Chapter 2 Rootfinding

Given a function f(x), a root is a number r satisfying f(r) = 0. For example, for $f(x) = x^2 - 3$, the roots are $r = \pm \sqrt{3}$. We want to find the roots of a general function f(x) using a computer.

The bisection method

Suppose we find an interval [a,b] such that f(a) and f(b) have opposite sign (for example f(a) < 0 and f(b) > 0). Then, by the intermediate value theorem¹, f(x) has a root in [a,b]. Next we consider the midpoint $x_0 = \frac{1}{2}(a+b)$. The root *r* is contained in either the left subinterval or the right subinterval. To determine which one, we compute $f(x_0)$. Then repeat. The rootfinding by this rather simple idea is called the bisection method.

Example 1. Let us find a root of $f(x) = x^2 - 3$. We note that f(1) = -2 and f(2) = 1. Indeed, there is a root $r = \sqrt{3} = 1.73205...$ on the interval [1,2].

п	a_n	b_n	x_n	$f(x_n)$	$ r-x_n $
0	1	2	1.5	-0.75	0.2321
1	1.5	2	1.75	0.0625	0.0179
2	1.5	1.75	1.625	-0.3594	0.1071
3	1.625	1.75	1.6875	-0.1523	0.0446
4	1.6875	1.75	1.71875	-0.0459	0.0133
	I				I

The bisection method is implemented as follows (we assume $f(a) \cdot f(b) < 0$).

Step 1 $n = 0, a_0 = a, b_0 = b$ Step 2 $x_n = \frac{1}{2}(a_n + b_n)$ % current estimate of the root

Fall 2013 Math 471 Sec 2

Introduction to Numerical Methods

Manabu Machida (University of Michigan)

1 Math 451

Step 3 if $f(x_n) \cdot f(a_n) < 0$, then $a_{n+1} = a_n$, $b_{n+1} = x_n$ Step 4 else $a_{n+1} = x_n$, $b_{n+1} = b_n$ Step 5 set n = n + 1 and go to Step 2

When to stop? There are three stopping criterions:

 $|b_n-a_n|<\varepsilon, \qquad |f(x_n)|<\varepsilon, \qquad n=n_{\max}.$

Suppose we find a root x_n . The error is estimated as

$$|r-x_n| \le \frac{1}{2}|b_n-a_n| = \left(\frac{1}{2}\right)^2 |b_{n-1}-a_{n-1}| = \dots = \left(\frac{1}{2}\right)^{n+1} |b_0-a_0|.$$

Example 2. In the above example, how large *n* is needed to ensure that the error is less than 10^{-3} ? We have

$$|r-x_n| \le \left(\frac{1}{2}\right)^{n+1} |b_0-a_0| \le 10^{-3},$$

where $a_0 = 1$, $b_0 = 2$. Since $2^{10} = 1024 \approx 10^3$, we can say $n \ge 9$.

Fixed-point iteration

Suppose f(x) = 0 is equivalent to x = g(x). Then, *r* is a root of f(x) only if *r* is a fixed point of g(x). The fixed-point iteration is the method of solving x = g(x) by computing $x_{n+1} = g(x_n)$ with some initial guess x_0 .

Example 3. To obtain the positive root of $f(x) = x^2 - 3 = 0$, we can rewrite the equation as

$$x = g_1(x) = \frac{3}{x}$$
, $x = g_2(x) = x - (x^2 - 3)$, $x = g_3(x) = x - \frac{1}{2}(x^2 - 3)$.

Recall $r = \sqrt{3} = 1.73205...$ Let us start the fixed-point iteration with $x_0 = 1.5$.

	Case 1	Case 2	Case 3
п	x_n	x_n	x_n
0	1.5	1.5	1.5
1	2	2.25	1.875
2	1.5	0.1875	1.6172
3	2	3.1523	1.8095
4	1.5	-3.7849	1.6723
5	2	-15.1106	1.7740

2 Rootfinding

We see that Case 3 converges whereas Case 1 and Case 2 diverge. We have to choose a good g(x).

Theorem 1. Assume that x_0 is sufficiently close to r and let k = |g'(r)|. Then fixed-point iteration converges if and only if k < 1.

To understand the above theorem, we consider

$$|r - x_{n+1}| = |g(r) - g(x_n)| \sim |g'(r)| |r - x_n|,$$

where we used the Taylor expansion $g(x_n) = g(r) + g'(r)(x_n - r) + \cdots$. We have

$$|r-x_{n+1}| \sim k|r-x_n| \sim k^2|r-x_{n-1}| \sim \cdots \sim k^{n+1}|r-x_0|.$$

The right-hand side of the above equation goes to zero if k < 1.

We have $|r - x_{n+1}| \sim k|k - x_n|$. This is called linear convergence and k is called the asymptotic error constant. The bisection method also converges linearly with k = 1/2.

Example 4. Let us calculate *k* for Cases 1, 2, and 3 in the above example.

$$g'_{1}(x) = -\frac{3}{x^{2}}, \quad \therefore k = |g'_{1}(r)| = 1.$$

$$g'_{2}(x) = 1 - 2x, \quad \therefore k = |g'_{2}(r)| = 2.4641.$$

$$g'_{3}(x) = 1 - x, \quad \therefore k = |g'_{3}(r)| = 0.73205. \quad \leftarrow \text{ converge}$$

Newton's method

Suppose we want to find a root *r* of a smooth function y = f(x). We take a point x_n which is close to *r*. The tangent line at x_n is expressed as

$$y = f'(x_n)(x - x_n) + f(x_n).$$

Let the *x*-intercept of the line (the root of the tangent line) denote x_{n+1} . At $x = x_{n+1}$ we have

$$0 = f'(x_n)(x_{n+1} - x_n) + f(x_n). \qquad \therefore \quad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Next we consider the tangent line of f(x) at $x = x_{n+1}$. By repeating this procedure, the points $x_n, x_{n+1}, ...$ approach r. For x_{n+1} sufficiently close to r, we can understand Newton's method with the Taylor series as

Math 471

$$\underbrace{f(x_{n+1})}_{\approx 0} = f(x_n) + f'(x_n)(x_{n+1} - x_n) + \underbrace{\cdots}_{\approx 0}.$$
(2.1)

The next example shows that Newton's method has rapid convergence.

Example 5. For $f(x) = x^2 - 3$, we obtain

$x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}.$					
п	x_n	$f(x_n)$	$ r-x_n $		
0	1.5	-0.75	0.23205081		
1	1.75	0.0625	0.01794919		
	1.73214286				
3	1.73205081	0.0000001	0.00000001		

We see that Newton's method is a fixed point iteration by writing

$$x_{n+1} = g(x_n),$$
 $g(x) = x - \frac{f(x)}{f'(x)}.$

We have

$$g'(r) = 1 - \frac{f'(x)^2 - f(x) \cdot f''(x)}{f'(x)^2} \bigg|_{x=r} = 0.$$

This implies that Newton's method converges faster than linearly. In fact, it has quadratic convergence: $|r - x_{n+1}| \le C|r - x_n|^2$.

:
$$r - x_{n+1} = g(r) - g(x_n) = g(r) - [g(r) + \underbrace{g'(r)}_{=0}(x_n - r) + O((x_n - r)^2)].$$

Let us summarize rootfinding methods.

method	rate of convergence	cost per step
bisection	linear, $k = \frac{1}{2}$	$f(x_n)$
fixed-point iteration	linear, $k = \overline{[g'(r)]}$	$g(x_n)$
Newton	quadratic	$f(x_n), f'(x_n)$

The bisection method is guaranteed to converge if the initial interval contains a root; the other methods are sensitive to the choice of x_0 .

2 Rootfinding

Rootfinding for nonlinear systems

Using Newton's method, let us find roots of

$$\begin{cases} f(x,y) = 0, \\ g(x,y) = 0. \end{cases}$$

For given (x_n, y_n) , we want to find (x_{n+1}, y_{n+1}) . Recalling (2.1), we consider the Taylor series:

$$\underbrace{f(x_{n+1}, y_{n+1})}_{\approx 0} = f(x_n, y_n) + \frac{\partial f}{\partial x}(x_n, y_n)(x_{n+1} - x_n) + \frac{\partial f}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \underbrace{\cdots}_{\approx 0},$$

$$\underbrace{g(x_{n+1}, y_{n+1})}_{\approx 0} = g(x_n, y_n) + \frac{\partial g}{\partial x}(x_n, y_n)(x_{n+1} - x_n) + \frac{\partial g}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \underbrace{\cdots}_{\approx 0}.$$

Thus we obtain

$$A_n\left(\mathbf{x}_{n+1}-\mathbf{x}_n\right)=-\mathbf{f}_n,$$

where we introduced

$$A_n = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(x_n, y_n)}, \qquad \mathbf{x}_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \qquad \mathbf{f}_n = \begin{pmatrix} f(x_n, y_n) \\ g(x_n, y_n) \end{pmatrix}.$$

The matrix A_n is called the Jacobian matrix. We then obtain

$$\mathbf{x}_{n+1} = \mathbf{x}_n - A_n^{-1} \mathbf{f}_n.$$

Example 6. Let us consider $f(x,y) = x^3 + y - 1$, $g(x,y) = y^3 - x + 1$. In this case, we obtain

$$A_n = \begin{pmatrix} 3x_n^2 & 1\\ -1 & 3y_n^2 \end{pmatrix}, \qquad \mathbf{f}_n = \begin{pmatrix} x_n^3 + y_n - 1\\ y_n^3 - x_n + 1 \end{pmatrix}.$$

Let us plot f = 0, g = 0 using Matlab. The system has the root at (x, y) = (1, 0).



