Problem Set 9 (12/4, 6, 9)
Due on Wed, Dec 11

1) Let us consider

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin x, \quad 0<t<10 \tag{1}\\
x(0)=1
\end{array}\right.
$$

The solution is obtained as

$$
x(t)=2 \tan ^{-1}\left(\mathrm{e}^{t} \tan \frac{1}{2}\right)
$$

Submit a code (or codes) to solve Eq. (1)
(a) with Euler's method,
(b) with modified Euler's method,
(c) with Heun's method, and
(d) with the fourth-order Runge-Kutta method.

Furthermore,
(e) Plot curves from (a) through (d) together with the analytical solution.

