
Chapter 5

Interpolation

Polynomial approximation

Let us consider an integral of a given function f (x). We want to approximate f (x)
by a polynomial pn(x) of degree n:

∫ b

a
f (x)dx ≈

∫ b

a
pn(x)dx.

One way to find such an approximation is to use the Taylor series:

pn(x) = f (a)+ f ′(a)(x−a)+
1

2
f ′′(a)(x−a)2 + · · ·+

1

n!
f (n)(a)(x−a)n.

Example 1. The function f (x) =
1

1+9x2
is easy to expand if we recall that (1−

r)(1+ r+ r2 + · · ·) = 1 and so, the geometric series
1

1− r
= 1+ r+ r2 + · · · con-

verges for |r|< 1. We obtain

1

1+9x2
=

1

1− (−9x2)
= 1+(−9x2)+(−9x2)2 + · · · for |x|< 1/3.

In this case, we have p0 = 1, p2 = 1−9x2, p4 = 1−9x2 +81x4, and so on.

The Taylor polynomial pn(x) is a good approximation to f (x) when x is close to

a. In general, however, we need to consider other methods.

Polynomial interpolation

Theorem 1. Let x0,x1, . . . ,xn be n+ 1 distinct points. Then there exists a unique

polynomial pn(x) of degree ≤ n which interpolates a given function f (x) at the

given points such that

pn(xi) = f (xi) for i = 0,1, . . . ,n. (5.1)
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Example 2. If n = 1 and we give x0,x1, we can choose the polynomial p1 as

p1(x) = f (x0)+
f (x1)− f (x0)

x1 − x0
(x− x0).

In general f (x) and p1(x) are different, but they agree at the given points, i.e.,

p1(x0) = f (x0) and p2(x1) = f (x1).

Definition 1. The kth (k = 0,1, . . . ,n) Lagrange polynomial is a polynomial of de-

gree n defined by

Lk(x) =
n

∏
i=0
i 6=k

(
x− xi

xk − xi

)

.

Remark 1. We note that Lk(xi) = δik for i = 0,1, . . . ,n.

For a given f (x), the Lagrange form of the interpolating polynomial is given

by

pn(x) = f (x0)L0(x)+ f (x1)L1(x)+ · · ·+ f (xn)Ln(x) =
n

∑
k=0

f (xk)Lk(x).

Remark 2. Note that pn(xi) = ∑n
k=0 f (xk)Lk(xi) = ∑n

k=0 f (xk)δik = f (xi) for i =
0,1, . . . ,n.

Example 3. For n = 1, we have

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

and

p1(x) = f (x0)L0(x)+ f (x1)L1(x) = f (x0)
x− x1

x0 − x1
+ f (x1)

x− x0

x1 − x0

= f (x0)
x0 − x1 + x− x1 − (x0 − x1)

x0 − x1
+ f (x1)

x− x0

x1 − x0

= f (x0)+
f (x1)− f (x0)

x1 − x0
(x− x0).

Example 4. We consider the case n= 2 and for simplicity set x0 =−1,x1 = 0,x2 = 1.

We have

L0(x) =

(
x− x1

x0 − x1

)(
x− x2

x0 − x2

)

=
(x−0)(x−1)

(−1−0)(−1−1)
=

1

2
x2 −

1

2
x,

L1(x) =

(
x− x0

x1 − x0

)(
x− x2

x1 − x2

)

=
(x− (−1))(x−1)

(0− (−1))(0−1)
=−x2 +1,
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L2(x) =

(
x− x0

x2 − x0

)(
x− x1

x2 − x1

)

=
(x− (−1))(x−0)

(1− (−1))(1−0)
=

1

2
x2 +

1

2
x.

Hence,

p2(x) = f (−1)

(
1

2
x2 −

1

2
x

)

+ f (0)
(
−x2 +1

)
+ f (1)

(
1

2
x2 +

1

2
x

)

=
f (−1)−2 f (0)+ f (1)

2
x2 +

f (1)− f (−1)

2
x+ f (0).

In particular if f (x) =
1

1+9x2
, then

p2(x) =
1

10
−2(1)+ 1

10

2
x2 +

1
10
− 1

10

2
x+1 =−

9

10
x2 +1. (5.2)

Note that 1 − 9x2 in the previous section satisfies 1 − 9(0)2 = f (0) but has 1 −
9(±1)2 =−8 6= f (±1).

Remark 3. The interpolating polynomial pn(x) is unique, but pn(x) can be written

in different forms.

Newton’s form

We can rewrite the interpolating polynomial pn(x) = a0 +a1x+ · · ·+anxn using the

interpolation points x0, . . . ,xn−1 as

pn(x) = a0 +a1(x− x0)+a2(x− x0)(x− x1)+ · · ·+an(x− x0) · · ·(x− xn−1).

This form is called the Newton form. The coefficients are obtained by (5.1):

a0 = f (x0), a0 +a1(x1 − x0) = f (x1), etc.

To explore the coefficients, let us introduce divided differences.

Definition 2. Let f be a function defined at the distinct points x0,x1, . . . ,xn.

The kth divided difference (0 ≤ k ≤ n) with respect to xi,xi+1, . . . ,xi+k is given

by

f [xi] = f (xi),

f [xi,xi+1, . . . ,xi+k] =
f [xi+1,xi+2, . . . ,xi+k]− f [xi,xi+1, . . . ,xi+k−1]

xi+k − xi

.

For example, we have
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f [x0] = f (x0), f [x1,x2] =
f [x2]− f [x1]

x2 − x1
, f [x0,x1,x2] =

f [x1,x2]− f [x0,x1]

x2 − x0
, etc.

Theorem 2. The coefficients in Newton form of pn(x) are given by

ak = f [x0,x1, . . . ,xk], k = 0,1, . . . ,n.

Therefore we have

pn(x) = f [x0]+ f [x0,x1](x− x0)+ · · ·+ f [x0,x1, . . . ,xn](x− x0) · · ·(x− xn−1).

Here,

f [x0] = f (x0) = a0, f [x1] = f (x1), f [x2] = f (x2), etc.,

f [x0,x1] =
f [x1]− f [x0]

x1 − x0
= a1, f [x1,x2] =

f [x2]− f [x1]

x2 − x1
, etc.,

f [x0,x1,x2] =
f [x1,x2]− f [x0,x1]

x2 − x0
= a2, f [x1,x2,x3] =

f [x2,x3]− f [x1,x2]

x3 − x1
, etc.

Proof. Suppose

ak = f [x0,x1, . . . ,xk], k = 0,1, . . . ,n−1.

We introduce polynomials pn−1(x) which interpolates f (x) at x0, . . . ,xn−1 and

qn−1(x) which interpolates f (x) at x1, . . . ,xn. The degrees of pn−1 and qn−1 are at

most n−1. Hence,

pn−1(x) = f [x0]+ f [x0,x1](x− x0)+ · · ·+ f [x0,x1, . . . ,xn−1](x− x0)(x− x1) · · ·(x− xn−2),

qn−1(x) = f [x1]+ f [x1,x2](x− x1)+ · · ·+ f [x1,x2, . . . ,xn](x− x1)(x− x2) · · ·(x− xn−1).

We make g(x) as follows.

g(x) =
x− x0

xn − x0
qn−1(x)+

xn − x

xn − x0
pn−1(x).

Note that

g(x0) = pn−1(x0) = f (x0), g(xn) = qn−1(xn) = f (xn),

and

g(xk) =
xk − x0

xn − x0
qn−1(xk)+

xn − xk

xn − x0
pk(xk) =

xk − x0

xn − x0
f (xk)+

xn − xk

xn − x0
f (xk) = f (xk),

where k = 1,2, . . . ,n−1. Therefore,

g(x) = pn(x) = a0 +a1(x− x0)+ · · ·+an(x− x0) · · ·(x− xn−1).

Using the expression for g(x), we obtain an, which is the coefficient for xn, as
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an =
f [x1, . . . ,xn]

xn − x0
−

f [x0, . . . ,xn−1]

xn − x0
= f [x0, . . . ,xn].

Indeed a0 = f [x0] for k = 0. Thus we recursively show that

ak = f [x0,x1, . . . ,xk], k = 0,1, . . . ,n.

⊓⊔

Example 5. For f (x) =
1

1+9x2
, x0 =−1,x1 = 0,x2 = 1, we have

p2(x) = f [x0]+ f [x0,x1](x− x0)+ f [x0,x1,x2](x− x0)(x− x1).

Divided differences are computed as follows.

f [x0] = f (−1) =
1

10
, f [x1] = f (0), f [x2] = f (1),

f [x0,x1] =
f (0)− f (−1)

0− (−1)
=

9

10
, f [x1,x2] =

f (1)− f (0)

1−0
,

f [x0,x1,x2] =
f [x1,x2]− f [x0,x1]

1− (−1)
=−

9

10
.

Hence,

p2(x) =
1

10
+

9

10
(x+1)−

9

10
(x+1)x. (5.3)

We can easily check that (5.2) = (5.3).

Optimal interpolation points

We have obtained p2(x) = − 9
10

x2 + 1 as an interpolating polynomial for f (x) =
(
1+9x2

)−1
. Consider the following integrals.

∫ 1

−1
f (x)dx =

[
1

3
tan−1(3x)

]1

−1

=
2

3
tan−1(3) = 0.832697, (5.4)

∫ 1

−1
p2(x)dx =

7

5
= 1.4.

Thus p2(x) is a poor approximation to f (x). Here we will consider how we can do

better.

First, we try increasing n. We have
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n = 2 ⇒ x0 =−1, x1 = 0, x2 = 1,

n = 4 ⇒ x0 =−1, x1 =−0.5, x2 = 0, x3 = 0.5, x4 = 1,

n = 8 ⇒ xi =−1+0.25i, i = 0,1, . . . ,8

n = 16 ⇒ xi =−1+0.125i, i = 0,1, . . . ,16.

We obtain

∫ 1

−1
p4(x)dx = 0.735385,

∫ 1

−1
p8(x)dx = 0.738204,

∫ 1

−1
p16(x)dx = 0.667583.

The approximations are still not good.

Given f (x) on −1 ≤ x ≤ 1, we consider two options to choose the interpolation

points x0, . . . ,xn. In uniform points, we take xi as

xi =−1+ ih, h =
2

n
, i = 0,1, . . . ,n.

We can also choose xi as follows.

Chebyshev points:

xi =−cosθi, θi = ih, h =
π

n
, i = 0,1, . . . ,n.

The Chebyshev points are clustered near the endpoints of the interval.

We have

n = 2 ⇒ θ0 = 0, θ1 =
π

2
, θ2 = π,

n = 4 ⇒ θ0 = 0, θ1 =
π

4
, θ2 =

π

2
, θ3 =

3π

4
, θ4 = π,

n = 8 ⇒ θi =
iπ

8
, i = 0,1, . . . ,8

n = 16 ⇒ θi =
iπ

16
, i = 0,1, . . . ,16.

For these Chebyshev points, we obtain
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∫ 1

−1
p2(x)dx = 1.4,

∫ 1

−1
p4(x)dx = 1.00727,

∫ 1

−1
p8(x)dx = 0.844188,

∫ 1

−1
p16(x)dx = 0.832759. (5.5)

We see that (5.5) ≈ (5.4).

Let us look at numerical results. In Fig. 5.1, interpolations for f (x) =
1

1+9x2
are

shown. Let us also look at results from similar functions. In Fig. 5.2 and Fig. 5.3,

we plot interpolations for f (x) =
1

1+25x2
and f (x) =

1

1+64x2
.

Error analysis

Theorem 3. Let pn(x) be the interpolating polynomial for a given smooth

function f (x) with interpolation points x0, . . . ,xn. Then for each x ∈ [x0,xn]
there exists ξ (x) ∈ [x0,xn] such that

f (x) = pn(x)+
f (n+1)(ξ )

(n+1)!
ωn+1(x), ωn+1(x) = (x− x0) · · ·(x− xn).

Proof. For each x, we consider

g(t) = f (t)− pn(t)− [ f (x)− pn(x)]
n

∏
i=0

t − xi

x− xi

, x0 ≤ x ≤ xn.

Note that

g(x j) = f (x j)− pn(x j)−0 = 0, j = 0,1, . . . ,n,

and

g(x) = f (x)− pn(x)− [ f (x)− pn(x)] ·1 = 0.

Therefore g(t) has n+2 roots on [x0,xn]. By repeatedly using Rolle’s theorem1, we

see that there exists ξ ∈ [x0,xn] such that

1 If f is continuous on [a,b] and differentiable on (a,b) with f (a) = f (b) = 0, then there exists

c ∈ (a,b) such that f ′(c) = 0.
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−1 0 1

−1

0

1

uniform points , n=4

−1 0 1

−1

0

1

Chebyshev points , n=4

−1 0 1

−1

0

1

uniform points , n=8

−1 0 1

−1

0

1

Chebyshev points , n=8

−1 0 1

−1

0

1

uniform points , n=16

−1 0 1

−1

0

1

Chebyshev points , n=16

Fig. 5.1 Interpolating polynomials for the function f (x) =
1

1+9x2
.

g(n+1)(ξ ) = 0.

Since pn(x) is a polynomial of degree at most n, we have p
(n+1)
n (x) = 0. Furthermore

we have

dn+1

dtn+1

[
n

∏
i=0

t − xi

x− xi

]

= (n+1)!

[
n

∏
i=0

(x− xi)

]−1

.

Thus,

g(n+1)(ξ ) = f (n+1)(ξ )− [ f (x)− pn(x)]
(n+1)!

(x− x0) · · ·(x− xn)
= 0.

Solving this equation for f (x) completes the proof. ⊓⊔
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−1 0 1

−1

0

1

uniform points , n=4

−1 0 1

−1

0

1

Chebyshev points , n=4

−1 0 1

−1

0

1

uniform points , n=8

−1 0 1

−1

0

1

Chebyshev points , n=8

−1 0 1

−1

0

1

uniform points , n=16

−1 0 1

−1

0

1

Chebyshev points , n=16

Fig. 5.2 Interpolating polynomials for the function f (x) =
1

1+25x2
.

Example 6. Let us consider

f (x) =
1

1+(kx)2
, x ∈ [−1,1].

In Fig. 5.1 (k = 3), Fig. 5.2 (k = 5), and Fig. 5.3 (k = 8), we see oscillation near

the endpoints for uniform points. This is called the Runge phenomenon. Runge

observed that

lim
n→∞

‖ f − pn‖∞ = ∞ for k > kc, kc ≈ 3.63.

Such oscillation is due to ωn+1(x), takes large absolute values near the endpoints of

the interval.
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−1 0 1

−1

0

1

uniform points , n=4

−1 0 1

−1

0

1

Chebyshev points , n=4

−1 0 1

−1

0

1

uniform points , n=8

−1 0 1

−1

0

1

Chebyshev points , n=8

−1 0 1

−1

0

1

uniform points , n=16

−1 0 1

−1

0

1

Chebyshev points , n=16

Fig. 5.3 Interpolating polynomials for the function f (x) =
1

1+64x2
.

Let us try to qualitatively understand the Runge phenomenon, i.e., oscillation

near the endpoints in the above example. According to the above-mentioned theo-

rem, the error at x is given by

| f (x)− pn(x)|=
f (n+1)(ξ )

(n+1)!
ωn+1(x).

Since ωn+1(x) is a polynomial of degree n+1, |ωn+1(x)| → ∞ as |x| → ∞. The poly-

nomial ωn+1(x) has n+1 distinct roots between x0 and xn, and so |ωn+1(x)| doesn’t

become too big on [x0,xn]. This is the first observation. In Fig. 5.4, we plot ω5(x),
ω9(x), and ω17(x) for uniform points and Chebyshev points. For Chebyshev points,

many of x0,x1, . . . ,xn come near the endpoints to suppress oscillation. Secondly,

let us take a look at f (n+1)(ξ ). We consider the polynomial approximation by the
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Taylor series. This is not a polynomial interpolation but we expect that qualitative

behavior can be captured. We have [1+(kx)2]−1 = 1+[−(kx)2]+ [−(kx)2]2 + · · · .
Thus we notice that the coefficients get larger and larger for higher-order terms. This

implies | f (n+1)(ξ )| is large for large n. Of course if we consider functions other than

[1+(kx)2]−1, | f (n+1)(ξ )| is not necessarily large. By these considerations, we can

qualitatively understand the Runge phenomenon. This is a famous oscillation as well

as the Gibbs phenomenon2.

Piecewise linear interpolation

Suppose a function f (x) is given on a ≤ x ≤ b. We take n+1 distinct points as

a = x0 < x1 < · · ·< xn−1 < xn = b.

The interpolating polynomial pn(x) may not be a good approximation to f (x) on the

entire interval. Therefore we consider the piecewise linear interpolation q(x).

We construct q(x) as follows by making a linear polynomial interpolation in

each interval.

q(x) = f [xi]+ f [xi,xi+1](x− xi), on xi ≤ x ≤ xi+1.

We note that

q(xi) = f (xi), i = 0,1, . . . ,n.

We also note that q(x) is continuous but it is not necessarily differentiable at x = xi.

We can estimate the error as follow.

2 The Gibbs phenomenon is oscillation which shows up at discontinuities. For example, let us

consider the function f (x):

f (x) = x−2nL, on [(2n−1)L,(2n+1)L), n = 0,±1,±2, . . . .

We express f (x) with the Fourier series:

f (x) = A0 +
∞

∑
n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

,

where

A0 =
1

2L

∫ L

−L
f (x)dx, An =

1

L

∫ L

−L
f (x)cos

nπx

L
dx, Bn =

1

L

∫ L

−L
f (x)sin

nπx

L
dx.

In practice, the sum is taken up to some finite number N and ∑∞
n=1 is replaced by ∑N

n=1. There

appear strong oscillations near discontinuities at x = (2n−1)L even for large N. This is called the

Gibbs phenomenon.
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| f (x)−q(x)| ≤
1

8
max

a≤x≤b
| f ′′(x)| max

0≤i≤n
|xi+1 − xi|

2.

Hence q(x) is second-order accurate.

Spline interpolation

Let x0 < x1 < · · · < xn−1 < xn. A cubic spline is a function s(x) satisfying the fol-

lowing conditions.3

1. s(x) is a cubic polynomial on each interval xi ≤ x ≤ xi+1.

2. s(x) interpolates f (x) at x0, . . . ,xn.

3. s(x), s′(x), s′′(x) are continuous at the interior points x1, . . . ,xn−1.

Example 7. The function s(x) with x0 =−1, x1 = 0, x2 = 1 below is an example of

a cubic spline.

s(x) =

{

0, −1 ≤ x ≤ 0,

x3, 0 ≤ x ≤ 1.

We can check that s(x) satisfies the above conditions 1 and 3.

For given function f (x) and x0 < x1 < · · ·< xn−1 < xn, let us consider how we can

find the cubic spline s(x) that interpolates f (x) at the given points, i.e., s(xi) = f (xi),
(i = 0,1, . . . ,n).

On each interval xi ≤ x ≤ xi+1 (i = 0,1, . . . ,n−1), we can write

s(x) = si(x) = c0 + c1x+ c2x2 + c3x3.

There are 4n unknown coefficients as a total. On each interval, we have two equa-

tions s(xi) = f (xi) and s(xi+1) = f (xi+1), and so there are 2n equations on the entire

region. Moreover since s′(x) and s′′(x) must be continuous at x = x1, . . . ,xn−1, there

are 2(n− 1) equations. Thus we have 4n− 2 equations as a total. Hence we can

impose two more conditions. Let us choose (although other choices are possible)

s′′(x0) = s′′(xn) = 0.

This choice gives the natural cubic spline interpolant.

For uniform points on [−1,1], let us determine the cubic spline. We note that

xi =−1+ ih, h =
2

n
, i = 0,1, . . . ,n.

Step 1: We first focus on s′′i (x). Since s(x) is (at most) of degree 3, s′′i (x) is a linear

polynomial. Using unknown constants ai, ai+1, we can write

3 A function which satisfies conditions 1. and 3. is said to be a cubic spline. Here, of course, we

consider interpolation with cubic splines. So, we also impose condition 2.



5 Interpolation 13

s′′i (x) = ai

(
xi+1 − x

h

)

+ai+1

(
x− xi

h

)

, i = 0,1, . . . ,n−1.

Note that s′′i (xi) = ai and s′′i (xi+1) = ai+1. This implies that s′′i−1(xi) = ai = s′′i (xi).
Thus s′′(x) is continuous at the interior points x1, . . . ,xn−1.

Step 2: By integrating s′′i (x) twice, we obtain

si(x) =
ai(xi+1 − x)3

6h
+

ai+1(x− xi)
3

6h
+bi

(
xi+1 − x

h

)

+ ci

(
x− xi

h

)

, (5.6)

where bi,ci are constants. We have

si(xi) =
aih

2

6
+bi = fi, si(xi+1) =

ai+1h2

6
+ ci = fi+1.

Hence,

bi = fi −
aih

2

6
, ci = fi+1 −

ai+1h2

6
.

Step 3: By differentiating si(x), we obtain

s′i(x) =−
ai(xi+1 − x)2

2h
+

ai+1(x− xi)
2

2h
+

(

fi −
aih

2

6

)
−1

h
+

(

fi+1 −
ai+1h2

6

)
1

h
.

Since s′i−1(xi) = s′i(xi) (i = 1, . . . ,n−1) must be satisfied, we have

aih

2
−

fi−1

h
+

ai−1h

6
+

fi

h
−

aih

6
=−

aih

2
−

fi

h
+

aih

6
+

fi+1

h
−

ai+1h

6
.

The above equation is summarized as

ai−1 +4ai +ai+1 =
6

h2
( fi−1 −2 fi + fi+1) .

Step 4: Recall that we imposed s′′0(x0) = s′′n−1(xn) = 0. Boundary values a0,an are

obtained as

s′′0(x0) = a0 = 0, s′′n−1(xn) = an = 0.

Therefore we obtain the following matrix-vector equation.

A
︷ ︸︸ ︷










4 1

1 4 1

. . .
. . .

. . .

. . .
. . . 1

1 4




















a1

a2

...

an−2

an−1










=
6

h2










f0 −2 f1 + f2

f1 −2 f2 + f3

...

fn−3 −2 fn−2 + fn−1

fn−2 −2 fn−1 + fn










.
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Here the matrix A is symmetric, tridiagonal, and positive definite.

Step 5: By solving the linear system, we obtain ai, i = 1, . . . ,n−1 (a0,an are already

known). Thus all coefficients ai,bi,ci in (5.6) are found. Hence we obtain s(x).
The procedure how to find s(x) may be summarized as follows.

Step 1 Write s′′i (x) using ai,ai+1, so that s′′i−1(xi) = s′′i (xi).
Step 2 Integrate s′′i (x) twice and find bi,ci by using si(xi) = fi.

Step 3 Get a three-term recurrence relation by s′i−1(xi) = s′i(xi).
Step 4 Obtain a matrix by boundary conditions s′′0(x0) = s′′n−1(xn) = 0.

Step 5 Find ai by the linear system and obtain s(x).

There are final comments. Firstly, the error is estimated as

| f (x)− s(x)| ≤
5

384
max

a≤x≤b

∣
∣
∣ f (4)(x)

∣
∣
∣h4.

Thus, it is 4th order accurate. Secondly, the natural cubic spline interpolant has

inflection points at the endpoints of the interval because we impose the boundary

conditions s′′(x0) = s′′(xn) = 0. There are also inflection points in the interior of the

interval which do not exist in the original f (x). These inflection points are problem-

atic in some applications.
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Fig. 5.4 The polynomial ω5(x), ω9(x), and ω17(x) are plotted for uniform points and Chebyshev

points.


