Chapter 5

Interpolation

Polynomial approximation

Let us consider an integral of a given function $f(x)$. We want to approximate $f(x)$ by a polynomial $p_{n}(x)$ of degree n :

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \int_{a}^{b} p_{n}(x) \mathrm{d} x
$$

One way to find such an approximation is to use the Taylor series:

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example 1. The function $f(x)=\frac{1}{1+9 x^{2}}$ is easy to expand if we recall that ($1-$ $r)\left(1+r+r^{2}+\cdots\right)=1$ and so, the geometric series $\frac{1}{1-r}=1+r+r^{2}+\cdots$ converges for $|r|<1$. We obtain

$$
\frac{1}{1+9 x^{2}}=\frac{1}{1-\left(-9 x^{2}\right)}=1+\left(-9 x^{2}\right)+\left(-9 x^{2}\right)^{2}+\cdots \quad \text { for }|x|<1 / 3
$$

In this case, we have $p_{0}=1, p_{2}=1-9 x^{2}, p_{4}=1-9 x^{2}+81 x^{4}$, and so on.
The Taylor polynomial $p_{n}(x)$ is a good approximation to $f(x)$ when x is close to a. In general, however, we need to consider other methods.

Polynomial interpolation

Theorem 1. Let $x_{0}, x_{1}, \ldots, x_{n}$ be $n+1$ distinct points. Then there exists a unique polynomial $p_{n}(x)$ of degree $\leq n$ which interpolates a given function $f(x)$ at the given points such that

$$
\begin{equation*}
p_{n}\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { for } i=0,1, \ldots, n . \tag{5.1}
\end{equation*}
$$

Fall 2013 Math 471 Sec 2
Introduction to Numerical Methods
Manabu Machida (University of Michigan)

Example 2. If $n=1$ and we give x_{0}, x_{1}, we can choose the polynomial p_{1} as

$$
p_{1}(x)=f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right) .
$$

In general $f(x)$ and $p_{1}(x)$ are different, but they agree at the given points, i.e., $p_{1}\left(x_{0}\right)=f\left(x_{0}\right)$ and $p_{2}\left(x_{1}\right)=f\left(x_{1}\right)$.
Definition 1. The k th $(k=0,1, \ldots, n)$ Lagrange polynomial is a polynomial of degree n defined by

$$
L_{k}(x)=\prod_{\substack{i=0 \\ i \neq k}}^{n}\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right) .
$$

Remark 1. We note that $L_{k}\left(x_{i}\right)=\delta_{i k}$ for $i=0,1, \ldots, n$.

For a given $f(x)$, the Lagrange form of the interpolating polynomial is given by

$$
p_{n}(x)=f\left(x_{0}\right) L_{0}(x)+f\left(x_{1}\right) L_{1}(x)+\cdots+f\left(x_{n}\right) L_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}(x)
$$

Remark 2. Note that $p_{n}\left(x_{i}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}\left(x_{i}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) \delta_{i k}=f\left(x_{i}\right)$ for $i=$ $0,1, \ldots, n$.
Example 3. For $n=1$, we have

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

and

$$
\begin{aligned}
p_{1}(x) & =f\left(x_{0}\right) L_{0}(x)+f\left(x_{1}\right) L_{1}(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} \\
& =f\left(x_{0}\right) \frac{x_{0}-x_{1}+x-x_{1}-\left(x_{0}-x_{1}\right)}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} \\
& =f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right) .
\end{aligned}
$$

Example 4. We consider the case $n=2$ and for simplicity set $x_{0}=-1, x_{1}=0, x_{2}=1$. We have

$$
\begin{gathered}
L_{0}(x)=\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)\left(\frac{x-x_{2}}{x_{0}-x_{2}}\right)=\frac{(x-0)(x-1)}{(-1-0)(-1-1)}=\frac{1}{2} x^{2}-\frac{1}{2} x, \\
L_{1}(x)=\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)\left(\frac{x-x_{2}}{x_{1}-x_{2}}\right)=\frac{(x-(-1))(x-1)}{(0-(-1))(0-1)}=-x^{2}+1,
\end{gathered}
$$

$$
L_{2}(x)=\left(\frac{x-x_{0}}{x_{2}-x_{0}}\right)\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right)=\frac{(x-(-1))(x-0)}{(1-(-1))(1-0)}=\frac{1}{2} x^{2}+\frac{1}{2} x .
$$

Hence,

$$
\begin{aligned}
p_{2}(x) & =f(-1)\left(\frac{1}{2} x^{2}-\frac{1}{2} x\right)+f(0)\left(-x^{2}+1\right)+f(1)\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right) \\
& =\frac{f(-1)-2 f(0)+f(1)}{2} x^{2}+\frac{f(1)-f(-1)}{2} x+f(0) .
\end{aligned}
$$

In particular if $f(x)=\frac{1}{1+9 x^{2}}$, then

$$
\begin{equation*}
p_{2}(x)=\frac{\frac{1}{10}-2(1)+\frac{1}{10}}{2} x^{2}+\frac{\frac{1}{10}-\frac{1}{10}}{2} x+1=-\frac{9}{10} x^{2}+1 . \tag{5.2}
\end{equation*}
$$

Note that $1-9 x^{2}$ in the previous section satisfies $1-9(0)^{2}=f(0)$ but has $1-$ $9(\pm 1)^{2}=-8 \neq f(\pm 1)$.
Remark 3. The interpolating polynomial $p_{n}(x)$ is unique, but $p_{n}(x)$ can be written in different forms.

Newton's form

We can rewrite the interpolating polynomial $p_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ using the interpolation points x_{0}, \ldots, x_{n-1} as

$$
p_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

This form is called the Newton form. The coefficients are obtained by (5.1):

$$
a_{0}=f\left(x_{0}\right), \quad a_{0}+a_{1}\left(x_{1}-x_{0}\right)=f\left(x_{1}\right), \quad \text { etc. }
$$

To explore the coefficients, let us introduce divided differences.

Definition 2. Let f be a function defined at the distinct points $x_{0}, x_{1}, \ldots, x_{n}$. The k th divided difference $(0 \leq k \leq n)$ with respect to $x_{i}, x_{i+1}, \ldots, x_{i+k}$ is given by

$$
\begin{gathered}
f\left[x_{i}\right]=f\left(x_{i}\right), \\
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k}\right]=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}} .
\end{gathered}
$$

For example, we have
$f\left[x_{0}\right]=f\left(x_{0}\right), \quad f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}, \quad f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}, \quad$ etc.
Theorem 2. The coefficients in Newton form of $p_{n}(x)$ are given by

$$
a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right], \quad k=0,1, \ldots, n .
$$

Therefore we have

$$
p_{n}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\cdots+f\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right) .
$$

Here,

$$
\begin{gathered}
f\left[x_{0}\right]=f\left(x_{0}\right)=a_{0}, \quad f\left[x_{1}\right]=f\left(x_{1}\right), \quad f\left[x_{2}\right]=f\left(x_{2}\right), \quad \text { etc., } \\
f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=a_{1}, \quad f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}, \quad \text { etc. }, \\
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=a_{2}, \quad f\left[x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}, \quad \text { etc. }
\end{gathered}
$$

Proof. Suppose

$$
a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right], \quad k=0,1, \ldots, n-1 .
$$

We introduce polynomials $p_{n-1}(x)$ which interpolates $f(x)$ at x_{0}, \ldots, x_{n-1} and $q_{n-1}(x)$ which interpolates $f(x)$ at x_{1}, \ldots, x_{n}. The degrees of p_{n-1} and q_{n-1} are at most $n-1$. Hence,

$$
\begin{aligned}
p_{n-1}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\cdots+f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-2}\right), \\
q_{n-1}(x) & =f\left[x_{1}\right]+f\left[x_{1}, x_{2}\right]\left(x-x_{1}\right)+\cdots+f\left[x_{1}, x_{2}, \ldots, x_{n}\right]\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right) .
\end{aligned}
$$

We make $g(x)$ as follows.

$$
g(x)=\frac{x-x_{0}}{x_{n}-x_{0}} q_{n-1}(x)+\frac{x_{n}-x}{x_{n}-x_{0}} p_{n-1}(x) .
$$

Note that

$$
g\left(x_{0}\right)=p_{n-1}\left(x_{0}\right)=f\left(x_{0}\right), \quad g\left(x_{n}\right)=q_{n-1}\left(x_{n}\right)=f\left(x_{n}\right)
$$

and

$$
g\left(x_{k}\right)=\frac{x_{k}-x_{0}}{x_{n}-x_{0}} q_{n-1}\left(x_{k}\right)+\frac{x_{n}-x_{k}}{x_{n}-x_{0}} p_{k}\left(x_{k}\right)=\frac{x_{k}-x_{0}}{x_{n}-x_{0}} f\left(x_{k}\right)+\frac{x_{n}-x_{k}}{x_{n}-x_{0}} f\left(x_{k}\right)=f\left(x_{k}\right),
$$

where $k=1,2, \ldots, n-1$. Therefore,

$$
g(x)=p_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

Using the expression for $g(x)$, we obtain a_{n}, which is the coefficient for x^{n}, as

$$
a_{n}=\frac{f\left[x_{1}, \ldots, x_{n}\right]}{x_{n}-x_{0}}-\frac{f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}=f\left[x_{0}, \ldots, x_{n}\right] .
$$

Indeed $a_{0}=f\left[x_{0}\right]$ for $k=0$. Thus we recursively show that

$$
a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right], \quad k=0,1, \ldots, n
$$

Example 5. For $f(x)=\frac{1}{1+9 x^{2}}, x_{0}=-1, x_{1}=0, x_{2}=1$, we have

$$
p_{2}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) .
$$

Divided differences are computed as follows.

$$
\begin{gathered}
f\left[x_{0}\right]=f(-1)=\frac{1}{10}, \quad f\left[x_{1}\right]=f(0), \quad f\left[x_{2}\right]=f(1), \\
f\left[x_{0}, x_{1}\right]=\frac{f(0)-f(-1)}{0-(-1)}=\frac{9}{10}, \quad f\left[x_{1}, x_{2}\right]=\frac{f(1)-f(0)}{1-0}, \\
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{1-(-1)}=-\frac{9}{10} .
\end{gathered}
$$

Hence,

$$
\begin{equation*}
p_{2}(x)=\frac{1}{10}+\frac{9}{10}(x+1)-\frac{9}{10}(x+1) x \tag{5.3}
\end{equation*}
$$

We can easily check that $(5.2)=(5.3)$.

Optimal interpolation points

We have obtained $p_{2}(x)=-\frac{9}{10} x^{2}+1$ as an interpolating polynomial for $f(x)=$ $\left(1+9 x^{2}\right)^{-1}$. Consider the following integrals.

$$
\begin{align*}
\int_{-1}^{1} f(x) \mathrm{d} x & =\left[\frac{1}{3} \tan ^{-1}(3 x)\right]_{-1}^{1}=\frac{2}{3} \tan ^{-1}(3)=0.832697 \tag{5.4}\\
\int_{-1}^{1} p_{2}(x) \mathrm{d} x & =\frac{7}{5}=1.4
\end{align*}
$$

Thus $p_{2}(x)$ is a poor approximation to $f(x)$. Here we will consider how we can do better.

First, we try increasing n. We have

$$
\begin{aligned}
n=2 & \Rightarrow x_{0}=-1, x_{1}=0, x_{2}=1 \\
n=4 & \Rightarrow x_{0}=-1, x_{1}=-0.5, x_{2}=0, x_{3}=0.5, x_{4}=1 \\
n=8 & \Rightarrow x_{i}=-1+0.25 i, \quad i=0,1, \ldots, 8 \\
n=16 & \Rightarrow x_{i}=-1+0.125 i, \quad i=0,1, \ldots, 16
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \int_{-1}^{1} p_{4}(x) \mathrm{d} x=0.735385 \\
& \int_{-1}^{1} p_{8}(x) \mathrm{d} x=0.738204 \\
& \int_{-1}^{1} p_{16}(x) \mathrm{d} x=0.667583
\end{aligned}
$$

The approximations are still not good.
Given $f(x)$ on $-1 \leq x \leq 1$, we consider two options to choose the interpolation points x_{0}, \ldots, x_{n}. In uniform points, we take x_{i} as

$$
x_{i}=-1+i h, \quad h=\frac{2}{n}, \quad i=0,1, \ldots, n .
$$

We can also choose x_{i} as follows.

Chebyshev points:

$$
x_{i}=-\cos \theta_{i}, \quad \theta_{i}=i h, \quad h=\frac{\pi}{n}, \quad i=0,1, \ldots, n
$$

The Chebyshev points are clustered near the endpoints of the interval.

We have

$$
\begin{aligned}
& n=2 \Rightarrow \theta_{0}=0, \theta_{1}=\frac{\pi}{2}, \theta_{2}=\pi \\
& n=4 \Rightarrow \theta_{0}=0, \theta_{1}=\frac{\pi}{4}, \theta_{2}=\frac{\pi}{2}, \theta_{3}=\frac{3 \pi}{4}, \theta_{4}=\pi \\
& n=8 \Rightarrow \theta_{i}=\frac{i \pi}{8}, \quad i=0,1, \ldots, 8 \\
& n=16 \Rightarrow \theta_{i}=\frac{i \pi}{16}, \quad i=0,1, \ldots, 16 .
\end{aligned}
$$

For these Chebyshev points, we obtain

$$
\begin{align*}
& \int_{-1}^{1} p_{2}(x) \mathrm{d} x=1.4 \\
& \int_{-1}^{1} p_{4}(x) \mathrm{d} x=1.00727 \\
& \int_{-1}^{1} p_{8}(x) \mathrm{d} x=0.844188 \\
& \int_{-1}^{1} p_{16}(x) \mathrm{d} x=0.832759 . \tag{5.5}
\end{align*}
$$

We see that (5.5) $\approx(5.4)$.
Let us look at numerical results. In Fig. 5.1, interpolations for $f(x)=\frac{1}{1+9 x^{2}}$ are shown. Let us also look at results from similar functions. In Fig. 5.2 and Fig. 5.3, we plot interpolations for $f(x)=\frac{1}{1+25 x^{2}}$ and $f(x)=\frac{1}{1+64 x^{2}}$.

Error analysis

Theorem 3. Let $p_{n}(x)$ be the interpolating polynomial for a given smooth function $f(x)$ with interpolation points x_{0}, \ldots, x_{n}. Then for each $x \in\left[x_{0}, x_{n}\right]$ there exists $\xi(x) \in\left[x_{0}, x_{n}\right]$ such that

$$
f(x)=p_{n}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \quad \omega_{n+1}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)
$$

Proof. For each x, we consider

$$
g(t)=f(t)-p_{n}(t)-\left[f(x)-p_{n}(x)\right] \prod_{i=0}^{n} \frac{t-x_{i}}{x-x_{i}}, \quad x_{0} \leq x \leq x_{n}
$$

Note that

$$
g\left(x_{j}\right)=f\left(x_{j}\right)-p_{n}\left(x_{j}\right)-0=0, \quad j=0,1, \ldots, n,
$$

and

$$
g(x)=f(x)-p_{n}(x)-\left[f(x)-p_{n}(x)\right] \cdot 1=0 .
$$

Therefore $g(t)$ has $n+2$ roots on $\left[x_{0}, x_{n}\right]$. By repeatedly using Rolle's theorem ${ }^{1}$, we see that there exists $\xi \in\left[x_{0}, x_{n}\right]$ such that

[^0]

Fig. 5.1 Interpolating polynomials for the function $f(x)=\frac{1}{1+9 x^{2}}$.

$$
g^{(n+1)}(\xi)=0 .
$$

Since $p_{n}(x)$ is a polynomial of degree at most n, we have $p_{n}^{(n+1)}(x)=0$. Furthermore we have

$$
\frac{\mathrm{d}^{n+1}}{\mathrm{~d} t^{n+1}}\left[\prod_{i=0}^{n} \frac{t-x_{i}}{x-x_{i}}\right]=(n+1)!\left[\prod_{i=0}^{n}\left(x-x_{i}\right)\right]^{-1}
$$

Thus,

$$
g^{(n+1)}(\xi)=f^{(n+1)}(\xi)-\left[f(x)-p_{n}(x)\right] \frac{(n+1)!}{\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)}=0
$$

Solving this equation for $f(x)$ completes the proof.

Fig. 5.2 Interpolating polynomials for the function $f(x)=\frac{1}{1+25 x^{2}}$.

Example 6. Let us consider

$$
f(x)=\frac{1}{1+(k x)^{2}}, \quad x \in[-1,1] .
$$

In Fig. $5.1(k=3)$, Fig. $5.2(k=5)$, and Fig. $5.3(k=8)$, we see oscillation near the endpoints for uniform points. This is called the Runge phenomenon. Runge observed that

$$
\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{\infty}=\infty \quad \text { for } k>k_{c}, \quad k_{c} \approx 3.63
$$

Such oscillation is due to $\omega_{n+1}(x)$, takes large absolute values near the endpoints of the interval.

Fig. 5.3 Interpolating polynomials for the function $f(x)=\frac{1}{1+64 x^{2}}$.

Let us try to qualitatively understand the Runge phenomenon, i.e., oscillation near the endpoints in the above example. According to the above-mentioned theorem, the error at x is given by

$$
\left|f(x)-p_{n}(x)\right|=\frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)
$$

Since $\omega_{n+1}(x)$ is a polynomial of degree $n+1,\left|\omega_{n+1}(x)\right| \rightarrow \infty$ as $|x| \rightarrow \infty$. The polynomial $\omega_{n+1}(x)$ has $n+1$ distinct roots between x_{0} and x_{n}, and so $\left|\omega_{n+1}(x)\right|$ doesn't become too big on $\left[x_{0}, x_{n}\right]$. This is the first observation. In Fig. 5.4, we plot $\omega_{5}(x)$, $\omega_{9}(x)$, and $\omega_{17}(x)$ for uniform points and Chebyshev points. For Chebyshev points, many of $x_{0}, x_{1}, \ldots, x_{n}$ come near the endpoints to suppress oscillation. Secondly, let us take a look at $f^{(n+1)}(\xi)$. We consider the polynomial approximation by the

Taylor series. This is not a polynomial interpolation but we expect that qualitative behavior can be captured. We have $\left[1+(k x)^{2}\right]^{-1}=1+\left[-(k x)^{2}\right]+\left[-(k x)^{2}\right]^{2}+\cdots$. Thus we notice that the coefficients get larger and larger for higher-order terms. This implies $\left|f^{(n+1)}(\xi)\right|$ is large for large n. Of course if we consider functions other than $\left[1+(k x)^{2}\right]^{-1},\left|f^{(n+1)}(\xi)\right|$ is not necessarily large. By these considerations, we can qualitatively understand the Runge phenomenon. This is a famous oscillation as well as the Gibbs phenomenon ${ }^{2}$.

Piecewise linear interpolation

Suppose a function $f(x)$ is given on $a \leq x \leq b$. We take $n+1$ distinct points as

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b .
$$

The interpolating polynomial $p_{n}(x)$ may not be a good approximation to $f(x)$ on the entire interval. Therefore we consider the piecewise linear interpolation $q(x)$.

We construct $q(x)$ as follows by making a linear polynomial interpolation in each interval.

$$
q(x)=f\left[x_{i}\right]+f\left[x_{i}, x_{i+1}\right]\left(x-x_{i}\right), \quad \text { on } x_{i} \leq x \leq x_{i+1}
$$

We note that

$$
q\left(x_{i}\right)=f\left(x_{i}\right), \quad i=0,1, \ldots, n .
$$

We also note that $q(x)$ is continuous but it is not necessarily differentiable at $x=x_{i}$. We can estimate the error as follow.
${ }^{2}$ The Gibbs phenomenon is oscillation which shows up at discontinuities. For example, let us consider the function $f(x)$:

$$
f(x)=x-2 n L, \quad \text { on }[(2 n-1) L,(2 n+1) L), \quad n=0, \pm 1, \pm 2, \ldots
$$

We express $f(x)$ with the Fourier series:

$$
f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right),
$$

where

$$
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) \mathrm{d} x, \quad A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x, \quad B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} \mathrm{~d} x .
$$

In practice, the sum is taken up to some finite number N and $\sum_{n=1}^{\infty}$ is replaced by $\sum_{n=1}^{N}$. There appear strong oscillations near discontinuities at $x=(2 n-1) L$ even for large N. This is called the Gibbs phenomenon.

$$
|f(x)-q(x)| \leq \frac{1}{8} \max _{a \leq x \leq b}\left|f^{\prime \prime}(x)\right| \max _{0 \leq i \leq n}\left|x_{i+1}-x_{i}\right|^{2}
$$

Hence $q(x)$ is second-order accurate.

Spline interpolation

Let $x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}$. A cubic spline is a function $s(x)$ satisfying the following conditions. ${ }^{3}$

1. $s(x)$ is a cubic polynomial on each interval $x_{i} \leq x \leq x_{i+1}$.
2. $s(x)$ interpolates $f(x)$ at x_{0}, \ldots, x_{n}.
3. $s(x), s^{\prime}(x), s^{\prime \prime}(x)$ are continuous at the interior points x_{1}, \ldots, x_{n-1}.

Example 7. The function $s(x)$ with $x_{0}=-1, x_{1}=0, x_{2}=1$ below is an example of a cubic spline.

$$
s(x)=\left\{\begin{array}{cc}
0, & -1 \leq x \leq 0 \\
x^{3}, & 0 \leq x \leq 1
\end{array}\right.
$$

We can check that $s(x)$ satisfies the above conditions 1 and 3 .
For given function $f(x)$ and $x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}$, let us consider how we can find the cubic spline $s(x)$ that interpolates $f(x)$ at the given points, i.e., $s\left(x_{i}\right)=f\left(x_{i}\right)$, $(i=0,1, \ldots, n)$.

On each interval $x_{i} \leq x \leq x_{i+1}(i=0,1, \ldots, n-1)$, we can write

$$
s(x)=s_{i}(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

There are $4 n$ unknown coefficients as a total. On each interval, we have two equations $s\left(x_{i}\right)=f\left(x_{i}\right)$ and $s\left(x_{i+1}\right)=f\left(x_{i+1}\right)$, and so there are $2 n$ equations on the entire region. Moreover since $s^{\prime}(x)$ and $s^{\prime \prime}(x)$ must be continuous at $x=x_{1}, \ldots, x_{n-1}$, there are $2(n-1)$ equations. Thus we have $4 n-2$ equations as a total. Hence we can impose two more conditions. Let us choose (although other choices are possible)

$$
s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0
$$

This choice gives the natural cubic spline interpolant.
For uniform points on $[-1,1]$, let us determine the cubic spline. We note that

$$
x_{i}=-1+i h, \quad h=\frac{2}{n}, \quad i=0,1, \ldots, n .
$$

Step 1: We first focus on $s_{i}^{\prime \prime}(x)$. Since $s(x)$ is (at most) of degree $3, s_{i}^{\prime \prime}(x)$ is a linear polynomial. Using unknown constants a_{i}, a_{i+1}, we can write

[^1]$$
s_{i}^{\prime \prime}(x)=a_{i}\left(\frac{x_{i+1}-x}{h}\right)+a_{i+1}\left(\frac{x-x_{i}}{h}\right), \quad i=0,1, \ldots, n-1
$$

Note that $s_{i}^{\prime \prime}\left(x_{i}\right)=a_{i}$ and $s_{i}^{\prime \prime}\left(x_{i+1}\right)=a_{i+1}$. This implies that $s_{i-1}^{\prime \prime}\left(x_{i}\right)=a_{i}=s_{i}^{\prime \prime}\left(x_{i}\right)$.
Thus $s^{\prime \prime}(x)$ is continuous at the interior points x_{1}, \ldots, x_{n-1}.
Step 2: By integrating $s_{i}^{\prime \prime}(x)$ twice, we obtain

$$
\begin{equation*}
s_{i}(x)=\frac{a_{i}\left(x_{i+1}-x\right)^{3}}{6 h}+\frac{a_{i+1}\left(x-x_{i}\right)^{3}}{6 h}+b_{i}\left(\frac{x_{i+1}-x}{h}\right)+c_{i}\left(\frac{x-x_{i}}{h}\right), \tag{5.6}
\end{equation*}
$$

where b_{i}, c_{i} are constants. We have

$$
s_{i}\left(x_{i}\right)=\frac{a_{i} h^{2}}{6}+b_{i}=f_{i}, \quad s_{i}\left(x_{i+1}\right)=\frac{a_{i+1} h^{2}}{6}+c_{i}=f_{i+1} .
$$

Hence,

$$
b_{i}=f_{i}-\frac{a_{i} h^{2}}{6}, \quad c_{i}=f_{i+1}-\frac{a_{i+1} h^{2}}{6} .
$$

Step 3: By differentiating $s_{i}(x)$, we obtain

$$
s_{i}^{\prime}(x)=-\frac{a_{i}\left(x_{i+1}-x\right)^{2}}{2 h}+\frac{a_{i+1}\left(x-x_{i}\right)^{2}}{2 h}+\left(f_{i}-\frac{a_{i} h^{2}}{6}\right) \frac{-1}{h}+\left(f_{i+1}-\frac{a_{i+1} h^{2}}{6}\right) \frac{1}{h} .
$$

Since $s_{i-1}^{\prime}\left(x_{i}\right)=s_{i}^{\prime}\left(x_{i}\right)(i=1, \ldots, n-1)$ must be satisfied, we have

$$
\frac{a_{i} h}{2}-\frac{f_{i-1}}{h}+\frac{a_{i-1} h}{6}+\frac{f_{i}}{h}-\frac{a_{i} h}{6}=-\frac{a_{i} h}{2}-\frac{f_{i}}{h}+\frac{a_{i} h}{6}+\frac{f_{i+1}}{h}-\frac{a_{i+1} h}{6} .
$$

The above equation is summarized as

$$
a_{i-1}+4 a_{i}+a_{i+1}=\frac{6}{h^{2}}\left(f_{i-1}-2 f_{i}+f_{i+1}\right) .
$$

Step 4: Recall that we imposed $s_{0}^{\prime \prime}\left(x_{0}\right)=s_{n-1}^{\prime \prime}\left(x_{n}\right)=0$. Boundary values a_{0}, a_{n} are obtained as

$$
s_{0}^{\prime \prime}\left(x_{0}\right)=a_{0}=0, \quad s_{n-1}^{\prime \prime}\left(x_{n}\right)=a_{n}=0
$$

Therefore we obtain the following matrix-vector equation.

$$
\overbrace{\left(\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & 1 & 4
\end{array}\right)}^{A}\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n-2} \\
a_{n-1}
\end{array}\right)=\frac{6}{h^{2}}\left(\begin{array}{c}
f_{0}-2 f_{1}+f_{2} \\
f_{1}-2 f_{2}+f_{3} \\
\vdots \\
f_{n-3}-2 f_{n-2}+f_{n-1} \\
f_{n-2}-2 f_{n-1}+f_{n}
\end{array}\right) .
$$

Here the matrix A is symmetric, tridiagonal, and positive definite.
Step 5: By solving the linear system, we obtain $a_{i}, i=1, \ldots, n-1\left(a_{0}, a_{n}\right.$ are already known). Thus all coefficients a_{i}, b_{i}, c_{i} in (5.6) are found. Hence we obtain $s(x)$.

The procedure how to find $s(x)$ may be summarized as follows.

Step $1 \quad$ Write $s_{i}^{\prime \prime}(x)$ using a_{i}, a_{i+1}, so that $s_{i-1}^{\prime \prime}\left(x_{i}\right)=s_{i}^{\prime \prime}\left(x_{i}\right)$.
Step 2 Integrate $s_{i}^{\prime \prime}(x)$ twice and find b_{i}, c_{i} by using $s_{i}\left(x_{i}\right)=f_{i}$.
Step 3 Get a three-term recurrence relation by $s_{i-1}^{\prime}\left(x_{i}\right)=s_{i}^{\prime}\left(x_{i}\right)$.
Step 4 Obtain a matrix by boundary conditions $s_{0}^{\prime \prime}\left(x_{0}\right)=s_{n-1}^{\prime \prime}\left(x_{n}\right)=0$.
Step 5 Find a_{i} by the linear system and obtain $s(x)$.

There are final comments. Firstly, the error is estimated as

$$
|f(x)-s(x)| \leq \frac{5}{384} \max _{a \leq x \leq b}\left|f^{(4)}(x)\right| h^{4}
$$

Thus, it is 4th order accurate. Secondly, the natural cubic spline interpolant has inflection points at the endpoints of the interval because we impose the boundary conditions $s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0$. There are also inflection points in the interior of the interval which do not exist in the original $f(x)$. These inflection points are problematic in some applications.

Fig. 5.4 The polynomial $\omega_{5}(x), \omega_{9}(x)$, and $\omega_{17}(x)$ are plotted for uniform points and Chebyshev points.

[^0]: ${ }^{1}$ If f is continuous on $[a, b]$ and differentiable on (a, b) with $f(a)=f(b)=0$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

[^1]: ${ }^{3}$ A function which satisfies conditions 1. and 3. is said to be a cubic spline. Here, of course, we consider interpolation with cubic splines. So, we also impose condition 2.

