Project 2
 Due on Wed, Nov 27

Use Matlab to solve problems below. Submit the results together with your Matlab codes by email. Write your codes from scratch.

1) Consider the symmetric 4×4 matrix A below. Let us obtain the eigenvalues of A by iterative methods.

$$
A=\left(\begin{array}{rrrr}
20 & 3 & -1 & 1 \\
3 & 7 & -2 & 2 \\
-1 & -2 & -5 & 1 \\
1 & 2 & 1 & -8
\end{array}\right)
$$

Suppose eigenvalues $\lambda_{i}(i=1,2,3,4)$ satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$. By the Gerschgorin circle theorem, the eigenvalues satisfy

$$
\begin{align*}
& \lambda_{\max } \geq \lambda_{1}>\lambda_{2} \geq 0>\lambda_{3}>\lambda_{4} \geq \lambda_{\min } \tag{1}\\
& \lambda_{1}>\left|\lambda_{3}\right|,\left|\lambda_{4}\right|
\end{align*}
$$

(a) Read page 263 of the textbook. Do you understand the Gerschgorin circle theorem? Answer yes or no.
(b) Find $\lambda_{\max }$ and $\lambda_{\min }$ in (1) using the Gerschgorin circle theorem.
(c) Read $\S 4.2$. Do you understand the constant q in the inverse power method? Answer yes or no.
(d) [p. 295, Prob. 21(d)] λ_{4} is smallest but not the dominant eigenvalue. Find λ_{4} with the inverse power method.
(e) Read $\S 4.3$. Do you understand Wielandt's deflation and Hotelling's deflation? Answer yes or no.
(f) $\left[\right.$ p. 308, Prob. 17(d)] Find λ_{2} with Hotelling's deflation.

