
Chapter 4

Eigenvalues and eigenvectors

Rayleigh quotient

We begin with the following theorem1.

Theorem 1. If A is a real symmetric matrix, then the eigenvalues λi are real and we

can take the eigenvectors qi so that they form an orthonormal basis, i.e., qi ·q j =
qT

i q j = δi j.

Note that δi j is the Kronecker delta: δi j = 0 if i 6= j and δii = 1.

In Chapter 3, we studied that eigenvalues are given as roots of the characteristic

polynomial fA(λ ):
fA(λ ) = det(A−λ I) = 0,

and we studied rootfinding methods in Chapter 2. So, we may think obtaining eigen-

values are not a big deal. But the following example shows that this calculation is

unstable.

Example 1. Let us consider the following diagonal matrix A.

A=













1

2

3

4

5













⇒
fA(λ ) = (1−λ )(2−λ )(3−λ )(4−λ )(5−λ )

=−λ 5 +15λ 4 −85λ 3 +225λ 2 −274λ +120.

fA(λ ) = 0 ⇒ λ = 1,2,3,4,5.

Suppose coefficients of fA(λ ) are slightly modified and we have

gA(λ ) =−1.01λ 5 +14.98λ 4 −85λ 3 +225λ 2 −274λ +120.

Then,

gA(λ ) = 0 ⇒ λ = 0.99876, 2.21131, 2.36314, 4.62924±1.15532i.
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Definition 1. For a given real symmetric matrix A and any x 6= 0, we define

RA(x) =
xT Ax

xT x
.

This RA(x) is called the Rayleigh quotient.

If x = qi, then

RA(qi) =
qT

i Aqi

qT
i qi

=
qT

i λiqi

qT
i qi

= λi.

By the Taylor expansion, we have

RA(x) = RA(qi)+∇RA(qi) · (x−qi)+O
(

‖x−qi‖2
2

)

.

Note that

∇RA(x) = ∇

(

xT Ax

xT x

)

=
(xT x)∇(xT Ax)− (xT Ax)∇(xT x)

(xT x)2
=

(xT x)2Ax− (xT Ax)2x

(xT x)2

=
2

xT x

(

Ax−RA(x)x
)

,

and

∇RA(qi) =
2

qT
i qi

(

Aqi −RA(qi)qi

)

= 0.

Therefore, if x ≈ qi, then RA(x) is an approximation to λi and

RA(x) = λi +O
(

‖x−qi‖2
2

)

.

The power method

Suppose we have a large n×n matrix A. We are often interested in obtaining only a

few largest eigenvalues of A, or even only the largest eigenvalue.

Let λi (i = 1, . . . ,n) be the eigenvalues and qi be the associated orthonormal

eigenvectors. We assume

|λ1|> |λ2|> · · ·> |λn|.

For a given vector x0 (‖x0‖2 = 1), there exist constants c1, . . . ,cn such that

x0 = c1q1 + · · ·+ cnqn.
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Let us suppose c1 6= 0, i.e., q1 ·x0 6= 0. We construct xk (k = 1,2, . . . ) as

y = Axk−1,

xk =
y

‖y‖2
.

The first step is written as

x1 = β1 (c1λ1q1 + · · ·+ cnλnqn) , β1 = ‖c1λ1q1 + · · ·+ cnλnqn‖−1
2 .

In general, we have

xk = βk

(

c1λ k
1 q1 + · · ·+ cnλ k

n qn

)

= βkc1λ k
1

[

q1 +
c2

c1

(

λ2

λ1

)k

q2 + · · ·+ cn

c1

(

λn

λ1

)k

qn

]

,

(4.1)

where βk =
∣

∣c1λ k
1

∣

∣

−1
[

1+O(|λ2/λ1|)k
]

. Hence, xk →±q1 (± depends on the sign

of c1λ k
1 ) and

‖xk − (±)q1‖2 = O

(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k
)

.

Finally,

xT
k Axk = β 2

k (c1λ k
1 )

2



λ1 +λ2

(

c2

c1

(

λ2

λ1

)k
)2

+ · · ·+λn

(

cn

c1

(

λn

λ1

)k
)2




= λ1 +O

(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

2k
)

. (4.2)

The convergence is linear with asymptotic rate |λ2/λ1|2.

Remark 1. The above discussion holds true for general nonsymmetric matrices with

linearly independent eigenvectors v1, . . . ,vn. Instead of (4.2), we can look at a

nonzero element x
(k)
i in (4.1). We have

x
(k)
i

x
(k−1)
i

=
λ1

|λ1|

[

1+O

(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k
)]

.

The convergence is linear with asymptotic rate |λ2/λ1|.

Remark 2. Recall that the matrix A for −D+D− is tridiagonal:
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A =
1

h2















2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2















.

In this case y = Ax can be coded as the following loop.

1 f o r i =1 : n

2 y ( i )=(−x ( i −1)+2∗x ( i )−x ( i + 1 ) ) / h ˆ 2 ;

3 end

This is more efficient than forming A and computing y = Ax by direct matrix-vector

multiplication.

The power method is implemented as follows.

Step 1 Give x0 (‖x0‖2 = 1). Set λ (0) = xT
0 Ax0 and k = 1.

Step 2 y = Axk−1.

Step 3 xk = y/‖y‖2.

Step 4 λ (k) = xT
k Axk.

Step 5 Set k = k+1 and go to Step 2

Example 2. Let us try the power method for

A =





2 1 1

1 3 1

1 1 4



 .

The eigenvalues of A are λ1 = 5.214320, λ2 = 2.460811, and λ3 = 1.324869. For

example, we can choose

x0 =
1√
3





1

1

1



 .

We obtain the following results.

k λ (k) |λ (k)−λ1| |λ (k)−λ1|/|λ (k−1)−λ1|
0 5.000000 0.214320 –

1 5.181818 0.032502 0.151650

2 5.208193 0.006127 0.188513

Note that λ (k) → λ1, |λ (k)−λ1| → 0, and |λ (k)−λ1|/|λ (k−1)−λ1| → (λ2/λ1)
2 as

k → ∞.
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The inverse power method

Here we try to find the smallest eigenvalue. We note that

Aqi = λiqi ⇒ A−1qi = λ−1
i qi.

Thus the largest eigenvalue of A−1 is λ−1
n .

The inverse power method is implemented as follows.

Step 1 Give x0 (‖x0‖2 = 1). Set λ (0) = xT
0 Ax0 and k = 1.

Step 2 Solve Ay = xk−1 (see Chapter 3).

Step 3 xk = y/‖y‖2.

Step 4 λ (k) = xT
k Axk.

Step 5 Set k = k+1 and go to Step 2

Example 3. Let us try the inverse power method for the previous example. We obtain

the following results.

k λ (k) |λ (k)−λ3| |λ (k)−λ3|/|λ (k−1)−λ3|
0 5.000000 3.675131 –

1 3.816327 2.491457 0.677923

2 1.864903 0.540034 0.216754

Note that λ (k) → λ3, |λ (k)−λ3| → 0, and |λ (k)−λ3|/|λ (k−1)−λ3| → (λ3/λ2)
2 as

k → ∞.


