Chapter 5
Interpolation

Polynomial approximation

Let us consider an integral of a given function f(x). We want to approximate f(x)
by a polynomial p,(x) of degree n:

/a )~ / o (x)dr.

One way to find such an approximation is to use the Taylor series:
1 1
Pax) = fl@) + [ (@) (x—a) + 5 (@) (x—a)? +- -+ —f (@) (x—a)"

Example 1. The function f(x) is easy to expand if we recall that (1 —

1
C 14922 |
r)(14+r+r*+---) =1 and so, the geometric series 1= 1+r+r"4-- con-

verges for |r| < 1. We obtain

1 1

= =14 (=92 + (=9)>+-- f 1/3.
1592~ 1= (—on) +(=9x7) + (—9x7)" + or x| < 1/3

In this case, we have pg = 1, p» = 1 —9x%, py = 1 —9x% +81x*, and so on.

The Taylor polynomial p,(x) is a good approximation to f(x) when x is close to
a. In general, however, we need to consider other methods.

Polynomial interpolation

Theorem 1. Let xo,x1,...,X, be n+ 1 distinct points. Then there exists a unique
polynomial p,(x) of degree < n which interpolates a given function f(x) at the
given points such that

pn(xi)) = f(xi) fori=0,1,...,n. 3.1
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Example 2. If n =1 and we give xg,x1, we can choose the polynomial p; as

f(m)*f(xo)(

X1 — X0

X—XO).

pi(x) = f(xo) +
In general f(x) and p;(x) are different, but they agree at the given points, i.e.,
p1(x0) = f(x0) and pa(x1) = f(x1).
Definition 1. The kth (k =0,1,...,n) Lagrange polynomial is a polynomial of de-

gree n defined by
e x—x
Li(x) =] ( : ) :

i=0 \Xk —Xi
i£k

Remark 1. We note that L (x;) = 8y fori =0,1,...,n.

For a given f(x), the Lagrange form of the interpolating polynomial is given
by

n

Pn(x) = F(0)Lo(x) + f(x1) L1 (x) + -+ 4 f (n) Ln(x) = Y f o) Li ().

k=0

Remark 2. Note that p,(x;) = Y7o fOw)Li(xi) = Yo f(xx) 8 = f(x;) for i =
0,1,...,n.

Example 3. For n = 1, we have

L()(X)Zx_)q, Ll(x :x—XQ’
X0 — X1 X1 —X0
and
X — X1 X — X0
p1(x) = f(x0)Lo(x) + f(x1)L1(x) = f(x0) + fx)
X0 — X1 X1 — X0
X0 — X1 +Xx—x1— (X0 — X1 X — X0
~ (o) B0 =x) i)
X0 — X1 X1 — X0
x1) — f(xo
= flo) + TV ()
X1 — X0
Example 4. We consider the case n =2 and for simplicity setxo = —1,x; =0,x, = 1.
We have
[ x—x x—x\ (x=0)x—-1) 1, 1
Lo(x) = <xo—x1) <x0—x2> TCio0(—i-n 2" T 2h

u=(52%) (52%) = 6mcmomn -+
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Hence,

pa(x) = f(=1) (;xz - ;X> +£(0) (=2 + 1)+ £(1) (;x2+ Zx)
_SED =210+ £ 5 f() = f(=1)

3 x4+ 5 x+ f(0)
. . 1
In particular if f(x) = o then
1 1 11
w521+ 15 0~ 10 9
pa(x) =10 (2) O B 1= — o+ 1. (5.2)

Note that 1 —9x? in the previous section satisfies 1 —9(0)> = £(0) but has 1 —
9(£1)? = —8 # f(£1).

Remark 3. The interpolating polynomial p,(x) is unique, but p,(x) can be written
in different forms.

Newton’s form
We can rewrite the interpolating polynomial p,(x) = ap+ajx+ - - 4 a,x" using the
interpolation points xg, ..., X,_| as
pu(x) =ap+ay(x—xp) +az(x—x0)(x—x1)+-+an(x—x0) - (x—x,-1)-
This form is called the Newton form. The coefficients are obtained by (5.1):
ap = f(xo), ao+ai(x;—xp)=f(x), etc.

To explore the coefficients, let us introduce divided differences.

Definition 2. Let f be a function defined at the distinct points xq,xq,...,X,.
The kth divided difference (0 < k < n) with respect to x;, X1, ..., Xj1¢ 1S given
by
flxil = f(xi),
SleivtsXig2, - Xiw] — fisXig1, - Xipk—1]

f[xi,xi+1,...,xi+k] = o
Xitk — Xi

For example, we have
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flxol = f(x0), flerom] = LB g gy = S = o]

Xy — X1 X2 — X0

Theorem 2. The coefficients in Newton form of p,(x) are given by
ar = flxo,x1,... %], k=0,1,....n.
Therefore we have

pn(x) :f[)C()} +f[X0,X1](X*X0)+"'+f[X(),)C1,...,xn](xfxo)”'(X*xn,l).

Here,
flxo] = f(x0) =ao, flxl=f(x1), [fle]=[f(x), etc.,
f[x()axl] - M =day, f[xlaXZ] - Ma CtC.,
X1 — X0 X2 — X1
Flxo,x] = et x2] — flxo,x1] I flx2,x3] = flxi,x2] cte.

X2 — X0 X3 — X1
Proof. Suppose
ar = flxo,x1,...,xk), k=0,1,....n—1.

We introduce polynomials p,_;(x) which interpolates f(x) at xp,...,x,—; and
¢n—1(x) which interpolates f(x) at xy,...,x,. The degrees of p,_; and ¢, are at

most n — 1. Hence,

pn—1(x) = flxo] + flxo,x1](x —x0) + -+ flxo,x1, .., 201 ] (x —x0) (x —x1) - (x —xn—2),
Gn—1(x) = flxa]+ flren, 2] (x —x1) + -+ flrr, x0, o x0] (x—x1) (x—x2) -+ (x —x0—1).

We make g(x) as follows.

Note that

g(x0) = pn-1(x0) = f(x0),  &(xn) = gn-1(xa) = f(xn),
and

Xk — X0 Xpn — Xk Xk — X0 Xn — Xk

Gn—1(0) + ———pr() = f () +
— X0 Xn — X0 Xn — X0 Xn — X0

8(x) = fOu) = f ),

Xn
where k =1,2,...,n— 1. Therefore,
g(x) = pn(x) =ao+ai(x—xo) + -+ an(x —xp) - (x —xp—1).

Using the expression for g(x), we obtain a,, which is the coefficient for x", as
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ay = f[.XI,...,xn] N f[-x()w..,xn*l] :f[_xo’...,.xn]~
Xn — X0 Xn — X0

Indeed ag = f[xo] for k = 0. Thus we recursively show that

Clka[X(),xl,...,xk], k:O,l,...,n.

1

Example 5. For f(x) = Troa 0
X

= —1,x; =0,x; = 1, we have

p2(x) = flxo] + flxo,x1](x — x0) + flxo,x1,%2] (x — x0) (x — x1).

Divided differences are computed as follows.
1
flvo) = f(=1) = 15, fla] = f(0),  flea] = £(1),

0—(—-1) 10’ bR 0

flxo,x1,x2] = f[thz_}z_fl[))COJl] - _%'

f[x()?xl] =

Hence,
() =35+ g0+ D= 15+ ) 53
pZX—lO 10x lox X. .

We can easily check that (5.2) = (5.3).

Optimal interpolation points

We have obtained p;(x) = —%xz + 1 as an interpolating polynomial for f(x) =
(1 + 9x2) ! Consider the following integrals.
1

/ 1 f(x)dx = Btan_l(Bx)} = %tan_l(S) =0.832697, (5.4)
—1 _1

! 7
/ pa(x)dx = - =1.4.
-1 5
Thus p,(x) is a poor approximation to f(x). Here we will consider how we can do

better.
First, we try increasing n. We have
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n=2=xp=—1,x=0,x=1,
n=4=xy=—1,x1=—-05,x0=0,x3=0.5, x4 =1,
n=8=x;=—-1+025, i=0,1,...,8
n=16=x;=—-1+4+0.125/, i=0,1,...,16.

We obtain
/_ 11 pa(x)dx = 0.735385,
[]1 ps(x)dx = 0.738204,
[ 1] pr6(x)dx = 0.667583.
The approximations are still not good.

Given f(x) on —1 < x < I, we consider two options to choose the interpolation
points xo, . . ., x,. In uniform points, we take x; as

2
x1:—1+lh, h:*, i:071,...,n.
n

We can also choose x; as follows.
Chebyshev points:
. T .
xiZ—COSHi, 9,‘=lh, hz—, 120,1,...,71.
n

The Chebyshev points are clustered near the endpoints of the interval.

We have

T
n=2:>90=0,91:§,92:7t,

T v/ 3n
n_4:>90_0391_2792_5163_T564_7[7
n:8:>9,':%7 i=0,1,....8

in
=16=06,=—, i=0,1,...,16.
n :l 167 l b b

For these Chebyshev points, we obtain
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1
/ pa(x)dx = 1.4,
—1
1
/ pa(x)dx = 1.00727,
—1
1

/ ps(x)dx = 0.844188,

1
/ Pi6(x)dx = 0.832759. (5.5)
~1
We see that (5.5) = (5.4).
1
Let us look at numerical results. In Fig. 5.1, interpolations for f(x) = Too.2 e
X
shown. Let us also look at results from similar functions. In Fig. 5.2 and Fig. 5.3,
1
we plot interpolations for f(x) = 15252 and f(x) = Treae:

Error analysis

Theorem 3. Let p,(x) be the interpolating polynomial for a given smooth
Sfunction f(x) with interpolation points xq, . ..,x,. Then for each x € [xg,%,)
there exists &(x) € |xo,X,] such that

feD(E)

f(x) = pal(x) + m

Ot (¥), Ope1(x) = (x—0) -+ (r—2%,).

Proof. For each x, we consider

n

8(0) = 1) = pul) ~[f &) = pu@I[[ -2, v <x <,
i=0 !
Note that
g(xj) = f(xj) = pulx;)—0=0,  j=0,1,...,n,
and

8(x) = f(x) = pa(x) = [f (x) = pn(x)] - 1 = 0.
1

Therefore g(z) has n+ 2 roots on [xg,x,]. By repeatedly using Rolle’s theorem', we
see that there exists & € [xg,x,] such that

VIf f is continuous on [a,b] and differentiable on (a,b) with f(a) = f(b) = 0, then there exists
¢ € (a,b) such that f’(c) =0.
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uniform points , n=4 Chebyshev points , n=4

\
!
1 \ O )
\
0 N ~N
-1 -1
-1 0 1 -1 0 1
uniform points , n=8 Chebyshev points , n=8
\ T 1 '
1 [ 1 .
\ / ’_\@m
0 R \ 0 )
-1 -1
-1 0 1 -1 0 1
uniform points , n=16 Chebyshev points , n=16
r .
1 | \
{
0 | \
! !
| 1
-1 / : -1
-1 0 1 -1 0 1
Fig. 5.1 Interpolati 1 ials for the functi _ !
ig. 5.1 Interpolating polynomials for the function f(x) = 1702

g (E) =0.

Since py(x) is a polynomial of degree at most n, we have p,(fﬂ) (x) = 0. Furthermore
we have

dn+1 n t—x n -1

—Xi
T [lex'] =m+1)! l—g(x—xi)] .
i= ! i=
Thus,
(n+1)!

=0.

g" (&) = f"(E) = [f () = pulx)]

(x—x0) - (x—x,)

Solving this equation for f(x) completes the proof.
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uniform points , n=4

Chebyshev points , n=4

!
1 \ e > 1 - ~
7 N e ~ /
\ / \ / \ s, N y
0 N 7 N - 0
-1 -1
-1 0 1 -1 0 1
uniform points , n=8 Chebyshev points , n=8
\ { \ ,
1 | 1 | N I
| / /
LN r \ \ /
0 0 =
‘ \
/
1 v -1
-1 0 1 -1 0 1
uniform points , n=16 Chebyshev points , n=16
T roT I T
1 Bl N
\
0 [ T
-1 | | Ly 1
Ll |

-1 0 1 -1 0 1

1

Fig. 5.2 Interpolating polynomials for the function f(x) = 1552
X

Example 6. Let us consider

1

:71+(kx)2’ xe[-1,1].

f()
In Fig. 5.1 (k =3), Fig. 5.2 (k =5), and Fig. 5.3 (k = 8), we see oscillation near
the endpoints for uniform points. This is called the Runge phenomenon. Runge
observed that

Hm || f — pplle = fork > k., k.~3.63.
n—ro0
Such oscillation is due to @, +1(x), takes large absolute values near the endpoints of

the interval.
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uniform points , n=4 Chebyshev points , n=4
T 7 T
! / N ! ! \\ .7 RN
\ / \ / s N /
0
~ 7 N
-1
-1 0 1 -1 0 1
uniform points , n=8 Chebyshev points , n=8
\ T . T 1
| 7 | \ \ l
\ . \ / y N\ /
3 0 =
Iy I
\
I |
-1
U '
-1 0 1 -1 0 1

Chebyshev points , n=16

1

Fig. 5.3 Interpolating polynomials for the function f(x) = 11642
X

Let us try to qualitatively understand the Runge phenomenon, i.e., oscillation
near the endpoints in the above example. According to the above-mentioned theo-
rem, the error at x is given by

fFe(E)

)‘ Wy4-1 (X)

|f(x) = pa(x)| = NCESI

Since @,1(x) is a polynomial of degree n+ 1, | @1 (x)| — oo as |x| — oo. The poly-
nomial @, (x) has n+ 1 distinct roots between x( and x;,, and so @, (x)| doesn’t
become too big on [xq,x,]. This is the first observation. In Fig. 5.4, we plot ®s(x),
9(x), and @;7(x) for uniform points and Chebyshev points. For Chebyshev points,
many of xg,xp,...,x, come near the endpoints to suppress oscillation. Secondly,
let us take a look at f("*1)(&). We consider the polynomial approximation by the
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Taylor series. This is not a polynomial interpolation but we expect that qualitative
behavior can be captured. We have [1 + (kx)?] ™! = 14 [~ (kx)?] + [~ (kx)?]* +---.
Thus we notice that the coefficients get larger and larger for higher-order terms. This
implies | f"+1)(&)|is large for large n. Of course if we consider functions other than
[1+ (kx)2]~", [f"+D(&)] is not necessarily large. By these considerations, we can
qualitatively understand the Runge phenomenon. This is a famous oscillation as well
as the Gibbs phenomenon?.

Piecewise linear interpolation

Suppose a function f(x) is given on a < x < b. We take n+ 1 distinct points as
a=xg<x] <--<xp_1 <x,=0b.
The interpolating polynomial p,(x) may not be a good approximation to f(x) on the

entire interval. Therefore we consider the piecewise linear interpolation g(x).

We construct g(x) as follows by making a linear polynomial interpolation in
each interval.

q(x) = flxi] + fleixiv1](x —x:),  onx; <x < xigr.

We note that
q(x) = f(x;), i=0,1,....n.

We also note that g(x) is continuous but it is not necessarily differentiable at x = x;.
We can estimate the error as follow.

2 The Gibbs phenomenon is oscillation which shows up at discontinuities. For example, let us
consider the function f(x):

f(x)=x—2nL, on[(2n—1)L,(2n+1)L), n=0,+1,+2,....

We express f(x) with the Fourier series:

i T b/
flx)=A0+ Z (Ancos%—ansin%),

n=1

where
! L 1 (F nmwx 1 (L . nmx
AO:i[Lf(x)m, An:ilLf(x)cos—L dx, BrlzzlLf(x)s1nTm,

In practice, the sum is taken up to some finite number N and Y:°_; is replaced by Y. There
appear strong oscillations near discontinuities at x = (2n — 1)L even for large N. This is called the
Gibbs phenomenon.
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1

_ < Z 7 2
() —q()] < g max | 7(x)] max |y —x;

Hence g(x) is second-order accurate.

Spline interpolation

Let xp < x] < -+ < Xx,—1 < X,. A cubic spline is a function s(x) satisfying the fol-
lowing conditions.?

1. s(x) is a cubic polynomial on each interval x; < x < x;41.
2. s(x) interpolates f(x) at x, ... ,Xy.

3. s(x), s'(x), s”(x) are continuous at the interior points xj, ..., X,_1.
Example 7. The function s(x) with xo = —1, x; =0, x, = 1 below is an example of
a cubic spline.
. 0, —1<x<0,
s(x
x3, 0<x<1

We can check that s(x) satisfies the above conditions 1 and 3.

For given function f(x) and xp < x| < - -+ < x,—] < Xy, let us consider how we can
find the cubic spline s(x) that interpolates f(x) at the given points, i.e., s(x;) = f(x;),
(i=0,1,...,n).

On each interval x; <x <x;11 (i=0,1,...,n— 1), we can write

s(x) = 5;(x) = co+ c1x+ cax® + c3x°.

There are 4n unknown coefficients as a total. On each interval, we have two equa-
tions s(x;) = f(x;) and s(x;41) = f(xi+1), and so there are 2n equations on the entire
region. Moreover since s'(x) and s” (x) must be continuous at x = xj,...,x,_1, there
are 2(n — 1) equations. Thus we have 4n — 2 equations as a total. Hence we can
impose two more conditions. Let us choose (although other choices are possible)

5" (x0) = 5" (x,) = 0.

This choice gives the natural cubic spline interpolant.
For uniform points on [—1, 1], let us determine the cubic spline. We note that

2
xi=—1+ih, h=-, i=0,1,...,n.
n

Step 1: We first focus on s/ (x). Since s(x) is (at most) of degree 3, s/ (x) is a linear
polynomial. Using unknown constants a;, a1, we can write

3 A function which satisfies conditions 1. and 3. is said to be a cubic spline. Here, of course, we
consider interpolation with cubic splines. So, we also impose condition 2.
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S;/(x)_ai<x#1h_x>+ai+1 (x;lx,'>7 i=0,1,...,n—1.

Note that s/ (x;) = a; and s/ (xi4+1) = ajy1. This implies that s/ | (x;) = a; = s} (x;).
Thus s”(x) is continuous at the interior points xi, ..., X,;_1.

13

Step 2: By integrating s/ (x) twice, we obtain

(i —0)3 g (o — )3 - —
n@)=““%22 %) +“”1%hx9-+m<xﬁz x)-%q<x %), (5.6)

h
where b;, c; are constants. We have

a;h? aj 1 h?
si(x;) 16 +b; = fi, si(xip1) = l+6l +c¢i = fir1-
Hence,
a;h? a1 h?
bi:fi_il6 v Ci= fiy1— l+61 ~

Step 3: By differentiating s;(x), we obtain

ailxipr —x)* a1 (x—x;)? ah®\ —1 ai1h®\ 1
si(x) = — i l+2]h ) + ZH(Zh i +(fi— 16 >h+<fi+1— = )h

6

Since s}_, (x;) = si(x;) (i=1,...,n— 1) must be satisfied, we have
@_ﬁ—1+ai71h+ﬁ_@:_@_ﬁ aih | fix1  aip1h
2 h 6 h 6 2 h 6 h 6

The above equation is summarized as

6
ai—1+4ai+ai1 = 5 (fio1 —=2fi+ fir1)-
h2

Step 4: Recall that we imposed s (xo)

— s//
obtained as

o _1(x4) = 0. Boundary values ag,a, are

Sg(xo) =ap =0, SZ,](X,I) =a,=0.

Therefore we obtain the following matrix-vector equation.

A
4 1 ap fo—2f+5
14 1 a fi—2f+f3
: =5 :
1 an—2 fnf?a - 2fn72 +fnfl
1 4 n—1

fn72 _zfnfl +fn
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Here the matrix A is symmetric, tridiagonal, and positive definite.

Step 5: By solving the linear system, we obtain a;, i = 1,...,n—1 (ap, a, are already
known). Thus all coefficients a;, b;, ¢; in (5.6) are found. Hence we obtain s(x).
The procedure how to find s(x) may be summarized as follows.

Step 1 Write s/ (x) using a;, a4 1, so that s/ (x;) = s/ (x;).

Step 2 Integrate s/ (x) twice and find b;,c; by using s;(x;) = f;.

Step 3 Get a three-term recurrence relation by s;_, (x;) = s}(x;).

Step4  Obtain a matrix by boundary conditions s (xo) = s/,_, (x,) = 0.
Step5 Find g; by the linear system and obtain s(x).

There are final comments. Firstly, the error is estimated as

5
— < =
|f(x) = s(x)| < 384 X,

£\,

Thus, it is 4th order accurate. Secondly, the natural cubic spline interpolant has
inflection points at the endpoints of the interval because we impose the boundary
conditions 5" (xg) = 5" (x,) = 0. There are also inflection points in the interior of the
interval which do not exist in the original f(x). These inflection points are problem-
atic in some applications.
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Fig. 5.4 The polynomial @s(x), @9 (x), and @;7(x) are plotted for uniform points and Chebyshev

points.



