
Chapter 1
Finite precision arithmetic

Floating point representation

Let us consider

2013.9= 2·103+0·102+1·101+3·100+9·10−1 = (2013.9)10.

In general, a real numberx is expressed as

x = ±(dndn−1 · · ·d1d0.d−1d−2 · · ·)β

= ±
(
dnβ n +dn−1β n−1+ · · ·+d1β 1+d0β 0+d−1β−1+d−2β−2+ · · ·

)
,

whereβ is the base,di (0≤ di ≤ β −1) are digits. The number system withβ = 10
is called the decimal number system.

Example 1. The number system withβ = 2 is called the binary number system.

(1010.1)2 = 1·23+1·21+1·2−1 = 8+2+0.5= (10.5)10.

Example 2.

(0.2)10 = (0.00110011. . .)2.

In a computer, the floating point representation is used. That is, a real number
x with n significant digits is expressed as

x =±(0.d1d2 · · ·dn)β ·β e, d1 6= 0, −M ≤ e ≤ M.

Here,(0.d1d2 · · ·dn)β is the mantissa (or significand), ande is the exponent.

Example 3. For x = 0.2 with n = 2 andβ = 2, we have

(0.11)2 ·2−2 = 0.1875.
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Example 4. Let us consider the largest and smallest positive real numbersxmax, xmin

that a computer withβ = 2, n = 4, M = 3 can express.

xmax= (0.1111)2 ·23 = (2−1+2−2+2−3+2−4) ·23 = 22+2+1+2−1 = 7.5,

xmin = (0.1000)2 ·2−3 = 2−1 ·2−3 = 2−4 = 0.0625.

In IEEE1 double precision format, each number is stored as a string of64 bits2.

± ± mantissa= 52 bits exponent= 10 bits

The first two bits are for the signs of the mantissa and exponent. Hence we have
β = 2, n = 52, andM = (1111111111)2 = 210−1= 1023. Note that 21023≈ 10308.

Roundoff error

If x is a real number and fl(x) is its floating point representation, thenx−fl(x) is the
roundoff error.

Example 5. Let us considerπ.

π = 3.14159265358979. . .

= 2+1+
1
8
+

1
64

+
1

4096
+ · · ·= 21+20+2−3+2−6+2−12+ · · ·

= (11.001001000001. . .)2 = (0.11001001000001. . .)2 ·22

If n = 4, then fl(π) = (0.1101)2 ·22 = 3.25. This is the closest 4-bit floating point
number toπ. With n = 52, the roundoff error in fl(π) is approximately 2−52 ·22 ≈
10−15.

Subtraction often causes loss of significance. That is, the result has fewer signif-
icant digits.

Example 6. Let us consider
√

0.01523= 0.12340988. . . and
√

0.01521= 0.12332882. . . .
We have √

0.01523−
√

0.01521= 0.000081057405. . . .

With 4 significant digits, we obtain
√

0.01523−
√

0.01521= 0.1234−0.1233= 0.0001= (0.1000)10 ·10−3.

Now the result has only 1 significant digit.

Example 7. Let us consider the quadratic formula forax2+bx+ c = 0:

1 Institute of Electrical and Electronics Engineers
2 A bit (binary digit) is a digit in the base 2. A byte is 8 bits, and so 64 bits (b) are 8 bytes (B).
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x =
−b±

√
b2−4ac

2a
.

Using a computer withn = 4 (that is, each arithmetic step is rounded to 4 digits),
suppose you write a code to solve quadratic equations by the quadratic formula. Let
us find the solutions to 0.2x2−47.91x+6= 0. We have

x =
47.91±

√

47.912−4(0.2)6
2(0.2)

=
47.91±

√
2295−4.8

0.4
=

47.91±
√

2290
0.4

=
47.91±47.85

0.4
=







47.91+47.85
0.4

=
95.76
0.4

= 239.4,

47.91−47.85
0.4

=
0.06
0.4

= 0.15.

All 4 digits of 239.4 are correct. However, only 1 digit is correct for 0.15. We can
improve the algorithm as follows.

x =
−b−

√
b2−4ac

2a
· −b+

√
b2−4ac

−b+
√

b2−4ac
=

b2− (b2−4ac)

2a(−b+
√

b2−4ac)
=

2c

−b+
√

b2−4ac

=
2·6

47.91+47.85
=

12
95.76

= 0.1253.

Now all 4 digits are correct.

Finite-difference approximation

We consider finite-difference approximation of a derivative. By recalling the defini-
tion of the derivative of a functionf (x), we have

f ′(x)≈ f (x+h)− f (x)
h

= D+ f (x),

whereh is a small positive number. We callD+ the forward finite-difference opera-
tor. To estimate the error, we consider the Taylor series:

f (x) = f (a)+ f ′(a)(x−a)+
1
2

f ′′(a)(x−a)2+ · · · .

By x → x+h, a → x, we obtain

f (x+h) = f (x)+ f ′(x)h+
1
2

f ′′(x)h2+ · · · .

Thus,
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f (x+h)− f (x)
h

= f ′(x)+
1
2

f ′′(x)h+ · · ·
︸ ︷︷ ︸

truncation error

.

Hence the error is proportional toh. We write this as

D+ f (x) = f ′(x)+O(h),

where the symbolO(h) means “orderh”: O(h) = ch+O(h2).

Example 8. For f (x) = ex, we numerically computef ′(1). The exact value is
f ′(1) = e= 2.71828. . . .

h D+ f | f ′−D+ f | | f ′−D+ f |/h
0.1 2.8588 0.1406 1.4056
0.05 2.7874 0.0691 1.3821
0.025 2.7525 0.0343 1.3705
0.0125 2.7353 0.0171 1.3648
↓ ↓ ↓ ↓
0 e 0 1

2 f ′′(1) = e/2

Let us investigate the error by writing the following Matlabcode. The result is
shown in Fig. 1.1. If error≈ chp, thenp is called the order of accuracy of the ap-
proximation. Since log(error) ≈ log(chp) = logc+ p logh, the slope of the data on
the log-log plot isp. We see thatp = 1 for not too smallh.

1 e x a c t v a l u e =exp ( 1 ) ;
2 f o r j =1:65
3 h ( j ) = 1 / 2 ˆ ( j−1);
4 computedva lue =(exp (1+ h ( j ))− exp ( 1 ) ) / h ( j ) ;
5 error ( j )= abs ( e x a c t v a l u e−computed va lue ) ;
6 end
7 % log−l o g p l o t
8 l o g l o g ( h , error , h , error , ’ o ’ ) ; x l a b e l ( ’ h ’ ) ; y l a b e l ( ’ e r r o r ’ ) ;

The computed value has two sources of error:truncation error is due to replac-
ing the exact derivativef ′(x) by the finite-difference approximationD+ f (x),
androundoff error is due to using finite precision arithmetic.

The above example shows that the error is not necessarily small for very small
h. The truncation error isO(h) and the roundoff error isO(ε/h), whereε ≈ 10−15

in Matlab. Thus the total error isO(h)+O(ε/h). Hence, for largeh the truncation
error dominates the roundoff error, but for smallh the roundoff error dominates the
truncation error.
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Fig. 1.1 Error of D+ex at x = 1 as a function ofh.


