Problem Set 6 (10/28, 30)

Due on Fri, Nov 15

1) Consider matrix $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$.
(a) Find the eigenvalues λ_{1}, λ_{2}. Show your work.
(b) Find the orthonormal eigenvectors $\mathbf{q}_{1}, \mathbf{q}_{2}$. Show your work.
(c) Compute the Rayleigh quotient $R_{A}(\mathbf{x})$ for $\mathbf{x}=\mathbf{q}_{1}, \mathbf{q}_{2}$. Show your work.
(d) Is $R_{A}\left(\mathbf{q}_{1}+\mathbf{q}_{2}\right)=\lambda_{1}+\lambda_{2}$? Explain.
2) Let us obtain the largest and smallest eigenvalues λ_{1}, λ_{3} of A by the power method and inverse power method starting from the initial guess $\mathbf{x}^{(0)}$:

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 4
\end{array}\right), \quad \mathbf{x}^{(0)}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

(a) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}\left(\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|\right)$ using the eig command in Matlab.
(b) Write a Matlab code for the power method.
(c) Present the results for λ_{1} in a table as follows. Take six steps, $k=0,1, \ldots, 5$. In columns 3 and 4 , use $\lambda=\lambda_{1}$ which is obtained in part (a).
column 1: $k \leftarrow$ step index
column 2: $\lambda^{(k)} \leftarrow$ approximate eigenvalue at step k
column 3: $\left|\lambda^{(k)}-\lambda\right| \leftarrow$ error at step k
column 4: $\frac{\left|\lambda^{k}-\lambda\right|}{\left|\lambda^{(k-1)}-\lambda\right|} \leftarrow \quad$ ratio of errors at steps k and $k-1$
(d) Is the convergence factor for the power method $\left(\lambda_{2} / \lambda_{1}\right)^{2}$? Explain.
(e) Write a Matlab code for the inverse power method.
(f) Present the results for λ_{3} in a table following part (c). In columns 3 and 4, use $\lambda=\lambda_{3}$ which is obtained in part (a).
(g) Is the convergence factor for the inverse power method $\left(\lambda_{3} / \lambda_{2}\right)^{2}$? Explain.
3) Repeat 2) (a),(c),(d),(f) for the matrix A and vector $\mathbf{x}^{(0)}$ below.

$$
A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right), \quad \mathbf{x}^{(0)}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

