Problem Set 7 (11/1, 4, 6, 8, 11, 13, 15, 18)

Due on Wed, Nov 27

1) Consider $f(x)=\sin x$ for $-4 \pi \leq x \leq 4 \pi$. Find the Taylor series for $f(x)$ about $x=0$ up to the x^{7}-term. The Taylor polynomial $p_{n}(x)$ is an approximation to $f(x)$.
(a) Using Matlab, plot $f(x)$ and the Taylor polynomials $p_{n}(x)$ of degree $n=$ $1,3,5,7$. Use subplot, and put $f(x)$ and a Taylor polynomial in each frame. Use the command axis([-4*pi $4 *$ pi -22$]$) to set the limits on the axes. Label each curve. Turn in the resulting plot.
(b) For a given value of n, is the approximation valid for all values of x ? Justify your answer by reference to the plots.
(c) Does the approximation improve as the degree n increases? Justify your answer by reference to the plots.
2) Let $f(x)=e^{-|x|}$ and consider the three points $x_{0}=-1, x_{1}=0, x_{2}=1$.
(a) Find Newton's form for the interpolating polynomial $p_{2}(x)$.
(b) Find the standard form for the interpolating polynomial $p_{2}(x)$.
(c) Plot $f(x)$ and $p_{2}(x)$ on the same graph and label each curve. Sketch by hand or use Matlab.
(d) Compute $\int_{-1}^{1} f(x) d x$ and $\int_{-1}^{1} p_{2}(x) d x$.
3) Let us consider the interpolating polynomial $p_{n}(x)$ of degree $\leq n$ that interpolates a given function $f(x)$ at a set of distinct points, $x_{0}, x_{1}, \ldots, x_{n}$, i.e., such that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0, \ldots, n$. The template below plots $f(x)$ and $p_{n}(x)$ for $n=4,8,16$, for uniform points and Chebyshev points, on the interval $-1 \leq x \leq 1$. Your assignment is to fill in the template, run the code for the functions
(a) $f(x)=e^{-|x|}$ and
(b) $f(x)=e^{-x^{2}}$,
turn in the output plots, and answer questions (b) and (c) from problem 1) above. Can you explain any difference in the results for the two examples of $f(x)$?
4) Plot $f(x)=\frac{1}{1+9 x^{2}}$ and its natural cubic spline interpolant $s(x)$ for $n=2,4,6,8$, where $-1 \leq x \leq 1, x_{i}=-1+i h, h=\frac{2}{n}, i=0, \ldots, n$.
```
function interpolation
%
% This is a template for Problem 3).
%
clear; clf;
%
for k = 1:6
    if k==1; n = 4; itype=1; text='uniform points , n=4'; end
    if k==2; n = 4; itype=2; text='Chebyshev points , n=4'; end
    if k==3; n = 8; itype=1; text='uniform points , n=8'; end
    if k==4, n = 8; itype=2; text='Chebyshev points , n=8'; end
    if k==5, n = 16; itype=1; text='uniform points , n=16'; end
    if k==6, n = 16; itype=2; text='Chebyshev points , n=16'; end
%
    if itype==1; h = ...; x = ...; end
    if itype==2; h = ...; x = ...; end
%
    f = ...;
    coeff = polyfit(x,f,n); % polyfit computes the coefficients of p_n(x)
%
% Plot f(x) and p_n(x) on a fine mesh.
%
    h = 0.001; x = -1.5:h:1.5;
    f = ...;
    p = polyval(coeff,x); % polyval evaluates p_n(x)
%
    subplot(3,2,k)
    plot(x,f,x,p,'--'); axis([-1.5 1.5 -1.5 1.5])
    title(text)
end
```

