Chapter 1

Finite precision arithmetic

Floating point representation

Let us consider

$$
2013.9=2 \cdot 10^{3}+0 \cdot 10^{2}+1 \cdot 10^{1}+3 \cdot 10^{0}+9 \cdot 10^{-1}=(2013.9)_{10}
$$

In general, a real number x is expressed as

$$
\begin{aligned}
x & = \pm\left(d_{n} d_{n-1} \cdots d_{1} d_{0} \cdot d_{-1} d_{-2} \cdots\right)_{\beta} \\
& = \pm\left(d_{n} \beta^{n}+d_{n-1} \beta^{n-1}+\cdots+d_{1} \beta^{1}+d_{0} \beta^{0}+d_{-1} \beta^{-1}+d_{-2} \beta^{-2}+\cdots\right),
\end{aligned}
$$

where β is the base, $d_{i}\left(0 \leq d_{i} \leq \beta-1\right)$ are digits. The number system with $\beta=10$ is called the decimal number system.

Example 1. The number system with $\beta=2$ is called the binary number system.

$$
(1010.1)_{2}=1 \cdot 2^{3}+1 \cdot 2^{1}+1 \cdot 2^{-1}=8+2+0.5=(10.5)_{10}
$$

Example 2.

$$
(0.2)_{10}=(0.00110011 \ldots)_{2} .
$$

In a computer, the floating point representation is used. That is, a real number x with n significant digits is expressed as

$$
x= \pm\left(0 . d_{1} d_{2} \cdots d_{n}\right)_{\beta} \cdot \beta^{e}, \quad d_{1} \neq 0, \quad-M \leq e \leq M
$$

Here, $\left(0 . d_{1} d_{2} \cdots d_{n}\right)_{\beta}$ is the mantissa (or significand), and e is the exponent.

Example 3. For $x=0.2$ with $n=2$ and $\beta=2$, we have

$$
(0.11)_{2} \cdot 2^{-2}=0.1875
$$

Fall 2013 Math 471 Sec 2
Introduction to Numerical Methods
Manabu Machida (University of Michigan)

Example 4. Let us consider the largest and smallest positive real numbers $x_{\max }, x_{\min }$ that a computer with $\beta=2, n=4, M=3$ can express.

$$
\begin{aligned}
& x_{\max }=(0.1111)_{2} \cdot 2^{3}=\left(2^{-1}+2^{-2}+2^{-3}+2^{-4}\right) \cdot 2^{3}=2^{2}+2+1+2^{-1}=7.5 \\
& x_{\min }=(0.1000)_{2} \cdot 2^{-3}=2^{-1} \cdot 2^{-3}=2^{-4}=0.0625
\end{aligned}
$$

In IEEE ${ }^{1}$ double precision format, each number is stored as a string of 64 bits 2.

$\pm \pm$	mantissa $=52$ bits	exponent $=10$ bits

The first two bits are for the signs of the mantissa and exponent. Hence we have $\beta=2, n=52$, and $M=(1111111111)_{2}=2^{10}-1=1023$. Note that $2^{1023} \approx 10^{308}$.

Roundoff error

If x is a real number and $\mathrm{fl}(x)$ is its floating point representation, then $x-\mathrm{fl}(x)$ is the roundoff error.

Example 5. Let us consider π.

$$
\begin{aligned}
\pi & =3.14159265358979 \ldots \\
& =2+1+\frac{1}{8}+\frac{1}{64}+\frac{1}{4096}+\cdots=2^{1}+2^{0}+2^{-3}+2^{-6}+2^{-12}+\cdots \\
& =(11.001001000001 \ldots)_{2}=(0.11001001000001 \ldots)_{2} \cdot 2^{2}
\end{aligned}
$$

If $n=4$, then $\mathrm{fl}(\pi)=(0.1101)_{2} \cdot 2^{2}=3.25$. This is the closest 4-bit floating point number to π. With $n=52$, the roundoff error in $\mathrm{fl}(\pi)$ is approximately $2^{-52} \cdot 2^{2} \approx$ 10^{-15}.

Subtraction often causes loss of significance. That is, the result has fewer significant digits.

Example 6. Let us consider $\sqrt{0.01523}=0.12340988 \ldots$ and $\sqrt{0.01521}=0.12332882 \ldots$.
We have

$$
\sqrt{0.01523}-\sqrt{0.01521}=0.000081057405 \ldots
$$

With 4 significant digits, we obtain

$$
\sqrt{0.01523}-\sqrt{0.01521}=0.1234-0.1233=0.0001=(0.1000)_{10} \cdot 10^{-3}
$$

Now the result has only 1 significant digit.
Example 7. Let us consider the quadratic formula for $a x^{2}+b x+c=0$:

[^0]$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Using a computer with $n=4$ (that is, each arithmetic step is rounded to 4 digits), suppose you write a code to solve quadratic equations by the quadratic formula. Let us find the solutions to $0.2 x^{2}-47.91 x+6=0$. We have

$$
\begin{aligned}
x & =\frac{47.91 \pm \sqrt{47.91^{2}-4(0.2) 6}}{2(0.2)}=\frac{47.91 \pm \sqrt{2295-4.8}}{0.4}=\frac{47.91 \pm \sqrt{2290}}{0.4} \\
& =\frac{47.91 \pm 47.85}{0.4}=\left\{\begin{array}{l}
\frac{47.91+47.85}{0.4}=\frac{95.76}{0.4}=239.4, \\
\frac{47.91-47.85}{0.4}=\frac{0.06}{0.4}=0.15 .
\end{array}\right.
\end{aligned}
$$

All 4 digits of 239.4 are correct. However, only 1 digit is correct for 0.15 . We can improve the algorithm as follows.

$$
\begin{aligned}
x & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \cdot \frac{-b+\sqrt{b^{2}-4 a c}}{-b+\sqrt{b^{2}-4 a c}}=\frac{b^{2}-\left(b^{2}-4 a c\right)}{2 a\left(-b+\sqrt{b^{2}-4 a c}\right)}=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \\
& =\frac{2 \cdot 6}{47.91+47.85}=\frac{12}{95.76}=0.1253 .
\end{aligned}
$$

Now all 4 digits are correct.

Finite-difference approximation

We consider finite-difference approximation of a derivative. By recalling the definition of the derivative of a function $f(x)$, we have

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}=D_{+} f(x)
$$

where h is a small positive number. We call D_{+}the forward finite-difference operator. To estimate the error, we consider the Taylor series:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots
$$

By $x \rightarrow x+h, a \rightarrow x$, we obtain

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\cdots .
$$

Thus,

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\underbrace{\frac{1}{2} f^{\prime \prime}(x) h+\cdots}_{\text {truncation error }}
$$

Hence the error is proportional to h. We write this as

$$
D_{+} f(x)=f^{\prime}(x)+O(h),
$$

where the symbol $O(h)$ means "order h ": $O(h)=c h+O\left(h^{2}\right)$.
Example 8. For $f(x)=\mathrm{e}^{x}$, we numerically compute $f^{\prime}(1)$. The exact value is $f^{\prime}(1)=\mathrm{e}=2.71828 \ldots$.

h	$D_{+} f$	$\left\|f^{\prime}-D_{+} f\right\|$	$\left\|f^{\prime}-D_{+} f\right\| / h$
0.1	2.8588	0.1406	1.4056
0.05	2.7874	0.0691	1.3821
0.025	2.7525	0.0343	1.3705
0.0125	2.7353	0.0171	1.3648
\downarrow	\downarrow	\downarrow	\downarrow
0	e	0	$\frac{1}{2} f^{\prime \prime}(1)=\mathrm{e} / 2$

Let us investigate the error by writing the following Matlab code. The result is shown in Fig. 1.1. If error $\approx c h^{p}$, then p is called the order of accuracy of the approximation. Since $\log ($ error $) \approx \log \left(c h^{p}\right)=\log c+p \log h$, the slope of the data on the $\log -\log$ plot is p. We see that $p=1$ for not too small h.

```
exact_value=exp(1);
for j=1:65
    h(j )=1/2^(j - 1);
    computed_value=(\operatorname{exp}(1+h(j))-\operatorname{exp}(1))/h(j);
    error(j)=abs(exact_value -computed_value);
end
% log-log plot
loglog(h,error,h,error,'o'); xlabel('h'); ylabel('error');
```

The computed value has two sources of error: truncation error is due to replacing the exact derivative $f^{\prime}(x)$ by the finite-difference approximation $D_{+} f(x)$, and roundoff error is due to using finite precision arithmetic.

The above example shows that the error is not necessarily small for very small h. The truncation error is $O(h)$ and the roundoff error is $O(\varepsilon / h)$, where $\varepsilon \approx 10^{-15}$ in Matlab. Thus the total error is $O(h)+O(\varepsilon / h)$. Hence, for large h the truncation error dominates the roundoff error, but for small h the roundoff error dominates the truncation error.

Fig. 1.1 Error of $D_{+} \mathrm{e}^{x}$ at $x=1$ as a function of h.

[^0]: ${ }^{1}$ Institute of Electrical and Electronics Engineers
 ${ }^{2}$ A bit (binary digit) is a digit in the base 2. A byte is 8 bits, and so 64 bits (b) are 8 bytes (B).

