
Chapter 3

Numerical linear algebra

Review of linear algebra

We consider the following system of linear equations which has n unknowns

x1, . . . ,xn. 





a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

...

an1x1 +an2x2 + · · ·+annxn = bn

We can write the system as

Ax = b,

where

A =








a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann







, x =








x1

x2

...

xn







, b =








b1

b2

...

bn







.

We note that the ith row of Ax = b is written as

n

∑
j=1

ai jx j = bi,

where j is the column index.

If A is invertible, we can obtain x by

x = A−1b.

In Matlab, you can type x=A\b. The next theorem states when A is invertible.1
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Theorem 1. The following conditions are equivalent.

1. Ax = b has a unique solution for ∀b.

2. A is invertible.

3. detA 6= 0.

4. Ax = 0 has the unique solution x = 0.

5. The columns of A are linearly independent.

6. The eigenvalues of A are nonzero.

Suppose A is invertible. Note that x = A−1b is not the best way to numerically

compute x. There are two types of methods for solving Ax = b: direct methods and

iterative methods.

Gaussian elimination with back substitution

Suppose A is an upper triangular matrix. In 3, we will consider other matrices. The

equation Ax = b is written as







a11x1 +a12x2 + · · ·+a1nxn = b1

a22x2 + · · ·+a2nxn = b2

...

annxn = bn

We can readily obtain xn,xn−1, . . . ,x1 by back substitution:

xn =
bn

ann

,

xn−1 =
bn−1 −an−1,nxn

an−1,n−1
,

...

x1 =
b1 − (a12x2 + · · ·+a1nxn)

a11
.

This procedure can be implemented as follows.

1 x ( n )= b ( n ) / a ( n , n )

2 f o r i =n−1:−1:1 % i : row i n d e x

3 tmp=b ( i )

4 f o r j = i +1 : n % j : column i n d e x

5 tmp=tmp−a ( i , j )∗ x ( j )
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6 end

7 x ( i )= tmp / a ( i , i )

8 end

Operation counts (back substitution)

Let us consider how much work it takes to perform the back substitution. As a mea-

sure of work, we will use the number of arithmetic operations being performed.23

the number of divisions = n,

the number of multiplications = the number of additions

= 1+2+ · · ·+(n−1)

=
1

2
n(n−1)∼ 1

2
n2 for large n,

where we used

S = 1+2+ · · ·+(n−1),

2S = [1+2+ · · ·+(n−1)]+ [(n−1)+ · · ·+2+1] = n+n+ · · ·+n = n(n−1).

∴ S =
n(n−1)

2
.

Hence the leading order term in the operation count for back substitution is n2.

Elementary row operations

Elementary row operations consist of the following three operations.

• Interchanging two rows.

• Multiplying any row by a nonzero constant.

• Subtracting a multiple of one row from another row.

2 On ancient computers, multiplication and division were significantly more time-consuming than

addition and subtraction. Division was the slowest operation and we tend to write 0.5 instead of

1/2.0. On modern architectures, however, multiplication is no more expensive and division is not

twice as expensive as addition and subtraction. So, here we break from tradition and just count the

total number of arithmetic operations.
3 The word FLOPs (FLoating-point OPerations) is sometimes used. FLOPS stands for (FLoating-

point Operations Per Second).
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Gaussian elimination is to transform the augmented matrix (A b) into upper

triangular form by repeatedly applying the third elementary row operation.

Solutions to the system of equations Ax = b don’t change by elementary row

operations.

Example 1. Let us solve 





2x1 − x2 = 1,
−x1 +2x2 − x3 = 0,
−x2 +2x3 = 1.

(3.1)

We write the augmented matrix as





a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3



=





2 −1 0 1

−1 2 −1 0

0 −1 2 1



 .

By the operation (2nd row)− a21
a11

(1st row), we get





a11 a12 a13 b1

0 a22 −m21a12 a23 −m21a13 b2 −m21b1

0 a32 a33 b3



=





2 −1 0 1

0 3
2

−1 1
2

0 −1 2 1



 ,

where m21 = a21/a11 =−1/2. We refer to m21 as a multiplier. Now we have





a11 a12 a13 b1

0 a22 a23 b2

0 a32 a33 b3



=





2 −1 0 1

0 3
2

−1 1
2

0 −1 2 1



 .

Then by the operation (3rd row)−m32(2nd row), where the multiplier m32 = a32/a22 =
−1/ 3

2
=−2/3, we obtain





a11 a12 a13 b1

0 a22 a23 b2

0 a32 −m32a22 a33 −m32a23 b3 −m32b2



=





2 −1 0 1

0 3
2

−1 1
2

0 0 4
3

4
3



 .

Finally we obtain the upper triangular matrix





a11 a12 a13 b1

0 a22 a23 b2

0 0 a33 b3



=





2 −1 0 1

0 3
2

−1 1
2

0 0 4
3

4
3



 ,

or the system






2x1 − x2 = 1,
3
2
x2 − x3 = 1

2
,

4
3
x3 = 4

3
.

(3.2)
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In a general n×n case, reduction to the upper triangular form can be implemented

as follow.

1 f o r k =1: n−1 % k : s t e p i n d e x

2 f o r i =k +1: n

3 m( i , k )= a ( i , k ) / a ( k , k )

4 f o r j =k +1: n

5 a ( i , j )= a ( i , j )−m( i , k )∗ a ( k , j )

6 end

7 b ( i )= b ( i )−m( i , k )∗ b ( k )

8 end

Note that a(k,k) 6= 0 was assumed. This point will be discussed later.

The element a(k,k) in the kth step is called a pivot (these are the diagonal ele-

ments in the last step). In the previous example, the pivots are 2, 3/2, 4/3.

Operation counts (Gaussian elimination)

The leading order term comes from line 5 of the above code.

k = 1 =⇒ 2(n−1)2

k = 2 =⇒ 2(n−2)2

...

k = n−2 =⇒ 2 ·22

k = n−1 =⇒ 2 ·12







=⇒ 2 ·
n−1

∑
k=1

k2 = 2 · 1

6
(n−1)n(2n−1),

where we used ∑n
k=1 k2 = 1

6
n(n+1)(2n+1), which can be derived using n3 = n3 −

(n−1)3+(n−1)3+ · · ·−23+23−13+13. Hence the operation count for Gaussian

elimination is 2
3
n3.

Pivoting

Here we consider cases where one of the pivots is zero.

Partial pivoting

Consider the reduced matrix at the beginning of step k:
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









a11 · · · a1k · · · a1n b1

. . .
...

...
...

akk · · · akn bk

...
...

...

ank · · · ann bn











.

If akk = 0, find index l such that |alk|= max{|aik|;k ≤ i ≤ n}, then interchange row

l and row k, and proceed with the elimination.

If A is invertible, then Gaussian elimination with partial pivoting does not break

down.4

In practice, pivoting is often applied even when the pivot is nonzero.

Example 2. The exact solutions of the following problem are x1 = x2 = 1.

(
ε 1 1+ ε
1 1 2

)

→
(

ε 1 1+ ε

0 1− 1
ε 1− 1

ε

)

∴







x1 =
1+ ε −1

ε
= 1,

x2 =
1− 1

ε

1− 1
ε

= 1.

Since 1/ε is large, by taking the effect of roundoff error into account, we can write

(
ε 1 1

0 − 1
ε − 1

ε

)

∴







x1 =
1−1

ε
= 0,

x2 =
− 1

ε

− 1
ε

= 1.

Thus, an inaccurate solution is obtained. Now we apply pivoting.

(
1 1 2

ε 1 1+ ε

)

→
(

1 1 2

0 1 1

)

∴

{

x1 = 1,

x2 = 1.

In this case, the computed solutions are accurate.

Vector and matrix norms

To do error analysis, it is convenient to introduce the size of a vector and the size of

a matrix.

Definition 1. A vector norm is a function ‖x‖ satisfying the following properties.

4 Math 571
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1. ‖x‖ ≥ 0, and ‖x‖= 0 ⇔ x = 0.

2. ‖αx‖= |α|‖x‖, α ∈ C.

3. ‖x+y‖ ≤ ‖x‖+‖y‖.

We can think of different norms.

‖x‖p =

(
n

∑
i=1

|xi|p
)1/p

, 1 ≤ p < ∞, ‖x‖∞ = max{|xi|; i = 1, . . . ,n}.

For example,

‖x‖1 =
n

∑
i=1

|xi|, ‖x‖2 =

√
n

∑
i=1

x2
i = |x|.

Example 3. If x =

(
1

2

)

, then

‖x‖2 =
√

5, ‖x‖∞ = 2.

Definition 2. The matrix norm of a matrix A is given by

‖A‖= max
x6=0

‖Ax‖
‖x‖ .

We can regard x as input and Ax as output. Then the ratio ‖Ax‖/‖x‖ (the ampli-

fication factor) shows how much the input gets large. The matrix norm satisfies the

following properties.

1. ‖A‖ ≥ 0, and ‖A‖= 0 ⇔ A = 0.

2. ‖αA‖= |α|‖A‖, α ∈ C.

3. ‖A+B‖ ≤ ‖A‖+‖B‖.

4. ‖Ax‖ ≤ ‖A‖‖x‖.

5. ‖AB‖ ≤ ‖A‖‖B‖.

The second half of the first property is proved as

‖A‖= 0 ⇔ ‖Ax‖= 0 for all x 6= 0 ⇔ Ax = 0 for all x 6= 0 ⇔ A = 0.

The last property can be proved as follows.

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖. ∴ ‖AB‖ ≤ ‖A‖‖B‖.

Theorem 2 (Maximum absolute row sum).

‖A‖∞ = max
i

∑
j

|ai j|.
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Proof.

‖Ax‖∞ = max
i

∣
∣
∣
∣
∣

n

∑
j=1

ai jx j

∣
∣
∣
∣
∣
≤ max

i

n

∑
j=1

|ai j| |x j| ≤ max
j

|x j| max
i

n

∑
j=1

|ai j|

= ‖x‖∞ max
i

n

∑
j=1

|ai j|.

Hence

‖A‖∞ ≤ max
i

n

∑
j=1

|ai j|. (3.3)

Define y (‖y‖∞ = 1) by

y j =

{

1, if ai j ≥ 0,

−1, if ai j < 0.

We have

‖Ay‖∞ = max
i

∣
∣
∣
∣
∣

n

∑
j=1

ai jy j

∣
∣
∣
∣
∣
= max

i

n

∑
j=1

|ai j|= ‖y‖∞ max
i

n

∑
j=1

|ai j|.

Hence

‖A‖∞ ≥ max
i

n

∑
j=1

|ai j|. (3.4)

Equations (3.3) and (3.4) yields

‖A‖∞ = max
i

n

∑
j=1

|ai j|.

⊓⊔

Example 4. Let us consider A =

(
3 −4

1 0

)

. According to the above theorem, we

obtain

‖A‖∞ = max{|3|+ |−4|, |1|+ |0|}= 7.

Let us try a few x’s.

A

(
1

0

)

=

(
3

1

)

⇒ ‖Ax‖∞

‖x‖∞
=

3

1
= 3,

A

(
0

1

)

=

(
−4

0

)

⇒ ‖Ax‖∞

‖x‖∞
=

4

1
= 4,

A

(
1

1

)

=

(
−1

1

)

⇒ ‖Ax‖∞

‖x‖∞
=

1

1
= 1,

A

(
1

−1

)

=

(
7

1

)

⇒ ‖Ax‖∞

‖x‖∞
=

7

1
= 7.
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We also have

‖A‖1 = max
j

∑
i

|ai j| (maximum absolute column sum),

‖A‖2 =
√

max eigenvalue of A∗A,

where A∗ is the conjugate transpose of A.

Error analysis

We consider Ax = b. Let x and x̃ denote the exact solution and an approximate

solution. The error e = x− x̃ is usually unknown. The residual r = b−Ax̃ can be

computed.

Example 5. Even if ‖r‖ is small, there is no guarantee that ‖e‖ is small. Consider

A =

(
1.01 0.99

0.99 1.01

)

, b =

(
2

2

)

⇒ x =

(
1

1

)

.

Suppose we get an approximate solution x̃1 =

(
1.01

1.01

)

. We obtain

e1 = x− x̃1 =

(
−0.01

−0.01

)

⇒ ‖e1‖= 0.01,

r1 = b−Ax̃1 =

(
2

2

)

−
(

2.02

2.02

)

=

(
−0.02

−0.02

)

⇒ ‖r1‖= 0.02.

Next let us suppose we get an approximate solution x̃2 =

(
2

0

)

. We obtain

e2 = x− x̃2 =

(
−1

1

)

⇒ ‖e2‖= 1,

r2 = b−Ax̃2 =

(
2

2

)

−
(

2.02

1.98

)

=

(
−0.02

0.02

)

⇒ ‖r2‖= 0.02.

We want to know how large ‖e‖ can be.

Theorem 3.
‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ ,

where κ(A) = ‖A‖‖A−1‖ is the condition number.
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Proof. We have

‖b‖= ‖Ax‖ ≤ ‖A‖‖x‖ ⇒ ‖x‖ ≥ ‖b‖/‖A‖.

Note that

Ae = A(x− x̃) = Ax−Ax̃ = b−Ax̃ = r ⇒ Ae = r.

Hence,

e = A−1r ⇒ ‖e‖= ‖A−1r‖ ≤ ‖A−1‖‖r‖.
Finally we obtain

‖e‖
‖x‖ ≤ ‖A−1‖‖r‖

‖b‖/‖A‖ =
‖A‖‖A−1‖‖r‖

‖b‖ = κ(A)
‖r‖
‖b‖ .

⊓⊔

If we write Ax̃ = b̃, then

‖x− x̃‖
‖x‖ ≤ κ(A)

‖b− b̃‖
‖b‖ .

If we write Ãx̃ = b, then

‖x− x̃‖
‖x‖ ≤ κ(A)

‖A− Ã‖
‖A‖ .

Hence κ(A) controls the change in x due to changes in A and b.

Example 6. The exact solutions of the following problem are x1 = x2 = 1. Since 1/ε
is large, by taking the effect of roundoff error into account, we have

(
ε 1 1+ ε
1 1 2

)

→
(

ε 1 1

0 − 1
ε − 1

ε

)

∴

{

x1 = 0,

x2 = 1.

We obtain

A =

(
ε 1

1 1

)

, A−1 =
1

ε −1

(
1 −1

−1 ε

)

⇒ κ∞(A) = 2 · 1

|ε −1| ·2 ≈ 4.

However, Gaussian elimination reduces the system to upper triangular form.

U =

(
ε 1

0 − 1
ε

)

, U−1 =
1

−1

(
− 1

ε −1

0 ε

)

⇒ κ∞(U) =

∣
∣
∣
∣
−1

ε

∣
∣
∣
∣
· 1

|−1| ·
(∣
∣
∣
∣
−1

ε

∣
∣
∣
∣
+1

)

≈ 1

ε2
.

Thus κ(U)≫ κ(A).
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Now by pivoting we obtain

(
1 1 2

ε 1 1+ ε

)

→
(

1 1 2

0 1 1

)

∴

{

x1 = 1,

x2 = 1.

In this case, we have

U =

(
1 1

0 1

)

, U−1 =

(
1 −1

0 1

)

⇒ κ∞(U)≈ 4 ≈ κ∞(A).

A small change in A or b (for example, due to roundoff error) can produce a

large change in the computed solution. That is, Gaussian elimination is unstable

for solving Ax = b. However, since pivoting preserves the condition number of the

original matrix A, Gaussian elimination with pivoting is stable (in most cases).

LU factorization

LU factorization or LU decomposition is a matrix form of Gaussian elimination. L

is a lower triangular matrix and U is an upper triangular matrix. Let us consider the

LU factorization of an n×n matrix A. For simplicity we assume n = 3:

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 .

Step 1: Operate a lower triangular matrix.

E1
︷ ︸︸ ︷




1 0 0

−m21 1 0

−m31 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



=





a11 a12 a13

0 a′22 a′23

0 a′32 a′33



 ,

where m21 = a21/a11 and m31 = a31/a11.

Step 2: Operate another lower triangular matrix.

E2
︷ ︸︸ ︷




1 0 0

0 1 0

0 −m32 1









a11 a12 a13

0 a′22 a′23

0 a′32 a′33



=

U
︷ ︸︸ ︷




a11 a12 a13

0 a′22 a′23

0 0 a′′33



,

where m32 = a′32/a′22.

Step 3: Rearrange matrices.
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E2E1A =U ⇒ A = E−1
1 E−1

2 U.

We have

E−1
1 E−1

2 =





1 0 0

m21 1 0

m31 0 1









1 0 0

0 1 0

0 m32 1



=

L
︷ ︸︸ ︷




1 0 0

m21 1 0

m31 m32 1



 .

Therefore,

A = LU.

Example 7.

A
︷ ︸︸ ︷




2 −1 0

−1 2 −1

0 −1 2



=

L
︷ ︸︸ ︷




1 0 0

− 1
2

1 0

0 − 2
3

1





U
︷ ︸︸ ︷




2 −1 0

0 3
2
−1

0 0 4
3



 .

We can solve Ax = b as follows.

Step 1 Factor A = LU (the operation count is 2
3
n3).

Step 2 Solve Ly = b by forward substitution (the operation count is n2).

Step 3 Solve Ux = y by back substitution (the operation count is n2).

(The operation count of finding A−1 by Gauss-Jordan elimination ≈ 8n3/3.)

Example 8. Consider Ax = b, where

A =





2 −1 0

−1 2 −1

0 −1 2



 , b =





1

0

1



 .

We have

Ly = b ⇒





1 0 0

− 1
2

1 0

0 − 2
3

1



y =





1

0

1



 ⇒ y =





1
1
2
4
3



 ,

and

Ux = y ⇒





2 −1 0

0 3
2
−1

0 0 4
3



x =





1
1
2
4
3



 ⇒ x =





1

1

1



 .

Indeed, the exact solution is x =





1

1

1



.
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Sometimes we want to solve Ax = bi (i = 1,2, . . . ), i.e., for a given matrix A and

a sequence of vectors b. Once the LU factorization of A is known, we can apply

forward and back substitution to the sequence of bi. We only need to do the LU

factorization once in the beginning.

LU factorization and partial pivoting

Sometimes we need to interchange rows. In such a case, we construct PA = LU ,

where P is a permutation matrix. Then,

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb.

If pivoting is required in more than one step, we proceed as

E2P2E1P1A =U ⇒ E2Ẽ1P2P1A =U ⇒ PA = LU,

where P = P2P1, L = Ẽ−1
1 E−1

2 , and Ẽ1 is the matrix such that P2E1 = Ẽ1P2.

Example 9. Consider





0 4 −15

10 0 15

1 −1 −1



x =





−12

100

0



 .

We want to interchange rows 1 and 2. We define

P =





0 1 0

1 0 0

0 0 1



 .

We have

PA =





10 0 15

0 4 −15

1 −1 −1



=

L
︷ ︸︸ ︷




1 0 0

0 1 0

0.1 −0.25 1





U
︷ ︸︸ ︷




10 0 15

0 4 −15

0 0 −6.25



 .

We obtain

Ly = Pb ⇒





1 0 0

0 1 0

0.1 −0.25 1



y =





100

−12

0



 ⇒ y =





100

−12

−13



 ,

Ux = y ⇒





10 0 15

0 4 −15

0 0 −6.25



x =





100

−12

−13



 ⇒ x =





6.88

4.80

2.08



 .
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Two-point boundary value problem

This section corresponds to §8.1 of the textbook.

Consider the temperature y(x, t) in a material. It obeys the heat equation

∂y

∂ t
− k

∂ 2y

∂x2
= r(x),

where k is the thermal diffusivity and r(x) is the internal source. Let us suppose

the temperature is in steady state and set k = 1 for simplicity. Let us find y(x) on

0 ≤ x ≤ 1. We assume the boundary values are known. We have







−y′′ = r(x), x ∈ (0,1),

y = α, x = 0,

y = β , x = 1.

We use finite-difference scheme. Choose n ≥ 1 and set the mesh size h =
1

n+1
.

Set mesh points

xi = ih for i = 0,1, . . . ,n+1 (x0 = 0, xn+1 = 1).

We write yi = y(xi) and ri = r(xi). For each xi, the exact solution is y(xi). Recall

D+yi =
yi+1 − yi

h
, D−yi =

yi − yi−1

h
.

We have (HW1 Prob. 7(a))

D+D−yi = D+

(
yi − yi−1

h

)

=
1

h

[(
yi+1 − yi

h

)

−
(

yi − yi−1

y

)]

=
yi+1 −2yi + yi−1

h2
≈ y′′(xi).

Using Taylor series about xi, we obtain

yi+1 = y(xi +h) = yi +hy′i +
h2

2
y′′i +

h3

3!
y′′′i +

h4

4!
y
(4)
i +

h5

5!
y
(5)
i +O(h6),

yi−1 = y(xi −h) = yi −hy′i +
h2

2
y′′i −

h3

3!
y′′′i +

h4

4!
y
(4)
i − h5

5!
y
(5)
i +O(h6).

Therefore,

D+D−yi =
yi+1 −2yi + yi−1

h2
= y′′(xi)+

h2

12
y
(4)
i +O(h4).
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That is, the approximation is second-order accurate (HW1 Prob. 7(b)).

Let wi denote a numerical solution (wi ≈ yi). We set w0 = α and wn+1 = β . We

can implement −y′′ = r(x) as (finite-difference equations)

−
(

wi+1 −2wi +wi−1

h2

)

= ri, i = 1, . . . ,n.

Thus we have the following matrix-vector equation.

A
︷ ︸︸ ︷

1

h2










2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2










w
︷ ︸︸ ︷









w1

w2

...

wn−1

wn










=

r
︷ ︸︸ ︷









r1 +
α
h2

r2

...

rn−1

rn +
β
h2










.

LU factorization for a tridiagonal system (Thomas algorithm)

Let us consider in general how we can implement LU factorization for tridiagonal

matrices:











b1 c1

a2 b2 c2

. . .
. . .

. . .

. . .
. . . cn−1

an bn











=











1

l2 1

. . .
. . .

. . .
. . .

ln 1





















u1 c1

u2 c2

. . .
. . .

. . . cn−1

un











For n = 3, we can write





b1 c1 0

a2 b2 c2

0 a3 b3



=





1 0 0

l2 1 0

0 l3 1









u1 c1 0

0 u2 c2

0 0 u3



=





u1 c1 0

l2u1 l2c1 +u2 c2

0 l3u2 l3c2 +u3



 .

In this case we can determine li, ui, ci as follows.

b1 = u1 ⇒ u1 = b1,

a2 = l2u1 ⇒ l2 = a2/u1,

b2 = l2c1 +u2 ⇒ u2 = b2 − l2c1,

...
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In general we can proceed as follows.

b1 = u1 ⇒ u1 = b1,

ak = lkuk−1 ⇒ lk = ak/uk−1, k = 2, . . . ,n,

bk = lkck−1 +uk ⇒ uk = bk − lkck−1, k = 2, . . . ,n. (3.5)

Numerical solutions

We can compute w as follows.

Step 1: Find L, U by (3.5).

Step 2: Solve Lz = r.

z1 = r1,

lkzk−1 + zk = rk ⇒ zk = rk − lkzk−1, k = 2, . . . ,n.

Step 3: Solve Uw = z.

unwn = zn ⇒ wn = zn/un,

ukwk + ckwk+1 = zk ⇒ wk = (zk − ckwk+1)/uk, k = n−1,n−2, . . . ,2,1.

Note that the operation count for the above algorithm is O(n) whereas solving Ax =
b in general requires O(n3). If vectors are used instead of full matrices, the required

memory is also O(n).

Example 10. Let us solve the following two-point boundary value problem.

−y′′ = 25sin(πx), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 1.

The solution is y(x) = 25
π2 sin(πx)+x but we seek numerical solutions. We may write

the following codes. Numerical results are shown in Fig. 3.1. Error analysis is done

in the table below. Note that the error decreases by ≈ 1
4

if h decreases by half. Thus

‖y−w‖= O(h2) and the method is second order accurate.

1 % −y ’ ’= r , y (0)= alpha , y (1)= b e t a

2 c l e a r ; c l f ;

3 a l p h a =0;

4 beta =1;

5 n =3;

6 h = 1 / ( n + 1 ) ;

7 x e x a c t = 0 : 0 . 0 0 2 5 : 1 ;
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8 y e x a c t =25/ pi ˆ2∗ s i n ( pi ∗ x e x a c t )+ x e x a c t ;

9 f o r i =1 : n

10 x ( i )= i ∗h ;

11 y ( i ) = 2 5 / pi ˆ2∗ s i n ( pi ∗x ( i ) ) + x ( i ) ;

12 a ( i )=−1/ h ˆ 2 ;

13 b ( i ) = 2 / h ˆ 2 ;

14 c ( i )=−1/ h ˆ 2 ;

15 r ( i )=25∗ s i n ( pi ∗x ( i ) ) ;

16 end

17 r ( 1 ) = r ( 1 ) + a l p h a / h ˆ 2 ;

18 r ( n )= r ( n )+ beta / h ˆ 2 ;

19 w= L U f a c t o r i z a t i o n ( a , b , c , r ) ;

20 % o u t p u t

21 t a b l e ( 1 ) = h ;

22 t a b l e ( 2 ) = norm ( y−w, i n f ) ;

23 t a b l e ( 3 ) = norm ( y−w, i n f ) / h ;

24 t a b l e ( 4 ) = norm ( y−w, i n f ) / h ˆ 2 ;

25 t a b l e ( 5 ) = norm ( y−w, i n f ) / h ˆ 3 ;

26 t a b l e

27 x p l o t =[0 x 1 ] ;

28 wplo t =[ a l p h a w beta ] ;

29 p l o t ( x e x a c t , y e x a c t , x p l o t , wplot , ’g−’ , x p l o t , wplot , ’ ro ’ )

30 a x i s ( [ 0 1 0 4 ] )

31 t i t l e ( s p r i n t f ( ’ n=%d , h=1/%d ’ , n , n + 1 ) , ’ F o n t S i z e ’ , 2 4 )

32 s e t ( gca , ’ F o n t S i z e ’ , 2 4 )

1 f u n c t i o n w = L U f a c t o r i z a t i o n ( a , b , c , r )

2 n= l e n g t h ( r ) ;

3 u ( 1 ) = b ( 1 ) ;

4 f o r k =2: n

5 l ( k )= a ( k ) / u ( k−1);

6 u ( k )= b ( k)− l ( k )∗ c ( k−1);

7 end

8 z ( 1 ) = r ( 1 ) ;

9 f o r k =2: n

10 z ( k )= r ( k)− l ( k )∗ z ( k−1);

11 end

12 w( n )= z ( n ) / u ( n ) ;

13 f o r k=n−1:−1:1

14 w( k ) = ( z ( k)−c ( k )∗w( k + 1 ) ) / u ( k ) ;

15 end



18 Math 471

0 0.5 1
0

1

2

3

4
n=1, h=1/2

0 0.5 1
0

1

2

3

4
n=3, h=1/4

0 0.5 1
0

1

2

3

4
n=7, h=1/8

0 0.5 1
0

1

2

3

4
n=15, h=1/16

Fig. 3.1 Numerical solutions to −y′′ = 25sin(πx), 0≤ x≤ 1, y(0)= 0, y(1)= 1. The exact solution

is plotted as a solid curve.

h ‖y−w‖∞ ‖y−w‖∞/h ‖y−w‖∞/h2 ‖y−w‖∞/h3

0.5000 0.5920 1.1839 2.3679 4.7358

0.2500 0.1343 0.5373 2.1492 8.5968

0.1250 0.0328 0.2624 2.0995 16.7960

0.0625 0.0082 0.1305 2.0874 33.3977

Iterative methods

We will solve Ax = b by iterative methods. We rewrite the equation to an equivalent

linear system.

Ax = b ⇔ x = Bx+ c.

Then for given x0, we compute x1,x2, . . . by fixed-point iteration:

xk+1 = Bxk + c.

We choose the iteration matrix B so that the sequence converges (limk→∞ xk = x).
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Jacobi method

Consider A with nonzero diagonal elements (aii 6= 0, i = 1, . . . ,n). We write A as

A = L+D+U , where

L=











0

a21 0
...

. . .
. . .

...
. . .

. . .

an1 · · · · · · an,n−1 0











, D=











a11

a22

. . .

. . .

ann











, U =












0 a12 · · · · · · a1n

0
. . .

...

. . .
. . .

...

. . . an−1,n

0












.

We write the system as

Ax = b ⇔ (L+D+U)x = b

⇔ Dx =−(L+U)x+b

⇔ x =−D−1(L+U)x+D−1b.

Thus the iteration matrix is BJ =−D−1(L+U). In this case, the following iteration

is more convenient.

Dxk+1 =−(L+U)xk +b.

In component form we have

aiix
(k+1)
i =−

n

∑
j=i+1

ai jx
(k)
j −

i−1

∑
j=1

ai jx
(k)
j +bi (i = 1,2, . . . ,n).

Example 11. Let us consider the following system of equations.

{

2x1 − x2 = 1,

−x1 +2x2 = 1.

The exact solution is x1 = x2 = 1. We have

L =

(
0 0

−1 0

)

, D =

(
2 0

0 2

)

, U =

(
0 −1

0 0

)

.

Therefore,

2x
(k+1)
1 = x

(k)
2 +1,

2x
(k+1)
2 = x

(k)
1 +1,
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where k = 0,1,2, . . . . Let the initial guess be x
(0)
1 = x

(0)
2 = 0.

k x
(k)
1 x

(k)
2

0 0 0

1 1/2 1/2

2 3/4 3/4

3 7/8 7/8

Numerical solutions converge to the exact solution as k → ∞.

Let us consider

ek = x−xk,

which is the error at step k. In the above example, we have

‖e0‖∞ = 1, ‖e1‖∞ =
1

2
, ‖e2‖∞ =

1

4
, . . . , ‖ek+1‖∞ =

1

2
‖ek‖∞.

Theorem 4. Consider a fixed-point iteration xk+1 = Bxk + c to solve a linear

system Ax = b. Then

ek+1 = Bek,

for all k ≥ 0. Furthermore, if ‖B‖< 1, then xk → x as k → ∞ for any x0.

Proof. The first half is proved as

ek+1 = x−xk+1 = (Bx+ c)− (Bxk + c) = B(x−xk) = Bek.

To prove the second half, let us consider

‖ek+1‖= ‖Bek‖ ≤ ‖B‖‖ek‖= ‖B‖‖Bek−1‖ ≤ ‖B‖‖B‖‖ek−1‖

Thus we obtain

‖ek+1‖ ≤ ‖B‖k+1 ‖e0‖,
which goes to zero as k → ∞. ⊓⊔

Example 12. In the previous example, we had the matrix

A =

(
2 −1

−1 2

)

.

Hence,

BJ =−D−1(L+U) =−
(

1
2

0

0 1
2

)(
0 −1

−1 0

)

=

(
0 1

2
1
2

0

)

⇒ ‖BJ‖∞ =
1

2
< 1.
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The theorem implies that the Jacobi method converges and the proof shows that

‖ek‖ decreases by a factor of at least 1/2 in each step.

Gauss-Seidel method

We write the system as

Ax = b ⇔ (L+D+U)x = b

⇔ (L+D)x =−Ux+b

⇔ x =−(L+D)−1Ux+(L+D)−1b.

Thus the iteration matrix is BGS =−(L+D)−1U . In this case, the following iteration

is more convenient.

(L+D)xk+1 =−Uxk +b.

Note that we can rewrite the above relation as

Dxk+1 =−Uxk −Lxk+1 +b.

In component form we have

aiix
(k+1)
i =−

n

∑
j=i+1

ai jx
(k)
j −

i−1

∑
j=1

ai jx
(k+1)
j +bi (i = 1,2, . . . ,n).

Example 13. Let us consider the following system of equations again.

{

2x1 − x2 = 1,

−x1 +2x2 = 1.

We have

2x
(k+1)
1 = x

(k)
2 +1,

2x
(k+1)
2 = x

(k+1)
1 +1,

where k = 0,1,2, . . . . Let the initial guess be x
(0)
1 = x

(0)
2 = 0.

The Gauss-Seidel converges faster than the Jacobi. In the above example, we

have

‖e0‖∞ = 1, ‖e1‖∞ =
1

2
, ‖e2‖∞ =

1

8
, ‖e3‖∞ =

1

32
, . . . , ‖ek+1‖∞ =

1

4
‖ek‖∞.
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k x
(k)
1 x

(k)
2

0 0 0

1 1/2 3/4

2 7/8 15/16

3 31/32 63/64

Example 14. In the previous example, we obtain

BGS =−(L+D)−1U =−1

4

(
2 0

0 2

)(
0 −1

0 0

)

=

(
0 1

2

0 1
4

)

⇒ ‖BGS‖∞ =
1

2
< 1.

The theorem implies that the Gauss-Seidel converges, but we see that ‖ek‖ decreases

by a factor of 1/4 < ‖BGS‖ in each step.

Spectral radius

Definition 3. If Av = λv with a vector v 6= 0 and a scalar λ , then λ is an eigenvalue

of A and v is a corresponding eigenvector.

Definition 4. We call fA(λ ) = det(A−λ I) the characteristic polynomial of A.

Theorem 5. A scalar λ is an eigenvalue of A if and only if λ is a solution to the

characteristic equation:

det(A−λ I) = 0.

Proof.

λ is an eigenvalue ⇔ There exists v 6= 0 such that Av = λv

⇔ v = 0 is not the unique solution to (A−λ I)v = 0

⇔ (A−λ I) is not invertible

⇔ det(A−λ I) = 0.

⊓⊔

Theorem 6. If A is upper triangular, then the eigenvalues are the diagonal elements.

Proof.
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fA(λ ) = det(A−λ I)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 −λ a12 · · · a1n

0 a22 −λ · · · a2n

...
. . .

...

0 ann −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (a11 −λ )

∣
∣
∣
∣
∣
∣
∣

a22 −λ · · · a2n

. . .
...

0 ann −λ

∣
∣
∣
∣
∣
∣
∣

= · · ·

= (a11 −λ )(a22 −λ ) · · ·(ann −λ ) = 0.

Therefore, λ = aii (i = 1,2, . . . ,n). ⊓⊔

Example 15. In the previous example, we considered

BGS =

(
0 1

2

0 1
4

)

.

By solving,

det(BGS −λ I) =

∣
∣
∣
∣

−λ 1
2

0 1
4
−λ

∣
∣
∣
∣
= λ

(

λ − 1

4

)

= 0,

we obtain λ = 0 = λ1 and λ = 1/4 = λ2. The corresponding eigenvectors are ob-

tained as

v1 =

(
1

0

)

, v2 =

(
2

1

)

.

Let us analyze the error.

e0 = x−x0 =

(
1

1

)

−
(

0

0

)

=

(
1

1

)

= v2 −v1,

e1 = BGSe0 = BGS(v2 −v1) = λ2v2 −λ1v1

e2 = BGSe1 = λ 2
2 v2 −λ 2

1 v1

...

ek = λ k
2 v2 −λ k

1 v1 = λ k
2 v2.

Therefore,

‖ek‖=
(

1

4

)k

‖v2‖.

This is why we had ‖ek+1‖∞ = 1
4
‖ek‖∞ (‖ek+1‖∞ ≤ ‖BGS‖∞ ‖ek‖∞ = 1

2
‖ek‖∞ is cor-

rect but not a very sharp estimate).
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Definition 5. The spectral radius ρ(A) is defined by

ρ(A) = max{|λ |; λ is an eigenvalue of A} .

Theorem 7. We have

‖ek+1‖ ∼ ρ(B)‖ek‖,
as k → ∞.

Proof. Suppose λn ≥ λn−1 ≥ ·· · ≥ λ1. The initial vector e0 is given as e0 = cnvn +
cn−1vn−1 + · · ·+ c1v1 with constants cn,cn−1, . . . ,c1. Hence,

ek = cnλ k
n vn + cn−1λ k

n−1vn−1 + · · ·+ c1λ k
1 v1 ∼ cnλ k

n vn,

ek+1 = cnλ k+1
n vn + cn−1λ k+1

n−1 vn−1 + · · ·+ c1λ k+1
1 v1 ∼ cnλ k+1

n vn,

as k → ∞. Therefore we have ek+1 ∼ λnek. This proves the theorem. ⊓⊔

We note that the theorem means

lim
k→∞

‖ek+1‖
‖ek‖

= ρ(B).

Thus the spectral radius ρ(B) of the iteration matrix determines the convergence

rate of an iterative method.

Example 16. Recall we had BJ =

(
0 1

2
1
2

0

)

for the matrix A =

(
2 −1

−1 2

)

. In this

case, ρ(BJ) =
1

2
= ‖BJ‖∞.

SOR

We can accelerate the convergence of the Gauss-Seidel method by writing

A = L+D+U = L+
1

ω
D+

(

1− 1

ω

)

D+U,

where ω > 1 is a relaxation parameter. We have

Ax = b ⇔
(

L+
1

ω
D

)

x =

[(
1

ω
−1

)

D−U

]

x+b

⇔ (ωL+D)x = [(1−ω)D−ωU ]x+ωb

⇔ x = (ωL+D)−1 [(1−ω)D−ωU ]x+ω (ωL+D)−1
b.
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Thus,

(ωL+D)xk+1 = [(1−ω)D−ωU ]xk +ωb

⇔ (D+ωL)xk+1 = Dxk −ω [(D+U)xk −b] .

We can rewrite the above relation as follows.

Dxk+1 = Dxk +ω [−Lxk+1 − (D+U)xk +b] .

In component form we have

aiix
(k+1)
i = aiix

(k)
i +ω

[

−aiix
(k)
i −

n

∑
j=i+1

ai jx
(k)
j −

i−1

∑
j=1

ai jx
(k+1)
j +bi

]

(i= 1,2, . . . ,n).

This method is called the SOR (successive over-relaxation) method. When ω = 1,

the SOR method reduces to the Gauss-Seidel method. The iteration matrix is given

by

BSOR = Bω = (ωL+D)−1 [(1−ω)D−ωU ]

The selection of the parameter ω is crucial.

Theorem 8 (Young (1950)). If ρ(Bω)< 1, then 0 < ω < 2. Assume A is symmetric,

block tridiagonal, and positive definite. Then

ω∗ =
2

1+
√

1−ρ(BJ)2

is the optimal SOR parameter and we have

ρ(Bω∗) = min
0<ω<2

ρ(Bω) = ω∗−1 < ρ(BGS)< ρ(BJ)< 1.

Note that a symmetric matrix A is said to be positive definite if x ·Ax is positive

for all nonzero x. A symmetric matrix A is positive definite if and only if all of its

eigenvalues are positive.

Example 17. Consider matrices A1 =

(
2 −1

−1 2

)

and A2 =

(
1 2

2 1

)

. The matrix A1

is positive definite and the matrix A2 is indefinite (not positive definite). Let us

consider A1.

x ·A1x =

(
x1

x2

)

·
(

2 −1

−1 2

)(
x1

x2

)

=

(
x1

x2

)

·
(

2x1 − x2

−x1 +2x2

)

= 2
(
x2

1 + x2
2

)
−2x1x2 = x2

1 + x2
2 +(x1 − x2)

2 > 0.

Hence A1 is positive definite. The eigenvalues of A1 are 1 and 3. Next consider A2.
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x ·A2x =

(
x1

x2

)

·
(

1 2

2 1

)(
x1

x2

)

=

(
x1

x2

)

·
(

x1 +2x2

2x1 + x2

)

= x2
1 + x2

2 +4x1x2.

If x =

(
1

0

)

, then x2
1 + x2

2 + 4x1x2 = 1. If x =

(
1

−1

)

, then x2
1 + x2

2 + 4x1x2 = −2.

Thus A2 is indefinite. The eigenvalues of A2 are −1 and 3.

Example 18. Let us consider the following system of equations once again.

{

2x1 − x2 = 1,

−x1 +2x2 = 1.

The exact solution is x1 = x2 = 1 and we have

L=

(
0 0

−1 0

)

, D=

(
2 0

0 2

)

, U =

(
0 −1

0 0

)

, Bω =

(
1−ω 1

2
ω

1
2
ω(1−ω) 1

4
ω2 −ω +1

)

.

We obtain

2x
(k+1)
1 = 2x

(k)
1 +ω

(

−2x
(k)
1 + x

(k)
2 +1

)

,

2x
(k+1)
2 = 2x

(k)
2 +ω

(

x
(k+1)
1 −2x

(k)
2 +1

)

,

where k = 0,1,2, . . . . We obtain

ω∗ =
2

1+
√

1−ρ(BJ)2
=

2

1+

√

1−
(

1
2

)2
=

4

2+
√

3
= 1.0718.

Let the initial guess be x
(0)
1 = x

(0)
2 = 0. Numerical results are obtained as We see that

k x
(k)
1 x

(k)
2 ‖ek‖ ‖ek‖/‖ek−1‖

0 0 0 1

1 0.5359 0.8231 0.4641 0.4641

2 0.9385 0.9798 0.0615 0.1325

3 0.9936 0.9980 0.0064 0.1047

x
(k)
1 → 1, x

(k)
2 → 1, ‖ek‖ → 0, and ‖ek‖/‖ek−1‖ → ρ(Bω∗) = ω∗−1 = 0.0718. The

optimal SOR converges faster than the Gauss-Seidel method.

Two-dimensional boundary value problems

This section corresponds to §9.1 of the textbook.
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Consider a square metal plate. The plate is heated by internal sources and the

edges are held at a given temperature. Let us find the temperature φ(x,y) inside

the plate. We denote the plate (the plate domain) by D = {(x,y); 0 ≤ x,y ≤ 1}. Let

f (x,y) and g(x,y) be heat sources and the boundary temperature, respectively. Then

φ(x,y) satisfies the following Poisson equation.

−∆φ =−∇2φ =−
(

∂ 2φ

∂x2
+

∂ 2φ

∂y2

)

= f , (x,y) ∈ D,

φ = g, (x,y) ∈ ∂D.

Here ∆ is called the Laplace operator or Laplacian. In the boundary condition,

boundary values are specified. This type of boundary condition is called the Dirich-

let boundary condition (cf, the Neumann boundary condition specifies the derivative

of φ ).

We can use the finite-difference scheme. We set the mesh size and mesh points

as

h =
1

n+1
, (xi,y j) = (ih, jh), i, j = 0,1, . . . ,n+1.

Let wi j be a numerically obtained φ(xi,y j). The finite-difference equations are writ-

ten as

−
(
Dx
+Dx

−wi j +D
y
+D

y
−wi j

)
= fi j

⇔ −
(

wi+1, j −2wi j +wi−1, j

h2
+

wi, j+1 −2wi j +wi, j−1

h2

)

= fi j

⇔ 1

h2

(
4wi j −wi+1, j −wi−1, j −wi, j+1 −wi, j−1

)
= fi j.

Attention is needed near the boundary (i = 1,n, j = 1,n). For example when (i, j) =
(1,1), the finite-difference equation is written as

1

h2
(4w11 −w21 −w01 −w12 −w10) = f11

⇔ 1

h2
(4w11 −w21 −w12) = f11 +

1

h2
(g01 +g10) .

Thus we have the following matrix-vector equation.

Aw = f.

Here



28 Math 471

A =
1

h2











T −I

−I T −I

. . .
. . .

. . .

. . .
. . . −I

−I T











, w =











...

wi, j−1

wi j

wi, j+1

...











, f =











f11 +
1
h2 (g01 +g10)

f12 +
1
h2 g02

...

fi j

...











,

where T is an n× n tridiagonal symmetric matrix whose diagonal elements are 4

and off-diagonal elements are −1. The matrix A is an n2 × n2 block-tridiagonal

symmetric matrix. The matrix A is positive definite.

Example 19. For n = 3, we obtain

Aw = f ⇔

1

h2

















4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4

































w11

w12

w13

w21

w22

w23

w31

w32

w33

















=


















f11 +
1
h2 (g01 +g10)

f12 +
1
h2 g02

f13 +
1
h2 (g03 +g14)

f21 +
1
h2 g20

f22

f23 +
1
h2 g24

f31 +
1
h2 (g30 +g41)

f32 +
1
h2 g42

f33 +
1
h2 (g34 +g43)


















.

Example 20. Suppose there is no internal heat source and the metal plate is heated

only on one side. Let us calculate the temperature distribution φ . The equation for

φ is written as

φxx +φyy = 0, (x,y) ∈ (0,1)× (0,1),

φ(x,1) = 1,

φ(x,0) = φ(0,y) = φ(1,y) = 0.

We consider the Jacobi method:

aiix
(k+1)
i =−

n

∑
j=i+1

ai jx
(k)
j −

i−1

∑
j=1

ai jx
(k)
j +bi.

Let us write {w}pq = wpq (p,q = 1,2, . . . ,n) and

{A}i j = ai j = ap,q;p′,q′ , i = n(p−1)+q, j = n(p′−1)+q′.

Then the iteration for the p,q-th equation is written as
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apq;pqw
(k+1)
pq =

−
(

apq;p,q+1w
(k)
p,q+1 +apq;p+1,qw

(k)
p+1,q

)

−
(

apq;p−1,qw
(k)
p−1,q +apq;p,q−1w

(k)
p,q−1

)

+ fpq

⇔ 4w
(k+1)
pq = w

(k)
p,q+1 +w

(k)
p+1,q +w

(k)
p−1,q +w

(k)
p,q−1 +h2 fpq,

where

h2 fpq =

{

1, q = 1,

0, otherwise.

The results are shown in Fig. 3.2. In the calculation the zero vector was chosen

for the initial guess. The main part of the code is written as follows. As the stopping

criterion, tol=10e-4 was used5

1 whi le r a t i o > t o l

2 k=k +1;

3 f o r i =2 : n+1

4 f o r j =2 : n+1

5 r e s ( i , j ) = ( 4∗w( i , j )−w( i +1 , j )−w( i −1, j )−w( i , j +1)−w( i , j −1 ) ) / ( h ˆ 2 ) ;

6 end

7 end

8 rn ( k )=norm ( r e s , ’ f r o ’ ) ;

9 r a t i o = rn ( k ) / rn ( 1 ) ;

10 f o r i =2 : n+1

11 f o r j =2 : n+1

12 w old ( i , j ) = (w( i +1 , j )+w( i −1, j )+w( i , j +1)+w( i , j − 1 ) ) / 4 ;

13 end

14 end

15 w= w old ;

16 end

The number of iterations k required for different methods is summarized as fol-

lows.

Jacobi

h k ρ(BJ)
1/4 26 0.7071

1/8 96 0.9239

1/16 334 0.9808

Gauss-Seidel

h k ρ(BGS)
1/4 15 0.5000

1/8 51 0.8536

1/16 172 0.9619

Let us consider what happens if Gaussian elimination is used instead of iterative

methods. In the above example A is a band matrix, i.e., ai j = 0 for |i− j|> m, where

5 Note that 10e-4 and 1e-3 are the same.
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optimal SOR

h k ρ(Bω∗)
1/4 9 0.1716

1/8 18 0.4465

1/16 34 0.6735

m is the bandwidth (m = 3 in the example). As the elimination proceeds, zeros in-

side the band can become nonzero, but zeros outside the band are preserved. Hence

we can adjust the limits on the loops to reduce the operation count for Gaussian

elimination from O(n3) to O(nm2). See the matrix A below.

1

h2

















4 −1 0 −1 0 0 0 0 0

−1 4 −1 ∗ −1 0 0 0 0

0 −1 4 ∗ ∗ −1 0 0 0

−1 ∗ ∗ 4 −1 ∗ −1 0 0

0 −1 ∗ −1 4 −1 ∗ −1 0

0 0 −1 ∗ −1 4 ∗ ∗ −1

0 0 0 −1 ∗ ∗ 4 −1 ∗
0 0 0 0 −1 ∗ −1 4 −1

0 0 0 0 0 −1 ∗ −1 4

















Since zeros inside the band are replaced by nonzero values, more memory needs

to be allocated than is required for the original matrix A. This is a disadvantage

in comparison with iterative methods such as the Jacobi, Gauss-Seidel, and SOR,

which preserve the sparsity of A.

We note that A is an n2 ×n2 matrix and the size quickly grows as the mesh size

h = 1/(n+ 1) decreases. The operation counts for solving Aw = f are summarized

as follows.

• A−1 or general Gaussian elimination: O
(
(n2)3

)
= O(n6),

• banded Gaussian elimination: O(n2m2) = O(n4),
• Jacobi and Gauss-Seidel: O(n2)×

[
O(n2) iterations

]
= O(n4),

• SOR: O(n2)× [O(n) iterations] = O(n3).
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Fig. 3.2 Numerical solutions to φxx + φyy = 0, φ(x,1) = 1, φ(x,0) = φ(0,y) = φ(1,y) = 0. The

Jacobi method is used.


