Problem Set 5 (10/16, 18, 21) Due on Fri, Nov 1

1) Let us consider the two-dimensional boundary value problem of a metal plate on $D=\{(x, y) ; 0<x, y<1\}$. The plate temperature $\phi(x, y)$ obeys $-\Delta \phi=0$ on D with boundary conditions $\phi(x, 1)=1, \phi(x, 0)=\phi(0, y)=\phi(1, y)=0$. This means there are no heat sources inside the plate, and one side of the plate is kept at a high temperature while the other three sides are kept at a low temperature.
We will obtain $\phi(x, y)$ inside the plate. Let \mathbf{w} be the numerical solution, i.e., $w_{i j} \approx \phi\left(x_{i}, y_{j}\right)$. By the finite-difference scheme, we have $\left(D_{+}^{x} D_{-}^{x}+D_{+}^{y} D_{-}^{y}\right) w_{i j}=0$ with mesh size $h=\frac{1}{n+1}$, for $h=\frac{1}{4}, \frac{1}{8}, \frac{1}{16}$. This yields a linear system $A \mathbf{w}=\mathbf{f}$. The mesh points are given by $\left(x_{i}, y_{j}\right)=(i h, j h), i, j=0,1, \ldots, n, n+1$. The finite-difference equations can be written in component form as

$$
\frac{1}{h^{2}}\left(4 w_{i j}-w_{i+1, j}-w_{i-1, j}-w_{i, j+1}-w_{i, j-1}\right)=f_{i j} .
$$

Thus for example by Jacobi's method, we have

$$
\frac{1}{h^{2}}\left(4 w_{i j}^{(k+1)}-w_{i+1, j}^{(k)}-w_{i-1, j}^{(k)}-w_{i, j+1}^{(k)}-w_{i, j-1}^{(k)}\right)=f_{i j},
$$

where $w_{i j}^{(k)}$ is the numerical solution at step k.
(a) Solve the problem by Jacobi's method and the Gauss-Seidel method. Do not form the full matrix A (because it is sparse and that would be inefficient). If you like, you can use the Matlab template below. Submit a copy of the code.
(b) For each value of h, plot the computed temperature $w_{i j}$ at the final step (including the boundary values) using a contour plot and a mesh plot (type help contour and help mesh for instructions).
(c) Present the following results in a table. column 1: h, column 2: number of iterations needed to reach the stopping criterion.
(d) What is the value of the temperature at the corners of the plate in the limit $h \rightarrow 0$? Explain your answer.
A few tips: (1) Since Matlab doesn't accept zero indices, take $i=1: n+2, j=1: n+2$. (2) In the case of the two-point boundary value problem in one dimension, we put the boundary values in \mathbf{f}. However in a two-dimensional problem, it is more convenient to keep the boundary values in \mathbf{w}. Therefore the boundary values and interior values of \mathbf{w} are set at the initial step and the interior values are updated at every new step. The boundary values can be stored in elements of \mathbf{w} with indices $\mathrm{i}=1, \mathrm{n}+2, \mathrm{j}=1, \mathrm{n}+2$. (3) The interior values are set to zero at the initial step. (4) You can use the stopping criterion $\left\|\mathbf{r}_{k}\right\|_{2} /\left\|\mathbf{r}_{0}\right\|_{2} \leq 10^{-4}$, where $\mathbf{r}_{k}=\mathbf{f}-A \mathbf{w}_{k}$ is the residual at step k.

```
function bvp2d
clear; clf;
tol = ...; % set tolerance for stopping criterion
for icase=1:3
    n = 2^(icase+1)-1; h = 1/(n+1); % set mesh size
    x = 0:h:1; y = 0:h:1; % create x and y arrays for plots
% initialize solution and residual arrays
    w_new = zeros(n+2,n+2);
    w_old = zeros(n+2,n+2);
    res = zeros(n+2,n+2);
% set nonzero boundary values
    for j = ...; w_new(...,...) = ...; w_old(...,...) = ...; end
% initialize control variables
    k = 0; ratio = 1;
% start iteration
    while ratio > tol
        k = k+1;
% compute residual vector
    for i = ...; for j = ...;
                res(i,j) = ...;
        end; end
% compute ratio of residual norms
    rn(k) = norm(res,'fro');
    ratio = rn(k)/rn(1);
% compute numerical solution
    for i = ...; for j = ...;
            w_new(i,j) = ...;
            end; end;
            w_old = w_new; % reset numerical solution for next step
    end % end while
% store results for output
    table(icase,1) = h; table(icase,2) = k;
% draw contour plot
    subplot(2,3,icase)
    contour(x,y,w_new); axis square
    string = sprintf('h=1/%d',n+1); title(string)
% draw surface plot
    subplot(2,3,3+icase)
    mesh(x,y,w_new)
    string = sprintf('h=1/%d',n+1); title(string)
end
table
```

