{i}\right)=k_{1} \\
\Delta t x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)=\Delta t f\left(x\left(t_{i}+\frac{\Delta t}{2}\right)\right)=\Delta t f\left(x\left(t_{i}\right)+\int_{t_{i}}^{t_{i}+\frac{\Delta t}{2}} x^{\prime}(t) \mathrm{d} t\right) \\
\end{gathered}
$$

$$
\begin{aligned}
\Delta t x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right) & =\Delta t f\left(x\left(t_{i}+\frac{\Delta t}{2}\right)\right)=\Delta t f\left(x\left(t_{i}\right)+\int_{t_{i}}^{t_{i}+\frac{\Delta t}{2}} x^{\prime}(t) \mathrm{d} t\right) \\
& \approx \Delta t f\left(x\left(t_{i}\right)+\frac{\Delta t}{2} x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)\right) \approx \Delta t f\left(w_{i}+\frac{k_{2}}{2}\right)=k_{3} . \\
\Delta t x^{\prime}\left(t_{i+1}\right) & =\Delta t f\left(x\left(t_{i+1}\right)\right)=\Delta t f\left(x\left(t_{i}\right)+\int_{t_{i}}^{t_{i}+\Delta t} x^{\prime}(t) \mathrm{d} t\right) \\
& \approx \Delta t f\left(x\left(t_{i}\right)+\Delta t x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right)\right) \approx \Delta t f\left(w_{i}+k_{3}\right)=k_{4} .
\end{aligned}
$$


[^0]:    Fall 2013 Math 471 Sec 2
    Introduction to Numerical Methods
    Manabu Machida (University of Michigan)
    1 The last example is not too difficult. We define $y=\tan (x / 2)$. We have $1+y^{2}=$ $\left[\cos ^{2}(x / 2)\right]^{-1}, \mathrm{~d} y / \mathrm{d} x=\left(1+y^{2}\right) / 2$, and $\sin (x)=2 \sin (x / 2) \cos (x / 2)=2 \cos ^{2}(x / 2) \tan (x / 2)=$ $2 y /\left[\cos ^{2}(x / 2)\right]^{-1}=2 y /\left(1+y^{2}\right)$. Hence we obtain $\mathrm{d} y / \mathrm{d} t=(\mathrm{d} y / \mathrm{d} x)(\mathrm{d} x / \mathrm{d} t)=(1 / 2)(1+$ $\left.y^{2}\right) \sin (x)=y$. We obtain $y=C \mathrm{e}^{t}$ with a constant $C$. The initial condition $x(0)=1$ implies $y(0)=\tan (x(0) / 2)=\tan (1 / 2)=C$. Finally we obtain $x(t)=2 \tan ^{-1}\left(\mathrm{e}^{t} \tan (1 / 2)\right)$.

