Chapter 4
 Eigenvalues and eigenvectors

Rayleigh quotient

We begin with the following theorem ${ }^{1}$.
Theorem 1. If A is a real symmetric matrix, then the eigenvalues λ_{i} are real and we can take the eigenvectors \mathbf{q}_{i} so that they form an orthonormal basis, i.e., $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=$ $\mathbf{q}_{i}^{T} \mathbf{q}_{j}=\delta_{i j}$.
Note that $\delta_{i j}$ is the Kronecker delta: $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i i}=1$.
In Chapter 3, we studied that eigenvalues are given as roots of the characteristic polynomial $f_{A}(\lambda)$:

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=0
$$

and we studied rootfinding methods in Chapter 2. So, we may think obtaining eigenvalues are not a big deal. But the following example shows that this calculation is unstable.

Example 1. Let us consider the following diagonal matrix A.

$$
\begin{aligned}
A=\left(\begin{array}{lllll}
1 & & & & \\
& 2 & & & \\
& & 3 & & \\
& & & 4 & \\
& & & 5
\end{array}\right) \Rightarrow \begin{aligned}
f_{A}(\lambda) & =(1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)(5-\lambda) \\
& =-\lambda^{5}+15 \lambda^{4}-85 \lambda^{3}+225 \lambda^{2}-274 \lambda+120 . \\
f_{A}(\lambda)=0 & \Rightarrow \lambda=1,2,3,4,5 .
\end{aligned} .
\end{aligned}
$$

Suppose coefficients of $f_{A}(\boldsymbol{\lambda})$ are slightly modified and we have

$$
g_{A}(\lambda)=-1.01 \lambda^{5}+14.98 \lambda^{4}-85 \lambda^{3}+225 \lambda^{2}-274 \lambda+120 .
$$

Then,

$$
g_{A}(\lambda)=0 \quad \Rightarrow \quad \lambda=0.99876,2.21131,2.36314,4.62924 \pm 1.15532 \mathrm{i}
$$

[^0]Definition 1. For a given real symmetric matrix A and any $\mathbf{x} \neq \mathbf{0}$, we define

$$
R_{A}(\mathbf{x})=\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

This $R_{A}(\mathbf{x})$ is called the Rayleigh quotient.

If $\mathbf{x}=\mathbf{q}_{i}$, then

$$
R_{A}\left(\mathbf{q}_{i}\right)=\frac{\mathbf{q}_{i}^{T} A \mathbf{q}_{i}}{\mathbf{q}_{i}^{T} \mathbf{q}_{i}}=\frac{\mathbf{q}_{i}^{T} \lambda_{i} \mathbf{q}_{i}}{\mathbf{q}_{i}^{T} \mathbf{q}_{i}}=\lambda_{i}
$$

By the Taylor expansion, we have

$$
R_{A}(\mathbf{x})=R_{A}\left(\mathbf{q}_{i}\right)+\nabla R_{A}\left(\mathbf{q}_{i}\right) \cdot\left(\mathbf{x}-\mathbf{q}_{i}\right)+O\left(\left\|\mathbf{x}-\mathbf{q}_{i}\right\|_{2}^{2}\right) .
$$

Note that

$$
\begin{aligned}
\nabla R_{A}(\mathbf{x}) & =\nabla\left(\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}\right)=\frac{\left(\mathbf{x}^{T} \mathbf{x}\right) \nabla\left(\mathbf{x}^{T} A \mathbf{x}\right)-\left(\mathbf{x}^{T} A \mathbf{x}\right) \nabla\left(\mathbf{x}^{T} \mathbf{x}\right)}{\left(\mathbf{x}^{T} \mathbf{x}\right)^{2}}=\frac{\left(\mathbf{x}^{T} \mathbf{x}\right) 2 A \mathbf{x}-\left(\mathbf{x}^{T} A \mathbf{x}\right) 2 \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{x}\right)^{2}} \\
& =\frac{2}{\mathbf{x}^{T} \mathbf{x}}\left(A \mathbf{x}-R_{A}(\mathbf{x}) \mathbf{x}\right),
\end{aligned}
$$

and

$$
\nabla R_{A}\left(\mathbf{q}_{i}\right)=\frac{2}{\mathbf{q}_{i}^{T} \mathbf{q}_{i}}\left(A \mathbf{q}_{i}-R_{A}\left(\mathbf{q}_{i}\right) \mathbf{q}_{i}\right)=0
$$

Therefore, if $\mathbf{x} \approx \mathbf{q}_{i}$, then $R_{A}(\mathbf{x})$ is an approximation to λ_{i} and

$$
R_{A}(\mathbf{x})=\lambda_{i}+O\left(\left\|\mathbf{x}-\mathbf{q}_{i}\right\|_{2}^{2}\right) .
$$

The power method

Suppose we have a large $n \times n$ matrix A. We are often interested in obtaining only a few largest eigenvalues of A, or even only the largest eigenvalue.

Let $\lambda_{i}(i=1, \ldots, n)$ be the eigenvalues and \mathbf{q}_{i} be the associated orthonormal eigenvectors. We assume

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right| .
$$

For a given vector $\mathbf{x}_{0}\left(\left\|\mathbf{x}_{0}\right\|_{2}=1\right)$, there exist constants c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}_{0}=c_{1} \mathbf{q}_{1}+\cdots+c_{n} \mathbf{q}_{n}
$$

Let us suppose $c_{1} \neq 0$, i.e., $\mathbf{q}_{1} \cdot \mathbf{x}_{0} \neq 0$. We construct $\mathbf{x}_{k}(k=1,2, \ldots)$ as

$$
\begin{aligned}
& \mathbf{y}=A \mathbf{x}_{k-1} \\
& \mathbf{x}_{k}=\frac{\mathbf{y}}{\|\mathbf{y}\|_{2}}
\end{aligned}
$$

The first step is written as

$$
\mathbf{x}_{1}=\beta_{1}\left(c_{1} \lambda_{1} \mathbf{q}_{1}+\cdots+c_{n} \lambda_{n} \mathbf{q}_{n}\right), \quad \beta_{1}=\left\|c_{1} \lambda_{1} \mathbf{q}_{1}+\cdots+c_{n} \lambda_{n} \mathbf{q}_{n}\right\|_{2}^{-1}
$$

In general, we have
$\mathbf{x}_{k}=\beta_{k}\left(c_{1} \lambda_{1}^{k} \mathbf{q}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{q}_{n}\right)=\beta_{k} c_{1} \lambda_{1}^{k}\left[\mathbf{q}_{1}+\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \mathbf{q}_{2}+\cdots+\frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \mathbf{q}_{n}\right]$,
where $\beta_{k}=\left|c_{1} \lambda_{1}^{k}\right|^{-1}\left[1+O\left(\left|\lambda_{2} / \lambda_{1}\right|\right)^{k}\right]$. Hence, $\mathbf{x}_{k} \rightarrow \pm \mathbf{q}_{1}$ (\pm depends on the sign of $c_{1} \lambda_{1}^{k}$) and

$$
\left\|\mathbf{x}_{k}-(\pm) \mathbf{q}_{1}\right\|_{2}=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)
$$

Finally,

$$
\begin{align*}
\mathbf{x}_{k}^{T} A \mathbf{x}_{k} & =\beta_{k}^{2}\left(c_{1} \lambda_{1}^{k}\right)^{2}\left[\lambda_{1}+\lambda_{2}\left(\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}\right)^{2}+\cdots+\lambda_{n}\left(\frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}\right)^{2}\right] \\
& =\lambda_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right) \tag{4.2}
\end{align*}
$$

The convergence is linear with asymptotic rate $\left|\lambda_{2} / \lambda_{1}\right|^{2}$.
Remark 1. The above discussion holds true for general nonsymmetric matrices with linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Instead of (4.2), we can look at a nonzero element $x_{i}^{(k)}$ in (4.1). We have

$$
\frac{x_{i}^{(k)}}{x_{i}^{(k-1)}}=\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\left[1+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)\right] .
$$

The convergence is linear with asymptotic rate $\left|\lambda_{2} / \lambda_{1}\right|$.
Remark 2. Recall that the matrix A for $-D_{+} D_{-}$is tridiagonal:

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

In this case $\mathbf{y}=A \mathbf{x}$ can be coded as the following loop.

```
for i=1:n
    y(i)=(-x(i-1)+2*x(i)-x(i+1))/h^2;
end
```

This is more efficient than forming A and computing $\mathbf{y}=A \mathbf{x}$ by direct matrix-vector multiplication.

The power method is implemented as follows.
Step 1 Give $\mathbf{x}_{0}\left(\left\|\mathbf{x}_{0}\right\|_{2}=1\right)$. Set $\lambda^{(0)}=\mathbf{x}_{0}^{T} A \mathbf{x}_{0}$ and $k=1$.
Step $2 \quad \mathbf{y}=A \mathbf{x}_{k-1}$.
Step $3 \quad \mathbf{x}_{k}=\mathbf{y} /\|\mathbf{y}\|_{2}$.
Step $4 \quad \lambda^{(k)}=\mathbf{x}_{k}^{T} A \mathbf{x}_{k}$.
Step 5 Set $k=k+1$ and go to Step 2

Example 2. Let us try the power method for

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

The eigenvalues of A are $\lambda_{1}=5.214320, \lambda_{2}=2.460811$, and $\lambda_{3}=1.324869$. For example, we can choose

$$
\mathbf{x}_{0}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

We obtain the following results.

k	$\lambda^{(k)}$	$\left\|\lambda^{(k)}-\lambda_{1}\right\|$	$\left\|\lambda^{(k)}-\lambda_{1}\right\| /\left\|\lambda^{(k-1)}-\lambda_{1}\right\|$
0	5.000000	0.214320	-
1	5.181818	0.032502	0.151650
2	5.208193	0.006127	0.188513

Note that $\lambda^{(k)} \rightarrow \lambda_{1},\left|\lambda^{(k)}-\lambda_{1}\right| \rightarrow 0$, and $\left|\lambda^{(k)}-\lambda_{1}\right| /\left|\lambda^{(k-1)}-\lambda_{1}\right| \rightarrow\left(\lambda_{2} / \lambda_{1}\right)^{2}$ as $k \rightarrow \infty$.

The inverse power method

Here we try to find the smallest eigenvalue. We note that

$$
A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i} \quad \Rightarrow \quad A^{-1} \mathbf{q}_{i}=\lambda_{i}^{-1} \mathbf{q}_{i}
$$

Thus the largest eigenvalue of A^{-1} is λ_{n}^{-1}.

The inverse power method is implemented as follows.
Step 1 Give $\mathbf{x}_{0}\left(\left\|\mathbf{x}_{0}\right\|_{2}=1\right)$. Set $\lambda^{(0)}=\mathbf{x}_{0}^{T} A \mathbf{x}_{0}$ and $k=1$.
Step 2 Solve $A \mathbf{y}=\mathbf{x}_{k-1}$ (see Chapter 3).
Step $3 \quad \mathbf{x}_{k}=\mathbf{y} /\|\mathbf{y}\|_{2}$.
Step $4 \lambda^{(k)}=\mathbf{x}_{k}^{T} A \mathbf{x}_{k}$.
Step 5 Set $k=k+1$ and go to Step 2

Example 3. Let us try the inverse power method for the previous example. We obtain the following results.

k	$\lambda^{(k)}$	$\left\|\lambda^{(k)}-\lambda_{3}\right\|$	$\left\|\lambda^{(k)}-\lambda_{3}\right\| /\left\|\lambda^{(k-1)}-\lambda_{3}\right\|$
0	5.000000	3.675131	-
1	3.816327	2.491457	0.677923
2	1.864903	0.540034	0.216754

Note that $\lambda^{(k)} \rightarrow \lambda_{3},\left|\lambda^{(k)}-\lambda_{3}\right| \rightarrow 0$, and $\left|\lambda^{(k)}-\lambda_{3}\right| /\left|\lambda^{(k-1)}-\lambda_{3}\right| \rightarrow\left(\lambda_{3} / \lambda_{2}\right)^{2}$ as $k \rightarrow \infty$.

[^0]: Fall 2013 Math 471 Sec 2
 Introduction to Numerical Methods
 Manabu Machida (University of Michigan)
 ${ }^{1}$ Math 419

