Chapter 1
Finite precision arithmetic

Floating point representation

Let us consider
20139=2-10*+0-10° +1-10' +3-10° +9- 10! = (20139)0.
In general, a real numbaiis expressed as

X = £(dhGn-1---d1dp.d1d 2---)g
— & (dnB" O 1"+ Ay B0+ d g B d B ),

wheref is the based; (0 < d; < 3 —1) are digits. The number system wjh= 10
is called the decimal number system.

Example 1. The number system witB = 2 is called the binary number system.
(10101), =1-2°+1.2'+1.27 1 =84+ 2+0.5= (105)10.
Example 2.
(0.2)10= (0.00110011.. ).
In a computer, the floating point representation is usedt isha real number
x with n significant digits is expressed as
x==£(0.d102---dn)g- B, di1#0, —M<e<M.

Here,(0.d1d; - --dn)g is the mantissa (or significand), aads the exponent.

Example 3. Forx = 0.2 with n= 2 andf} = 2, we have

(0.11);-22=0.1875
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Example 4. Let us consider the largest and smallest positive real ntswagx, Xmin
that a computer witl8 = 2, n=4, M = 3 can express.

Xmax= (0.1117),- 2= (271 +2724273%4 274) 2822401140712 7.5,
Xmin = (0.1000,-2 3 =2"1.2"3=2"4=0.0625

In IEEE! double precision format, each number is stored as a strifg bfts.

E3ES! mantissa= 52 bits |exponent= 10 bitg

The first two bits are for the signs of the mantissa and expomtence we have
B=2,n=52, andM = (111111111}, = 219~ 1 = 1023. Note that P23~ 1038,

Roundoff error

If xis a real number and(#) is its floating point representation, then-fl(x) is the
roundoff error.

Example 5. Let us considerr.

m= 3.14159265358979.

1 1 1
— 24144 — 4= 4. =214 90,903,956, 012,
+1+ e+ 22" 2008 " +204270 42427

= (11.001001000001 . ), = (0.11001001000001 . ), - 22

If n= 4, then f(r) = (0.1101), - 22 = 3.25. This is the closest 4-bit floating point
number tort. With n = 52, the roundoff error in {i) is approximately 252- 22 ~
10715,

Subtraction often causes loss of significance. That is,gbeltrhas fewer signif-
icant digits.

Example 6. Let us considex/0.01523=0.12340988.. and/0.01521=0.12332882....
We have

v/0.01523- /0.01521= 0.000081057405...
With 4 significant digits, we obtain

v/0.01523- 1/0.01521= 0.1234— 0.1233= 0.0001= (0.1000)10- 10 3.
Now the result has only 1 significant digit.

Example 7. Let us consider the quadratic formula o + bx+ ¢ = 0:

1 Institute of Electrical and Electronics Engineers
2 A bit (binary digt) is a digit in the base 2. A byte is 8 bits, and so 64 bits (b) are 8bgB).
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‘e —b++vb?—4ac
N 2a '

Using a computer withn = 4 (that is, each arithmetic step is rounded to 4 digits),
suppose you write a code to solve quadratic equations byuheérgtic formula. Let
us find the solutions t0.8x% — 47.91x+ 6 = 0. We have

"« 4791+ /47912 -4(0.2)6  47.914+,/2295-4.8 47.91++/2290

2(0.2) 0.4 0.4
47.91+4785 9576
| 479144785 04— oa ~ 2394
=04 ) 4791-4785 006
04 o4 o

All 4 digits of 2394 are correct. However, only 1 digit is correct fadB. We can
improve the algorithm as follows.

« —b—vb?—4ac —b+vb2-4ac b’ —(b*-4ac) 2c
2a —b++vb2—4ac 2a(—b++vb2—4ac) —b++vb2—4ac
20 12 _ 01253

T 4791+4785 9576

Now all 4 digits are correct.

Finite-difference approximation

We consider finite-difference approximation of a derivatiBy recalling the defini-
tion of the derivative of a functioffi(x), we have

£(x) ~ w — D, f(x),

whereh is a small positive number. We cdll, the forward finite-difference opera-
tor. To estimate the error, we consider the Taylor series:

f(x) = f(a)+ f’(a)(x—a)+%f”(a)(x—a)2+--- .
By x — x4+ h, a— X, we obtain
f(x+h) = f(x)+ f’(x)h+%f”(x)hz+---.

Thus,
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f(x+h)—f(x)

_ gl } "
h =f'(x)+ 2f (x)h+

~—_———
truncation error

Hence the error is proportional to We write this as
D, f(x) = f'(x) +O(h),
where the symbaD(h) means “ordeh”: O(h) = ch+O(h?).

Example 8. For f(x) = €%, we numerically computef’(1). The exact value is
f'(1) =e=271828...

h D, f |f'—D,f| | |f'—D,f|/h
0.1 2.8588 0.1406 1.4056
0.05 | 2.7874 0.0691 1.3821
0.025| 2.7525 0.0343 1.3705
0.0125 2.7353 0.0171 1.3648

) ¢ i }

0 e 0 117(1) =e/2

Let us investigate the error by writing the following Matlabde. The result is
shown in Fig. 1.1. If error chP, thenp is called the order of accuracy of the ap-
proximation. Since logerror) ~ log(chP) = logc+ plogh, the slope of the data on
the log-log plot isp. We see thap = 1 for not too smalh.

exactvalue=exp(1);

for j=1:65
h(j)=1/2"(j—-1);
computedvalue=(@Exp(1+h(j)—exp(1))/h(j);
error (j)=abs(exactvalue—computedvalue);

end

% log—log plot

loglog(h,error ,h,error ,

0’); xlabel(’h"); ylabel('error’);

The computed value has two sources of ertrancation error is due to replac-
ing the exact derivativé’(x) by the finite-difference approximatidd, f (x),
androundoff error is due to using finite precision arithmetic.

The above example shows that the error is not necessarilly famaery small
h. The truncation error i©(h) and the roundoff error i©(e/h), wheree ~ 10715
in Matlab. Thus the total error ®(h) + O(&/h). Hence, for largén the truncation
error dominates the roundoff error, but for sntathe roundoff error dominates the
truncation error.
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Fig. 1.1 Error of D€ atx=1 as a function oh.



