
Chapter 6

Numerical integration

Let us consider numerical integration such as

∫ 1

0
f (x)dx ≈

n

∑
i=0

wi fi,

where wi are coefficients and fi = f (xi) for xi (i = 0,1, . . . ,n).

Trapezoid rule

Let us consider
∫ 1

0
e−x2

dx = 0.7468 . . . ,

with uniform points:

xi = ih, h =
1

n
, i = 0,1, . . . ,n.

Probably the most naive implementation is the (right-hand) Riemann sum:

∫

f (x)dx ≈ R(h) = f1h+ f2h+ · · ·+ fnh = ( f1 + f2 + · · ·+ fn)h.

In the present example, we have

h R(h) error error/h error/h2

1 0.3679 0.3789 0.3789 0.3789

0.5 0.5733 0.1735 0.3470 0.6939

0.25 0.6640 0.0829 0.3314 1.3257

0.125 0.7064 0.0405 0.3237 2.5898

We see that the error is order h and the method is first-order accurate.

The trapezoid rule is given by
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∫

f (x)dx ≈ T (h) =
1

2
( f0 + f1)h+

1

2
( f1 + f2)h+ · · ·+ 1

2
( fn−1 + fn)h

=

(

1

2
f0 + f1 + f2 + · · ·+ fn−1 +

1

2
fn

)

h.

We obtain

h T (h) error error/h error/h2

1 0.6839 0.0629 0.0629 0.0629

0.5 0.7314 0.0155 0.0309 0.0618

0.25 0.7430 0.0038 0.0154 0.0614

0.125 0.7459 0.0010 0.0077 0.0613

We see that the error is O(h2) and it is second-order accurate.

It is a natural question how we can obtain more accurate integration formulae.

1. piecewise quadratic interpolant (Simpson’s rule)1

2. cubic spline interpolant

3. non-uniform points (e.g., Chebyshev)

4. extrapolation

We will explore the last option in the next section.

Richardson extrapolation (Romberg’s method)

We first define R0(h) as2

1 For n = 2m uniform points x0,x1, . . . ,x2m, Simpson’s rule is given as follows.

∫

f (x)dx ≈ 2h

6
( f0 +4 f1 + f2)+

2h

6
( f2 +4 f3 + f4)+

2h

6
( f4 +4 f5 + f6)+ · · ·+ 2h

6
( f2m−2 +4 f2m−1 + f2m)

=
h

3

(

f0 +4
m

∑
j=1

f2 j−1 +2
m−1

∑
j=1

f2 j + f2m

)

.

We note that using the Lagrange form

∫ x2

x0

p2(x)dx=
∫ x2

x0

(

f0
x− x1

x0 − x1

x− x2

x0 − x2
+ f1

x− x0

x1 − x0

x− x2

x1 − x2
+ f2

x− x0

x2 − x0

x− x1

x2 − x1

)

dx= · · ·= h

3
( f0 +4 f1 + f2) .

2 We focus on the interval [xi−1,xi] and define mi = (xi−1+xi)/2. We note that the Taylor series for

f around the midpoint mi is given by f (x) = f (mi)+(x−mi) f ′(mi)+
1
2
(x−mi)

2 f ′′(mi)+
1
3!
(x−

mi)
3 f ′′′(mi)+

1
4!
(x−mi)

4 f (4)(mi)+ · · · . Hence,
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R0(h) = T (h) =
∫ 1

0
f (x)dx+ c2h2 + c4h4 + c6h6 + · · · .

Note that T (h) is second-order accurate. We consider

R0(2h) = T (2h) =
∫ 1

0
f (x)dx+ c2(2h)2 + c4(2h)4 + c6(2h)6 + · · ·

=
∫ 1

0
f (x)dx+4c2h2 +16c4h4 +64c6h6 + · · · .

By subtraction we obtain

4R0(h)−R0(2h) = 3

∫ 1

0
f (x)dx−3 ·4c4h4 −3 ·20c6h6 + · · · .

We define

R1(h) =
1

3
(4R0(h)−R0(2h)) = R0(h)+

1

3
(R0(h)−R0(2h)) .

We see that R1(h) is 4th order accurate. That is,

R1(h) =
∫ 1

0
f (x)dx+ c̃4h4 + c̃6h6 + · · · .

We further consider

R1(2h) =
∫ 1

0
f (x)dx+ c̃4(2h)4 + c̃6(2h)6 + · · ·

=
∫ 1

0
f (x)dx+16c̃4h4 +64c̃6h6 + · · · .

h

2
( f (xi−1)+ f (xi))−

∫ xi

xi−1

f (x)dx =
h

2

(

2 f (mi)+0+
f ′′(mi)

4
+0+

f (4)(mi)

192
h4 + · · ·

)

−
(

h f (mi)+0+
f ′′(mi)

24
h3 +0+

f (4)(mi)

1920
h5 + · · ·

)

=
f ′′(mi)

12
h3 +

f (4)(mi)

480
h5 + · · · .

Thus,

T (h)−
∫ 1

0
f (x)dx =

n

∑
i=1

(

f ′′(mi)

12
h3 +

f (4)(mi)

480
h5 + · · ·

)

=
1

12

∑n
i=1 f ′′(mi)

n
nh3 +

1

480

∑n
i=1 f (4)(mi)

n
nh5 + · · ·

=
1

12

[

f ′′(mi)
]

ave
h2 +

1

480

[

f (4)(mi)
]

ave
h4 + · · · ,

where we used n = 1/h. Note that only even powers appear in the error.
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By subtraction we have

16R1(h)−R1(2h) = 15

∫ 1

0
f (x)dx−15 · 16

5
c̃6h6 + · · · .

We introduce

R2(h) =
1

15
(16R1(h)−R1(2h)) = R1(h)+

1

15
(R1(h)−R1(2h)) .

Thus R2(h) is 6th order accurate. By repeating this procedure we can make better

formulae. We obtain

Rk(h) =
1

4k −1

(

4kRk−1(h)−Rk−1(2h)
)

, k = 1,2, . . . .

For example,

R3(h) =
1

63
(64R2(h)−R2(2h)) .

Example 1. Let us consider

∫ 1

0
e−x2

dx = 0.7468 . . . ,

with uniform points:

xi = ih, h =
1

n
, i = 0,1, . . . ,n.

By Richardson extrapolation we obtain the following numerical results.

h R0(h) R1(h) R2(h) R3(h)
1.0 0.683940 – – –

0.5 0.731370 0.7471800 – –

0.25 0.742984 0.7468553 0.7468336 –

0.125 0.745866 0.7468266 0.7468246 0.7468244

If we go down a column decreasing h, then we have a fixed order of accuracy. If we

go across a row with a fixed h, then the order of accuracy increases.

Extrapolation can be applied to any numerical approximation if the error has an

expansion in powers of h. Here we used the Richardson extrapolation for numerical

integration (Romberg’s method).
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Orthogonal polynomials

Let us begin by recalling

x ·y = xT y =
n

∑
i=1

xiyi.

Definition 1. The inner product of two functions f ,g on the interval [−1,1] is

defined as

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

Two functions f ,g are said to be orthogonal if 〈 f ,g〉= 0. Also, ‖ f‖=
√

〈 f , f 〉
is called a norm of f .

We have the following properties.

1. 〈 f , f 〉 ≥ 0, ‖ f‖= 0 ⇔ f = 0

2. 〈 f ,αg+h〉= α〈 f ,g〉+ 〈 f ,h〉

Example 2. The functions sin(πx) and cos(πx) are orthogonal because

〈sin(πx),cos(πx)〉=
∫ 1

−1
sin(πx)cos(πx)dx =

1

2

∫ 1

−1
sin(2πx)dx = 0.

The functions 1 and x are orthogonal because

〈1,x〉=
∫ 1

−1
1 · xdx = 0.

The functions 1 and x2 are not orthogonal because

〈1,x2〉=
∫ 1

−1
1 · x2dx =

2

3
6= 0.

From the above examples, we see that if f (x) is even and g(x) is odd (or vice

versa), then f and g are orthogonal (on [−1,1]).
Starting from {1,x,x2, . . .}, the Gram-Schmidt process yields a set of orthogonal

polynomials {P0(x),P1(x),P2(x), . . .} which are called the Legendre polynomials3.

3 A polynomial is said to be monic if its leading coefficient is +1. Legendre polynomials in this

section are monic. However, often Pn(1) = 1 is imposed and we get

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 −1), P3(x) =

1

2
(5x3 −3x), . . . .

By the way, they satisfy the three-term recurrence relation (n + 1)Pn+1(x) = (2n + 1)xPn(x)−
nPn−1(x).
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P0(x) = 1,

P1(x) = x− 〈x,P0〉
‖P0‖2

P0 = x,

P2(x) = x2 − 〈x2,P0〉
‖P0‖2

P0 −
〈x2,P1〉
‖P1‖2

P1 = x2 − 1

3
,

P3(x) = x3 − 〈x3,P0〉
‖P0‖2

P0 −
〈x3,P1〉
‖P1‖2

P1 −
〈x3,P2〉
‖P2‖2

P2 = x3 − 3

5
x,

and so on. Note that they are orthogonal:

〈Pi,Pj〉= 0, i 6= j.

Gaussian quadrature

Here we consider a numerical integral

∫ 1

−1
f (x)dx ≈

n

∑
i=1

wi f (xi),

where wi,xi are chosen such that

∫ 1

−1
p(x)dx =

n

∑
i=1

wi p(xi) (exact!) (6.1)

for any polynomial p(x) of degree ≤ 2n−1.

Let us first try a brute force method.

Example 3. When n = 1, we can write p(x) as

p(x) = a0 +a1x,

where a0,a1 are constants. Then (6.1) is written as

∫ 1

−1
(a0 +a1x)dx = w1 f (x1).

Here,

LHS = 2a0 +0, RHS = w1(a0 +a1x1).

Therefore, we obtain

w1 = 2, x1 = 0.

The one-point Gaussian quadrature is obtained as

∫ 1

−1
f (x)dx ≈ 2 f (0).
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Note that 0 is the midpoint between −1 and 1.

Example 4. For n = 2, we can write

p(x) = a0 +a1x+a2x2 +a3x3.

We have

LHS of (6.1) =
∫ 1

−1
(a0 +a1x+a2x2 +a3x3)dx

= 2a0 +
2

3
a2,

RHS of (6.1) = w1(a0 +a1x1 +a2x2
1 +a3x3

1)+w2(a0 +a1x2 +a2x2
2 +a3x3

2)

= (w1 +w2)a0 +(w1x1 +w2x2)a1 +(w1x2
1 +w2x2

2)a2 +(w1x3
1 +w2x3

2)a3.

Note that we have four unknowns wi,xi and four equations.

w1 +w2 = 2 ⇒ w2 = 2−w1.

w1x1 +w2x2 = 0 ⇒ x2 =
w1

w1 −2
x1.

w1x3
1 +w2x3

2 = 0 ⇒ w1x3
1 +(2−w1)

w3
1

(w1 −2)3
x3

1 = 0 ⇒ w1 = 1.

w1 = 1 ⇒ w2 = 1, x2 =−x1.

w1x2
1 +w2x2

2 =
2

3
⇒ 2x2

1 =
2

3
⇒ x1 =± 1√

3
.

Thus the two-point Gaussian quadrature is obtained as

∫ 1

−1
f (x)dx ≈ f (− 1√

3
)+ f (

1√
3
).

How can we determine wi,xi in general? We begin by the following theorem.

Theorem 1. Pn(x) (n ≥ 1) has n distinct roots x1, . . . ,xn on (−1,1).

Proof. Using the orthogonality relation for Legendre polynomials, we have
∫ 1
−1 Pn(x)dx=

〈Pn,P0〉 = 0. Hence Pn(x) changes sign at least once on (−1,1). We assume that

Pn(x) changes sign j (1 ≤ j ≤ n) times at x1, . . . ,x j on (−1,1). The polynomial

q(x) = (x− x1)(x− x2) · · ·(x− x j) of degree j changes sign at x1, . . . ,xn. This im-

plies that Pn(x) and q(x) have the same signs for all x ∈ (−1,1) or have the op-

posite signs for all x. In either case, 〈Pn,q〉 =
∫ 1
−1 Pn(x)q(x)dx 6= 0. Thus the de-

gree of q(x) is ≥ n because we can write q(x) = ∑
j
i=0 ciPi(x) with some ci and

〈Pn,q〉= ∑
j
i=0 ci〈Pn,Pi〉= 0 if j < n. However, j ≤ n. Therefore we conclude j = n.

That is, Pn(x) has n distinct roots.

Let us consider how we can determine wi,xi (1≤ i≤ n). First we choose x1, . . . ,xn

from the roots of Pn(x). To determine wi we consider the following two cases.
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Case 1:

Let p(x) be a polynomial of degree ≤ n−1. Using the Lagrange form, we can write

p(x) =
n

∑
i=1

p(xi)Li(x),

where Li(x) are Lagrange interpolating polynomials:

Li(x) =
n

∏
j=1
j 6=i

x− x j

xi − x j

.

We then obtain
∫ 1

−1
p(x)dx =

n

∑
i=1

p(xi)
∫ 1

−1
Li(x)dx

By setting

wi =
∫ 1

−1
Li(x)dx, (6.2)

we obtain (6.1).

Case 2:

Let p(x) be a polynomial of degree ≤ 2n−1. We can express p as

p(x) = q(x)Pn(x)+ r(x),

where the quotient q(x) and the remainder r(x) are polynomials of degree ≤ n−1.

We have

∫ 1

−1
p(x)dx =

∫ 1

−1
q(x)Pn(x)dx+

∫ 1

−1
r(x)dx = 〈q,Pn〉+

∫ 1

−1
r(x)dx =

∫ 1

−1
r(x)dx,

where we used the fact that by writing q(x) = ∑n−1
i=0 ciPi(x) with some ci, we get

〈q,Pn〉=
n−1

∑
i=0

ci〈Pi,Pn〉= 0.

Since r(x) is a polynomial of degree ≤ n−1, by Case 1, we have

∫ 1

−1
r(x)dx =

n

∑
i=1

wir(xi).

We note that since Pn(xi) = 0 (1 ≤ i ≤ n),
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p(xi) = q(xi)Pn(xi)+ r(xi) = r(xi).

Therefore,
∫ 1

−1
p(x)dx =

n

∑
i=1

wi p(xi),

where wi are given in (6.2).

By Gaussian quadrature, we have

∫ 1

−1
f (x)dx ≈

n

∑
i=1

wi f (xi), wi =
∫ 1

−1
Li(x)dx, Pn(xi) = 0, i = 1,2, . . . ,n,

where Li(x) are Lagrange interpolating polynomials.

We don’t have to calculate wi,xi for every f (x). We can prepare the following

table.

n xi wi

1 0 2

2 − 1√
3

, 1√
3

1

3 −
√

3
5

,0,

√

3
5

5
9

, 8
9

, 5
9

4 −
√

3+2
√

6/5

7
, −
√

3−2
√

6/5

7
,

√

3−2
√

6/5

7
,

√

3+2
√

6/5

7
18−

√
30

36
, 18+

√
30

36
, 18+

√
30

36
, 18−

√
30

36
.
.
.

.

.

.
.
.
.

Example 5. Let us compute

∫ 1

0
e−x2

dx by Gaussian quadrature. By changing the

variable as t = 2x−1, we have

∫ 1

0
e−x2

dx =
∫ 1

−1
exp

[

−
(

t +1

2

)2
]

dt

2
= 0.746824 . . . .

We compute Gn = ∑n
i=1 wi f (xi) for different n. Recall T (0.125) = 0.745866 (n = 8)

with the trapezoid rule. Gaussian quadrature is more accurate than the trapezoid

rule.

n Gn

1 0.778801

2 0.746595

3 0.746815

4 0.746824
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Theorem 2. The error for Gaussian quadrature is given as follows.

∫ 1

−1
f (x)dx−

n

∑
i=1

wi f (xi) =
αn

a2
n(2n)!

f (2n)(ξ ),

where αn =
∫ 1
−1 P2

n (x)dx, an is the leading coefficient of Pn(x), and ξ ∈ [−1,1].

Proof. See Exercises 31 and 32 in Section 6.6 of the textbook.

As the final comment, we note that Gaussian quadrature can be extended to other

orthogonal polynomials such as Laguerre polynomials, Hermite polynomials, and

Chebyshev polynomials.


