Chapter 6
 Numerical integration

Let us consider numerical integration such as

$$
\int_{0}^{1} f(x) \mathrm{d} x \approx \sum_{i=0}^{n} w_{i} f_{i}
$$

where w_{i} are coefficients and $f_{i}=f\left(x_{i}\right)$ for $x_{i}(i=0,1, \ldots, n)$.

Trapezoid rule

Let us consider

$$
\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x=0.7468 \ldots
$$

with uniform points:

$$
x_{i}=i h, \quad h=\frac{1}{n}, \quad i=0,1, \ldots, n
$$

Probably the most naive implementation is the (right-hand) Riemann sum:

$$
\int f(x) \mathrm{d} x \approx R(h)=f_{1} h+f_{2} h+\cdots+f_{n} h=\left(f_{1}+f_{2}+\cdots+f_{n}\right) h .
$$

In the present example, we have

h	$R(h)$	error	error $/ h$	error $/ h^{2}$
1	0.3679	0.3789	0.3789	0.3789
0.5	0.5733	0.1735	0.3470	0.6939
0.25	0.6640	0.0829	0.3314	1.3257
0.125	0.7064	0.0405	0.3237	2.5898

We see that the error is order h and the method is first-order accurate.
The trapezoid rule is given by

Fall 2013 Math 471 Sec 2
Introduction to Numerical Methods
Manabu Machida (University of Michigan)

$$
\begin{aligned}
\int f(x) \mathrm{d} x \approx T(h) & =\frac{1}{2}\left(f_{0}+f_{1}\right) h+\frac{1}{2}\left(f_{1}+f_{2}\right) h+\cdots+\frac{1}{2}\left(f_{n-1}+f_{n}\right) h \\
& =\left(\frac{1}{2} f_{0}+f_{1}+f_{2}+\cdots+f_{n-1}+\frac{1}{2} f_{n}\right) h .
\end{aligned}
$$

We obtain

h	$T(h)$	error	error $/ h$	error $/ h^{2}$
1	0.6839	0.0629	0.0629	0.0629
0.5	0.7314	0.0155	0.0309	0.0618
0.25	0.7430	0.0038	0.0154	0.0614
0.125	0.7459	0.0010	0.0077	0.0613

We see that the error is $O\left(h^{2}\right)$ and it is second-order accurate.
It is a natural question how we can obtain more accurate integration formulae.

1. piecewise quadratic interpolant (Simpson's rule) ${ }^{1}$
2. cubic spline interpolant
3. non-uniform points (e.g., Chebyshev)
4. extrapolation

We will explore the last option in the next section.

Richardson extrapolation (Romberg's method)

We first define $R_{0}(h)$ as 2
${ }^{1}$ For $n=2 m$ uniform points $x_{0}, x_{1}, \ldots, x_{2 m}$, Simpson's rule is given as follows.

$$
\begin{aligned}
\int f(x) \mathrm{d} x & \approx \frac{2 h}{6}\left(f_{0}+4 f_{1}+f_{2}\right)+\frac{2 h}{6}\left(f_{2}+4 f_{3}+f_{4}\right)+\frac{2 h}{6}\left(f_{4}+4 f_{5}+f_{6}\right)+\cdots+\frac{2 h}{6}\left(f_{2 m-2}+4 f_{2 m-1}+f_{2 m}\right) \\
& =\frac{h}{3}\left(f_{0}+4 \sum_{j=1}^{m} f_{2 j-1}+2 \sum_{j=1}^{m-1} f_{2 j}+f_{2 m}\right)
\end{aligned}
$$

We note that using the Lagrange form
$\int_{x_{0}}^{x_{2}} p_{2}(x) \mathrm{d} x=\int_{x_{0}}^{x_{2}}\left(f_{0} \frac{x-x_{1}}{x_{0}-x_{1}} \frac{x-x_{2}}{x_{0}-x_{2}}+f_{1} \frac{x-x_{0}}{x_{1}-x_{0}} \frac{x-x_{2}}{x_{1}-x_{2}}+f_{2} \frac{x-x_{0}}{x_{2}-x_{0}} \frac{x-x_{1}}{x_{2}-x_{1}}\right) \mathrm{d} x=\cdots=\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)$.

[^0]$$
R_{0}(h)=T(h)=\int_{0}^{1} f(x) \mathrm{d} x+c_{2} h^{2}+c_{4} h^{4}+c_{6} h^{6}+\cdots
$$

Note that $T(h)$ is second-order accurate. We consider

$$
\begin{aligned}
R_{0}(2 h)=T(2 h) & =\int_{0}^{1} f(x) \mathrm{d} x+c_{2}(2 h)^{2}+c_{4}(2 h)^{4}+c_{6}(2 h)^{6}+\cdots \\
& =\int_{0}^{1} f(x) \mathrm{d} x+4 c_{2} h^{2}+16 c_{4} h^{4}+64 c_{6} h^{6}+\cdots
\end{aligned}
$$

By subtraction we obtain

$$
4 R_{0}(h)-R_{0}(2 h)=3 \int_{0}^{1} f(x) \mathrm{d} x-3 \cdot 4 c_{4} h^{4}-3 \cdot 20 c_{6} h^{6}+\cdots
$$

We define

$$
R_{1}(h)=\frac{1}{3}\left(4 R_{0}(h)-R_{0}(2 h)\right)=R_{0}(h)+\frac{1}{3}\left(R_{0}(h)-R_{0}(2 h)\right) .
$$

We see that $R_{1}(h)$ is 4th order accurate. That is,

$$
R_{1}(h)=\int_{0}^{1} f(x) \mathrm{d} x+\tilde{c}_{4} h^{4}+\tilde{c}_{6} h^{6}+\cdots
$$

We further consider

$$
\begin{aligned}
R_{1}(2 h) & =\int_{0}^{1} f(x) \mathrm{d} x+\tilde{c}_{4}(2 h)^{4}+\tilde{c}_{6}(2 h)^{6}+\cdots \\
& =\int_{0}^{1} f(x) \mathrm{d} x+16 \tilde{c}_{4} h^{4}+64 \tilde{c}_{6} h^{6}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
\frac{h}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)-\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x & =\frac{h}{2}\left(2 f\left(m_{i}\right)+0+\frac{f^{\prime \prime}\left(m_{i}\right)}{4}+0+\frac{f^{(4)}\left(m_{i}\right)}{192} h^{4}+\cdots\right) \\
& -\left(h f\left(m_{i}\right)+0+\frac{f^{\prime \prime}\left(m_{i}\right)}{24} h^{3}+0+\frac{f^{(4)}\left(m_{i}\right)}{1920} h^{5}+\cdots\right) \\
& =\frac{f^{\prime \prime}\left(m_{i}\right)}{12} h^{3}+\frac{f^{(4)}\left(m_{i}\right)}{480} h^{5}+\cdots .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
T(h)-\int_{0}^{1} f(x) \mathrm{d} x & =\sum_{i=1}^{n}\left(\frac{f^{\prime \prime}\left(m_{i}\right)}{12} h^{3}+\frac{f^{(4)}\left(m_{i}\right)}{480} h^{5}+\cdots\right) \\
& =\frac{1}{12} \frac{\sum_{i=1}^{n} f^{\prime \prime}\left(m_{i}\right)}{n} n h^{3}+\frac{1}{480} \frac{\sum_{i=1}^{n} f^{(4)}\left(m_{i}\right)}{n} n h^{5}+\cdots \\
& =\frac{1}{12}\left[f^{\prime \prime}\left(m_{i}\right)\right]_{\mathrm{ave}} h^{2}+\frac{1}{480}\left[f^{(4)}\left(m_{i}\right)\right]_{\mathrm{ave}} h^{4}+\cdots,
\end{aligned}
$$

where we used $n=1 / h$. Note that only even powers appear in the error.

By subtraction we have

$$
16 R_{1}(h)-R_{1}(2 h)=15 \int_{0}^{1} f(x) \mathrm{d} x-15 \cdot \frac{16}{5} \tilde{c}_{6} h^{6}+\cdots
$$

We introduce

$$
R_{2}(h)=\frac{1}{15}\left(16 R_{1}(h)-R_{1}(2 h)\right)=R_{1}(h)+\frac{1}{15}\left(R_{1}(h)-R_{1}(2 h)\right)
$$

Thus $R_{2}(h)$ is 6 th order accurate. By repeating this procedure we can make better formulae. We obtain

$$
R_{k}(h)=\frac{1}{4^{k}-1}\left(4^{k} R_{k-1}(h)-R_{k-1}(2 h)\right), \quad k=1,2, \ldots
$$

For example,

$$
R_{3}(h)=\frac{1}{63}\left(64 R_{2}(h)-R_{2}(2 h)\right)
$$

Example 1. Let us consider

$$
\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x=0.7468 \ldots
$$

with uniform points:

$$
x_{i}=i h, \quad h=\frac{1}{n}, \quad i=0,1, \ldots, n
$$

By Richardson extrapolation we obtain the following numerical results.

h	$R_{0}(h)$	$R_{1}(h)$	$R_{2}(h)$	$R_{3}(h)$
1.0	0.683940	-	-	-
0.5	0.731370	0.7471800	-	-
0.25	0.742984	0.7468553	0.7468336	-
0.125	0.745866	0.7468266	0.7468246	0.7468244

If we go down a column decreasing h, then we have a fixed order of accuracy. If we go across a row with a fixed h, then the order of accuracy increases.

Extrapolation can be applied to any numerical approximation if the error has an expansion in powers of h. Here we used the Richardson extrapolation for numerical integration (Romberg's method).

Orthogonal polynomials

Let us begin by recalling

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Definition 1. The inner product of two functions f, g on the interval $[-1,1]$ is defined as

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \mathrm{d} x
$$

Two functions f, g are said to be orthogonal if $\langle f, g\rangle=0$. Also, $\|f\|=\sqrt{\langle f, f\rangle}$ is called a norm of f.

We have the following properties.

1. $\langle f, f\rangle \geq 0, \quad\|f\|=0 \Leftrightarrow f=0$
2. $\langle f, \alpha g+h\rangle=\alpha\langle f, g\rangle+\langle f, h\rangle$

Example 2. The functions $\sin (\pi x)$ and $\cos (\pi x)$ are orthogonal because

$$
\langle\sin (\pi x), \cos (\pi x)\rangle=\int_{-1}^{1} \sin (\pi x) \cos (\pi x) \mathrm{d} x=\frac{1}{2} \int_{-1}^{1} \sin (2 \pi x) \mathrm{d} x=0
$$

The functions 1 and x are orthogonal because

$$
\langle 1, x\rangle=\int_{-1}^{1} 1 \cdot x \mathrm{~d} x=0
$$

The functions 1 and x^{2} are not orthogonal because

$$
\left\langle 1, x^{2}\right\rangle=\int_{-1}^{1} 1 \cdot x^{2} \mathrm{~d} x=\frac{2}{3} \neq 0 .
$$

From the above examples, we see that if $f(x)$ is even and $g(x)$ is odd (or vice versa), then f and g are orthogonal (on $[-1,1]$).

Starting from $\left\{1, x, x^{2}, \ldots\right\}$, the Gram-Schmidt process yields a set of orthogonal polynomials $\left\{P_{0}(x), P_{1}(x), P_{2}(x), \ldots\right\}$ which are called the Legendre polynomials ${ }^{3}$.

[^1]\[

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x-\frac{\left\langle x, P_{0}\right\rangle}{\left\|P_{0}\right\|^{2}} P_{0}=x, \\
& P_{2}(x)=x^{2}-\frac{\left\langle x^{2}, P_{0}\right\rangle}{\left\|P_{0}\right\|^{2}} P_{0}-\frac{\left\langle x^{2}, P_{1}\right\rangle}{\left\|P_{1}\right\|^{2}} P_{1}=x^{2}-\frac{1}{3} \\
& P_{3}(x)=x^{3}-\frac{\left\langle x^{3}, P_{0}\right\rangle}{\left\|P_{0}\right\|^{2}} P_{0}-\frac{\left\langle x^{3}, P_{1}\right\rangle}{\left\|P_{1}\right\|^{2}} P_{1}-\frac{\left\langle x^{3}, P_{2}\right\rangle}{\left\|P_{2}\right\|^{2}} P_{2}=x^{3}-\frac{3}{5} x,
\end{aligned}
$$
\]

and so on. Note that they are orthogonal:

$$
\left\langle P_{i}, P_{j}\right\rangle=0, \quad i \neq j
$$

Gaussian quadrature

Here we consider a numerical integral

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where w_{i}, x_{i} are chosen such that

$$
\begin{equation*}
\int_{-1}^{1} p(x) \mathrm{d} x=\sum_{i=1}^{n} w_{i} p\left(x_{i}\right) \quad \text { (exact!) } \tag{6.1}
\end{equation*}
$$

for any polynomial $p(x)$ of degree $\leq 2 n-1$.
Let us first try a brute force method.
Example 3. When $n=1$, we can write $p(x)$ as

$$
p(x)=a_{0}+a_{1} x
$$

where a_{0}, a_{1} are constants. Then (6.1) is written as

$$
\int_{-1}^{1}\left(a_{0}+a_{1} x\right) \mathrm{d} x=w_{1} f\left(x_{1}\right) .
$$

Here,

$$
\mathrm{LHS}=2 a_{0}+0, \quad \text { RHS }=w_{1}\left(a_{0}+a_{1} x_{1}\right) .
$$

Therefore, we obtain

$$
w_{1}=2, \quad x_{1}=0
$$

The one-point Gaussian quadrature is obtained as

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx 2 f(0)
$$

Note that 0 is the midpoint between -1 and 1 .
Example 4. For $n=2$, we can write

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} .
$$

We have

$$
\begin{aligned}
\text { LHS of (6.1) } & =\int_{-1}^{1}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) \mathrm{d} x \\
& =2 a_{0}+\frac{2}{3} a_{2}
\end{aligned}
$$

RHS of (6.1) $=w_{1}\left(a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}\right)+w_{2}\left(a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}\right)$

$$
=\left(w_{1}+w_{2}\right) a_{0}+\left(w_{1} x_{1}+w_{2} x_{2}\right) a_{1}+\left(w_{1} x_{1}^{2}+w_{2} x_{2}^{2}\right) a_{2}+\left(w_{1} x_{1}^{3}+w_{2} x_{2}^{3}\right) a_{3}
$$

Note that we have four unknowns w_{i}, x_{i} and four equations.

$$
\begin{gathered}
w_{1}+w_{2}=2 \quad \Rightarrow \quad w_{2}=2-w_{1} . \\
w_{1} x_{1}+w_{2} x_{2}=0 \quad \Rightarrow \quad x_{2}=\frac{w_{1}}{w_{1}-2} x_{1} . \\
w_{1} x_{1}^{3}+w_{2} x_{2}^{3}=0 \Rightarrow w_{1} x_{1}^{3}+\left(2-w_{1}\right) \frac{w_{1}^{3}}{\left(w_{1}-2\right)^{3}} x_{1}^{3}=0 \quad \Rightarrow \quad w_{1}=1 . \\
w_{1}=1 \quad \Rightarrow \quad w_{2}=1, \quad x_{2}=-x_{1} . \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2}=\frac{2}{3} \quad \Rightarrow \quad 2 x_{1}^{2}=\frac{2}{3} \quad \Rightarrow \quad x_{1}= \pm \frac{1}{\sqrt{3}} .
\end{gathered}
$$

Thus the two-point Gaussian quadrature is obtained as

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) .
$$

How can we determine w_{i}, x_{i} in general? We begin by the following theorem.
Theorem 1. $P_{n}(x)(n \geq 1)$ has n distinct roots x_{1}, \ldots, x_{n} on $(-1,1)$.
Proof. Using the orthogonality relation for Legendre polynomials, we have $\int_{-1}^{1} P_{n}(x) \mathrm{d} x=$ $\left\langle P_{n}, P_{0}\right\rangle=0$. Hence $P_{n}(x)$ changes sign at least once on $(-1,1)$. We assume that $P_{n}(x)$ changes sign $j(1 \leq j \leq n)$ times at x_{1}, \ldots, x_{j} on $(-1,1)$. The polynomial $q(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{j}\right)$ of degree j changes sign at x_{1}, \ldots, x_{n}. This implies that $P_{n}(x)$ and $q(x)$ have the same signs for all $x \in(-1,1)$ or have the opposite signs for all x. In either case, $\left\langle P_{n}, q\right\rangle=\int_{-1}^{1} P_{n}(x) q(x) \mathrm{d} x \neq 0$. Thus the degree of $q(x)$ is $\geq n$ because we can write $q(x)=\sum_{i=0}^{j} c_{i} P_{i}(x)$ with some c_{i} and $\left\langle P_{n}, q\right\rangle=\sum_{i=0}^{j} c_{i}\left\langle P_{n}, P_{i}\right\rangle=0$ if $j<n$. However, $j \leq n$. Therefore we conclude $j=n$. That is, $P_{n}(x)$ has n distinct roots.

Let us consider how we can determine $w_{i}, x_{i}(1 \leq i \leq n)$. First we choose x_{1}, \ldots, x_{n} from the roots of $P_{n}(x)$. To determine w_{i} we consider the following two cases.

Case 1:

Let $p(x)$ be a polynomial of degree $\leq n-1$. Using the Lagrange form, we can write

$$
p(x)=\sum_{i=1}^{n} p\left(x_{i}\right) L_{i}(x),
$$

where $L_{i}(x)$ are Lagrange interpolating polynomials:

$$
L_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

We then obtain

$$
\int_{-1}^{1} p(x) \mathrm{d} x=\sum_{i=1}^{n} p\left(x_{i}\right) \int_{-1}^{1} L_{i}(x) \mathrm{d} x
$$

By setting

$$
\begin{equation*}
w_{i}=\int_{-1}^{1} L_{i}(x) \mathrm{d} x \tag{6.2}
\end{equation*}
$$

we obtain (6.1).

Case 2:

Let $p(x)$ be a polynomial of degree $\leq 2 n-1$. We can express p as

$$
p(x)=q(x) P_{n}(x)+r(x),
$$

where the quotient $q(x)$ and the remainder $r(x)$ are polynomials of degree $\leq n-1$. We have

$$
\int_{-1}^{1} p(x) \mathrm{d} x=\int_{-1}^{1} q(x) P_{n}(x) \mathrm{d} x+\int_{-1}^{1} r(x) \mathrm{d} x=\left\langle q, P_{n}\right\rangle+\int_{-1}^{1} r(x) \mathrm{d} x=\int_{-1}^{1} r(x) \mathrm{d} x
$$

where we used the fact that by writing $q(x)=\sum_{i=0}^{n-1} c_{i} P_{i}(x)$ with some c_{i}, we get

$$
\left\langle q, P_{n}\right\rangle=\sum_{i=0}^{n-1} c_{i}\left\langle P_{i}, P_{n}\right\rangle=0
$$

Since $r(x)$ is a polynomial of degree $\leq n-1$, by Case 1 , we have

$$
\int_{-1}^{1} r(x) \mathrm{d} x=\sum_{i=1}^{n} w_{i} r\left(x_{i}\right) .
$$

We note that since $P_{n}\left(x_{i}\right)=0(1 \leq i \leq n)$,

$$
p\left(x_{i}\right)=q\left(x_{i}\right) P_{n}\left(x_{i}\right)+r\left(x_{i}\right)=r\left(x_{i}\right) .
$$

Therefore,

$$
\int_{-1}^{1} p(x) \mathrm{d} x=\sum_{i=1}^{n} w_{i} p\left(x_{i}\right)
$$

where w_{i} are given in (6.2).

By Gaussian quadrature, we have

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right), \quad w_{i}=\int_{-1}^{1} L_{i}(x) \mathrm{d} x, \quad P_{n}\left(x_{i}\right)=0, \quad i=1,2, \ldots, n
$$

where $L_{i}(x)$ are Lagrange interpolating polynomials.

We don't have to calculate w_{i}, x_{i} for every $f(x)$. We can prepare the following table.

Example 5. Let us compute $\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ by Gaussian quadrature. By changing the variable as $t=2 x-1$, we have

$$
\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\int_{-1}^{1} \exp \left[-\left(\frac{t+1}{2}\right)^{2}\right] \frac{\mathrm{d} t}{2}=0.746824 \ldots
$$

We compute $G_{n}=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$ for different n. Recall $T(0.125)=0.745866(n=8)$ with the trapezoid rule. Gaussian quadrature is more accurate than the trapezoid rule.

n	G_{n}
1	0.778801
2	0.746595
3	0.746815
4	0.746824

Theorem 2. The error for Gaussian quadrature is given as follows.

$$
\int_{-1}^{1} f(x) \mathrm{d} x-\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)=\frac{\alpha_{n}}{a_{n}^{2}(2 n)!} f^{(2 n)}(\xi)
$$

where $\alpha_{n}=\int_{-1}^{1} P_{n}^{2}(x) \mathrm{d} x, a_{n}$ is the leading coefficient of $P_{n}(x)$, and $\xi \in[-1,1]$.
Proof. See Exercises 31 and 32 in Section 6.6 of the textbook.
As the final comment, we note that Gaussian quadrature can be extended to other orthogonal polynomials such as Laguerre polynomials, Hermite polynomials, and Chebyshev polynomials.

[^0]: ${ }^{2}$ We focus on the interval $\left[x_{i-1}, x_{i}\right]$ and define $m_{i}=\left(x_{i-1}+x_{i}\right) / 2$. We note that the Taylor series for f around the midpoint m_{i} is given by $f(x)=f\left(m_{i}\right)+\left(x-m_{i}\right) f^{\prime}\left(m_{i}\right)+\frac{1}{2}\left(x-m_{i}\right)^{2} f^{\prime \prime}\left(m_{i}\right)+\frac{1}{3!}(x-$ $\left.m_{i}\right)^{3} f^{\prime \prime \prime}\left(m_{i}\right)+\frac{1}{4!}\left(x-m_{i}\right)^{4} f^{(4)}\left(m_{i}\right)+\cdots$. Hence,

[^1]: ${ }^{3}$ A polynomial is said to be monic if its leading coefficient is +1 . Legendre polynomials in this section are monic. However, often $P_{n}(1)=1$ is imposed and we get

 $$
 P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \ldots .
 $$

 By the way, they satisfy the three-term recurrence relation $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-$ $n P_{n-1}(x)$.

