
Chapter 2

Rootfinding

Given a function f (x), a root is a number r satisfying f (r) = 0. For example, for

f (x) = x2−3, the roots are r =±
√

3. We want to find the roots of a general function

f (x) using a computer.

The bisection method

Suppose we find an interval [a,b] such that f (a) and f (b) have opposite sign (for

example f (a)< 0 and f (b)> 0). Then, by the intermediate value theorem1, f (x) has

a root in [a,b]. Next we consider the midpoint x0 =
1
2
(a+b). The root r is contained

in either the left subinterval or the right subinterval. To determine which one, we

compute f (x0). Then repeat. The rootfinding by this rather simple idea is called the

bisection method.

Example 1. Let us find a root of f (x)= x2−3. We note that f (1)=−2 and f (2)= 1.

Indeed, there is a root r =
√

3 = 1.73205 . . . on the interval [1,2].

n an bn xn f (xn) |r− xn|
0 1 2 1.5 −0.75 0.2321

1 1.5 2 1.75 0.0625 0.0179

2 1.5 1.75 1.625 −0.3594 0.1071

3 1.625 1.75 1.6875 −0.1523 0.0446

4 1.6875 1.75 1.71875 −0.0459 0.0133

The bisection method is implemented as follows (we assume f (a) · f (b)< 0).

Step 1 n = 0, a0 = a, b0 = b

Step 2 xn =
1
2
(an +bn) % current estimate of the root
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Step 3 if f (xn) · f (an)< 0, then an+1 = an, bn+1 = xn

Step 4 else an+1 = xn, bn+1 = bn

Step 5 set n = n+1 and go to Step 2

When to stop? There are three stopping criterions:

|bn−an|< ε , | f (xn)|< ε , n = nmax.

Suppose we find a root xn. The error is estimated as

|r− xn| ≤
1

2
|bn−an|=

(
1

2

)2

|bn−1−an−1|= · · ·=
(

1

2

)n+1

|b0−a0|.

Example 2. In the above example, how large n is needed to ensure that the error is

less than 10−3? We have

|r− xn| ≤
(

1

2

)n+1

|b0−a0| ≤ 10−3,

where a0 = 1, b0 = 2. Since 210 = 1024≈ 103, we can say n≥ 9.

Fixed-point iteration

Suppose f (x) = 0 is equivalent to x = g(x). Then, r is a root of f (x) only if r is a

fixed point of g(x). The fixed-point iteration is the method of solving x = g(x) by

computing xn+1 = g(xn) with some initial guess x0.

Example 3. To obtain the positive root of f (x) = x2 − 3 = 0, we can rewrite the

equation as

x = g1(x) =
3

x
, x = g2(x) = x− (x2−3), x = g3(x) = x− 1

2
(x2−3).

Recall r =
√

3 = 1.73205 . . . . Let us start the fixed-point iteration with x0 = 1.5.

Case 1 Case 2 Case 3

n xn xn xn

0 1.5 1.5 1.5

1 2 2.25 1.875

2 1.5 0.1875 1.6172

3 2 3.1523 1.8095

4 1.5 −3.7849 1.6723

5 2 −15.1106 1.7740
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We see that Case 3 converges whereas Case 1 and Case 2 diverge. We have to choose

a good g(x).

Theorem 1. Assume that x0 is sufficiently close to r and let k = |g′(r)|. Then

fixed-point iteration converges if and only if k < 1.

To understand the above theorem, we consider

|r− xn+1|= |g(r)−g(xn)| ∼ |g′(r)| |r− xn|,

where we used the Taylor expansion g(xn) = g(r)+g′(r)(xn− r)+ · · · . We have

|r− xn+1| ∼ k|r− xn| ∼ k2|r− xn−1| ∼ · · · ∼ kn+1|r− x0|.

The right-hand side of the above equation goes to zero if k < 1.

We have |r− xn+1| ∼ k|k− xn|. This is called linear convergence and k is called

the asymptotic error constant. The bisection method also converges linearly with

k = 1/2.

Example 4. Let us calculate k for Cases 1, 2, and 3 in the above example.

g′1(x) =− 3
x2 . ∴ k = |g′1(r)|= 1.

g′2(x) = 1−2x. ∴ k = |g′2(r)|= 2.4641.

g′3(x) = 1− x. ∴ k = |g′3(r)|= 0.73205. ← converge

Newton’s method

Suppose we want to find a root r of a smooth function y = f (x). We take a point xn

which is close to r. The tangent line at xn is expressed as

y = f ′(xn)(x− xn)+ f (xn).

Let the x-intercept of the line (the root of the tangent line) denote xn+1. At x = xn+1

we have

0 = f ′(xn)(xn+1− xn)+ f (xn). ∴ xn+1 = xn−
f (xn)

f ′(xn)
.

Next we consider the tangent line of f (x) at x = xn+1. By repeating this procedure,

the points xn,xn+1, . . . approach r. For xn+1 sufficiently close to r, we can understand

Newton’s method with the Taylor series as
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f (xn+1)
︸ ︷︷ ︸

≈0

= f (xn)+ f ′(xn)(xn+1− xn)+ · · ·︸︷︷︸

≈0

. (2.1)

The next example shows that Newton’s method has rapid convergence.

Example 5. For f (x) = x2−3, we obtain

xn+1 = xn−
x2

n−3

2xn

.

n xn f (xn) |r− xn|
0 1.5 −0.75 0.23205081

1 1.75 0.0625 0.01794919

2 1.73214286 0.00031888 0.00009205

3 1.73205081 0.00000001 0.00000001

We see that Newton’s method is a fixed point iteration by writing

xn+1 = g(xn), g(x) = x− f (x)

f ′(x)
.

We have

g′(r) = 1− f ′(x)2− f (x) · f ′′(x)
f ′(x)2

∣
∣
∣
∣
∣
x=r

= 0.

This implies that Newton’s method converges faster than linearly. In fact, it has

quadratic convergence: |r− xn+1| ≤C|r− xn|2.

∵ r− xn+1 = g(r)−g(xn) = g(r)−
[
g(r)+g′(r)

︸︷︷︸

=0

(xn− r)+O
(
(xn− r)2

)]
.

Let us summarize rootfinding methods.

method rate of convergence cost per step

bisection linear , k = 1
2

f (xn)
fixed-point iteration linear , k = |g′(r)| g(xn)
Newton quadratic f (xn), f ′(xn)

The bisection method is guaranteed to converge if the initial interval contains a root;

the other methods are sensitive to the choice of x0.
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Rootfinding for nonlinear systems

Using Newton’s method, let us find roots of

{

f (x,y) = 0,

g(x,y) = 0.

For given (xn,yn), we want to find (xn+1,yn+1). Recalling (2.1), we consider the

Taylor series:

f (xn+1,yn+1)
︸ ︷︷ ︸

≈0

= f (xn,yn)+
∂ f

∂x
(xn,yn)(xn+1− xn)+

∂ f

∂y
(xn,yn)(yn+1− yn)+ · · ·︸︷︷︸

≈0

,

g(xn+1,yn+1)
︸ ︷︷ ︸

≈0

= g(xn,yn)+
∂g

∂x
(xn,yn)(xn+1− xn)+

∂g

∂y
(xn,yn)(yn+1− yn)+ · · ·︸︷︷︸

≈0

.

Thus we obtain

An (xn+1−xn) =−fn,

where we introduced

An =

(
fx fy

gx gy

)
∣
∣
∣
∣
∣
(xn,yn)

, xn =

(
xn

yn

)

, fn =

(
f (xn,yn)
g(xn,yn)

)

.

The matrix An is called the Jacobian matrix. We then obtain

xn+1 = xn−A−1
n fn.

Example 6. Let us consider f (x,y) = x3+y−1, g(x,y) = y3−x+1. In this case, we

obtain

An =

(
3x2

n 1

−1 3y2
n

)

, fn =

(
x3

n + yn−1

y3
n− xn +1

)

.

Let us plot f = 0, g = 0 using Matlab. The system has the root at (x,y) = (1,0).
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1 f = ’ x ˆ3+ y−1 ’ ;

2 g= ’ yˆ3−x+1 ’ ;

3 p1= e z p l o t ( f ) ;

4 s e t ( p1 , ’ Co lo r ’ , ’ r e d ’ )

5 hold on

6 p2= e z p l o t ( g ) ;

7 s e t ( p2 , ’ Co lo r ’ , ’ b l u e ’ )

8 l egend ( f , g )

9 t i t l e ( ’ ’ )

10 hold o f f
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