Chapter 4 Eigenvalues and eigenvectors

Rayleigh quotient

We begin with the following theorem¹.

Theorem 1. If A is a real symmetric matrix, then the eigenvalues λ_i are real and we can take the eigenvectors \mathbf{q}_i so that they form an orthonormal basis, i.e., $\mathbf{q}_i \cdot \mathbf{q}_j = \mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$.

Note that δ_{ij} is the Kronecker delta: $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ii} = 1$.

In Chapter 3, we studied that eigenvalues are given as roots of the characteristic polynomial $f_A(\lambda)$:

$$f_A(\lambda) = \det(A - \lambda I) = 0,$$

and we studied rootfinding methods in Chapter 2. So, we may think obtaining eigenvalues are not a big deal. But the following example shows that this calculation is unstable.

Example 1. Let us consider the following diagonal matrix A.

$$A = \begin{pmatrix} 1 & & \\ 2 & & \\ & 3 & \\ & & 4 & \\ & & & 5 \end{pmatrix} \Rightarrow \begin{array}{c} f_A(\lambda) = (1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)(5-\lambda) \\ = -\lambda^5 + 15\lambda^4 - 85\lambda^3 + 225\lambda^2 - 274\lambda + 120. \end{array}$$

$$f_A(\lambda) = 0 \quad \Rightarrow \quad \lambda = 1, 2, 3, 4, 5$$

Suppose coefficients of $f_A(\lambda)$ are slightly modified and we have

$$g_A(\lambda) = -1.01\lambda^5 + 14.98\lambda^4 - 85\lambda^3 + 225\lambda^2 - 274\lambda + 120.$$

Then,

$$g_A(\lambda) = 0 \quad \Rightarrow \quad \lambda = 0.99876, 2.21131, 2.36314, 4.62924 \pm 1.15532i.$$

Manabu Machida (University of Michigan)

¹ Math 419

Fall 2013 Math 471 Sec 2

Introduction to Numerical Methods

Definition 1. For a given real symmetric matrix *A* and any $\mathbf{x} \neq \mathbf{0}$, we define

$$R_A(\mathbf{x}) = \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.$$

This $R_A(\mathbf{x})$ is called the Rayleigh quotient.

If $\mathbf{x} = \mathbf{q}_i$, then

$$R_A(\mathbf{q}_i) = \frac{\mathbf{q}_i^T A \mathbf{q}_i}{\mathbf{q}_i^T \mathbf{q}_i} = \frac{\mathbf{q}_i^T \lambda_i \mathbf{q}_i}{\mathbf{q}_i^T \mathbf{q}_i} = \lambda_i$$

By the Taylor expansion, we have

$$R_A(\mathbf{x}) = R_A(\mathbf{q}_i) + \nabla R_A(\mathbf{q}_i) \cdot (\mathbf{x} - \mathbf{q}_i) + O\left(\|\mathbf{x} - \mathbf{q}_i\|_2^2\right).$$

Note that

$$\nabla R_A(\mathbf{x}) = \nabla \left(\frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}\right) = \frac{(\mathbf{x}^T \mathbf{x}) \nabla (\mathbf{x}^T A \mathbf{x}) - (\mathbf{x}^T A \mathbf{x}) \nabla (\mathbf{x}^T \mathbf{x})}{(\mathbf{x}^T \mathbf{x})^2} = \frac{(\mathbf{x}^T \mathbf{x}) 2A \mathbf{x} - (\mathbf{x}^T A \mathbf{x}) 2 \mathbf{x}}{(\mathbf{x}^T \mathbf{x})^2}$$
$$= \frac{2}{\mathbf{x}^T \mathbf{x}} \left(A \mathbf{x} - R_A(\mathbf{x}) \mathbf{x}\right),$$

and

$$\nabla R_A(\mathbf{q}_i) = \frac{2}{\mathbf{q}_i^T \mathbf{q}_i} \Big(A \mathbf{q}_i - R_A(\mathbf{q}_i) \mathbf{q}_i \Big) = 0.$$

Therefore, if $\mathbf{x} \approx \mathbf{q}_i$, then $R_A(\mathbf{x})$ is an approximation to λ_i and

$$R_A(\mathbf{x}) = \lambda_i + O\left(\|\mathbf{x} - \mathbf{q}_i\|_2^2\right)$$

The power method

Suppose we have a large $n \times n$ matrix A. We are often interested in obtaining only a few largest eigenvalues of A, or even only the largest eigenvalue.

Let λ_i (*i* = 1,...,*n*) be the eigenvalues and \mathbf{q}_i be the associated orthonormal eigenvectors. We assume

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$$

For a given vector \mathbf{x}_0 ($\|\mathbf{x}_0\|_2 = 1$), there exist constants c_1, \ldots, c_n such that

$$\mathbf{x}_0 = c_1 \mathbf{q}_1 + \dots + c_n \mathbf{q}_n.$$

4 Eigenvalues and eigenvectors

Let us suppose $c_1 \neq 0$, i.e., $\mathbf{q}_1 \cdot \mathbf{x}_0 \neq 0$. We construct \mathbf{x}_k (k = 1, 2, ...) as

$$\mathbf{y} = A\mathbf{x}_{k-1},$$
$$\mathbf{x}_k = \frac{\mathbf{y}}{\|\mathbf{y}\|_2}.$$

The first step is written as

$$\mathbf{x}_1 = \beta_1 \left(c_1 \lambda_1 \mathbf{q}_1 + \dots + c_n \lambda_n \mathbf{q}_n \right), \qquad \beta_1 = \| c_1 \lambda_1 \mathbf{q}_1 + \dots + c_n \lambda_n \mathbf{q}_n \|_2^{-1}.$$

In general, we have

$$\mathbf{x}_{k} = \beta_{k} \left(c_{1} \lambda_{1}^{k} \mathbf{q}_{1} + \dots + c_{n} \lambda_{n}^{k} \mathbf{q}_{n} \right) = \beta_{k} c_{1} \lambda_{1}^{k} \left[\mathbf{q}_{1} + \frac{c_{2}}{c_{1}} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \mathbf{q}_{2} + \dots + \frac{c_{n}}{c_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \mathbf{q}_{n} \right]$$

$$(4.1)$$

where $\beta_k = |c_1 \lambda_1^k|^{-1} [1 + O(|\lambda_2/\lambda_1|)^k]$. Hence, $\mathbf{x}_k \to \pm \mathbf{q}_1$ (\pm depends on the sign of $c_1 \lambda_1^k$) and

$$\|\mathbf{x}_k - (\pm)\mathbf{q}_1\|_2 = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right).$$

Finally,

$$\mathbf{x}_{k}^{T}A\mathbf{x}_{k} = \beta_{k}^{2}(c_{1}\lambda_{1}^{k})^{2} \left[\lambda_{1} + \lambda_{2} \left(\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}\right)^{2} + \dots + \lambda_{n} \left(\frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}\right)^{2}\right]$$
$$= \lambda_{1} + O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2k}\right).$$
(4.2)

The convergence is linear with asymptotic rate $|\lambda_2/\lambda_1|^2$.

Remark 1. The above discussion holds true for general nonsymmetric matrices with linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Instead of (4.2), we can look at a nonzero element $x_i^{(k)}$ in (4.1). We have

$$\frac{x_i^{(k)}}{x_i^{(k-1)}} = \frac{\lambda_1}{|\lambda_1|} \left[1 + O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \right].$$

The convergence is linear with asymptotic rate $|\lambda_2/\lambda_1|$.

Remark 2. Recall that the matrix A for $-D_+D_-$ is tridiagonal:

Math 471

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

In this case $\mathbf{y} = A\mathbf{x}$ can be coded as the following loop.

1 || for
$$i=1:n$$

2 || $y(i)=(-x(i-1)+2*x(i)-x(i+1))/h^2$;
3 || end

This is more efficient than forming *A* and computing $\mathbf{y} = A\mathbf{x}$ by direct matrix-vector multiplication.

The power method is implemented as follows.

Step 1 Give \mathbf{x}_0 ($\|\mathbf{x}_0\|_2 = 1$). Set $\lambda^{(0)} = \mathbf{x}_0^T A \mathbf{x}_0$ and k = 1. Step 2 $\mathbf{y} = A \mathbf{x}_{k-1}$. Step 3 $\mathbf{x}_k = \mathbf{y} / \|\mathbf{y}\|_2$. Step 4 $\lambda^{(k)} = \mathbf{x}_k^T A \mathbf{x}_k$. Step 5 Set k = k + 1 and go to Step 2

Example 2. Let us try the power method for

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

The eigenvalues of A are $\lambda_1 = 5.214320$, $\lambda_2 = 2.460811$, and $\lambda_3 = 1.324869$. For example, we can choose

$$\mathbf{x}_0 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

We obtain the following results.

Note that $\lambda^{(k)} \to \lambda_1$, $|\lambda^{(k)} - \lambda_1| \to 0$, and $|\lambda^{(k)} - \lambda_1| / |\lambda^{(k-1)} - \lambda_1| \to (\lambda_2/\lambda_1)^2$ as $k \to \infty$.

4 Eigenvalues and eigenvectors

The inverse power method

Here we try to find the smallest eigenvalue. We note that

$$A\mathbf{q}_i = \lambda_i \mathbf{q}_i \quad \Rightarrow \quad A^{-1}\mathbf{q}_i = \lambda_i^{-1}\mathbf{q}_i.$$

Thus the largest eigenvalue of A^{-1} is λ_n^{-1} .

The inverse power method is implemented as follows.

Step 1 Give \mathbf{x}_0 ($\|\mathbf{x}_0\|_2 = 1$). Set $\lambda^{(0)} = \mathbf{x}_0^T A \mathbf{x}_0$ and k = 1. Step 2 Solve $A\mathbf{y} = \mathbf{x}_{k-1}$ (see Chapter 3). Step 3 $\mathbf{x}_k = \mathbf{y}/\|\mathbf{y}\|_2$. Step 4 $\lambda^{(k)} = \mathbf{x}_k^T A \mathbf{x}_k$. Step 5 Set k = k + 1 and go to Step 2

Example 3. Let us try the inverse power method for the previous example. We obtain the following results.

k	$\lambda^{(k)}$	$ \lambda^{(k)} - \lambda_3 $	$ \lambda^{(k)} - \lambda_3 / \lambda^{(k-1)} - \lambda_3 $
0	5.000000	3.675131	-
1	3.816327	2.491457	0.677923
2	1.864903	0.540034	0.216754

Note that $\lambda^{(k)} \to \lambda_3$, $|\lambda^{(k)} - \lambda_3| \to 0$, and $|\lambda^{(k)} - \lambda_3|/|\lambda^{(k-1)} - \lambda_3| \to (\lambda_3/\lambda_2)^2$ as $k \to \infty$.