Problem Set 4 (9/30, 10/2, 4, 7, 9, 11)

Due on Fri, Oct 18

1) Consider the equations

$$
2 x_{1}+3 x_{2}-x_{3}=5, \quad 4 x_{1}+4 x_{2}-3 x_{3}=3, \quad-2 x_{1}+3 x_{2}-x_{3}=1 .
$$

(a) Write the system in the form $(A \mid \mathbf{b})$ and find the $L U$ factorization of A.
(b) Solve for \mathbf{x} by forward and back substitution. That is, first obtain \mathbf{y}, where $\mathbf{y}=U \mathbf{x}$, and then obtain \mathbf{x}.
2) Let A be a 3×3 matrix. Suppose we apply $L U$ factorization with partial pivoting and obtain $E_{2} P_{2} E_{1} P_{1} A=U$, where U is an upper triangular matrix and
$E_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1\end{array}\right), E_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1\end{array}\right), P_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), P_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(a) Compute $\tilde{E}_{1}=P_{2} E_{1} P_{2}$.
(b) Show that $P_{2} E_{1}=\tilde{E}_{1} P_{2}$. Note that this implies $E_{2} \tilde{E}_{1} P_{2} P_{1} A=U$.
(c) Compute $P=P_{2} P_{1}$ and $L=\tilde{E}_{1}^{-1} E_{2}^{-1}$.
(d) Show that $P A=L U$.
(e) Find P, L, U such that $P A=L U$ and use the factorization to solve $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
0 & 2 & -1 \\
1 & 1 & 1 \\
2 & 0 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right)
$$

3) Consider the linear system

$$
2 x_{1}+x_{2}=1, \quad x_{1}+2 x_{2}=-1
$$

The exact solution is $x_{1}=1, x_{2}=-1$.
(a) Write the system in matrix form and solve it by $L U$ factorization.
(b) Write Jacobi's method in component form and take three steps $(k=1,2,3)$ starting from initial guess $x_{1}^{(0)}=x_{2}^{(0)}=0$. Complete the table below.

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$\left\\|\mathbf{e}_{k}\right\\|_{\infty}$	$\left\\|\mathbf{e}_{k}\right\\|_{\infty} /\left\\|\mathbf{e}_{k-1}\right\\|_{\infty}$
1	$*$	$*$	$*$	$*$
\vdots	\vdots	\vdots	\vdots	\vdots

(c) Repeat (b) for the Gauss-Seidel method.
4) Let us solve $-y^{\prime \prime}=25 \cos (\pi x), y(0)=0, y(1)=1$ using the $L U$ factorization. Take the mesh points as $x_{i}=i h, h=1 /(n+1), i=0,1, \ldots, n+1$.
(a) The exact solution has the form $y(x)=\frac{25}{\pi^{2}} \cos (\pi x)+a x+b$. Find a and b.
(b) Find a tridiagonal linear system $A \mathbf{w}=\mathbf{r}$.
(c) Write a Matlab code. Do not create the full matrix A in the code, but instead use vectors to store the nonzero matrix elements and numerical solution \mathbf{w}. This saves memory and is important in realistic applications. You can use the template code below.
(d) Run the code. Make figures for four values of the mesh size, $h=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$. Plot the exact solution and numerical solution in each figure.
(e) Also produce a table displaying the errors $\|\mathbf{y}-\mathbf{w}\|_{\infty},\|\mathbf{y}-\mathbf{w}\|_{\infty} / h,\|\mathbf{y}-\mathbf{w}\|_{\infty} / h^{2}$, and $\|\mathbf{y}-\mathbf{w}\|_{\infty} / h^{3}$.

```
%
% Template for Problem 4)
% -y''=r, y(0)=alpha, y(1)=beta
%
function bvp1d
clear; clf;
alpha = 0; beta = 1; % boundary conditions
for icase=1:4
    n = 2^icase-1; h = 1/(n+1); % h = mesh size
    xe = 0:0.0025:1; % fine mesh for plotting exact solution
    ye = ...; % exact solution on fine mesh
% Set up for numerical solution.
for i=1:n
    xh(i) = i*h; % mesh points
    yh(i) = ...; % exact solution at mesh points
    a(i) = ...; b(i) = ...; c(i) = ...; % matrix elements
    r(i) = ...; % right hand side vector
end
    r(1) = ..;; % adjust for BC at x=0
    r(n) = ..;; % adjust for BC at x=1
    wh = LU_fb(a,b,c,r); % numerical solution
% output
    table(icase,1) = h;
    table(icase,2) = norm(yh-wh,inf);
    table(icase,3) = norm(yh-wh,inf)/h;
    table(icase,4) = norm(yh-wh,inf)/h^2;
    table(icase,5) = norm(yh-wh,inf)/h^3;
    xplot = [0 xh 1]; wplot = [alpha wh beta];
    subplot(2,2,icase); plot(xe,ye,xplot,wplot,'-o');
    string = sprintf('h=1/%d',n+1); title(string)
end
table
```

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function w = LU_fb(a,b,c,r)
% input: a, b, c, r - matrix elements and right hand side vector
% output: w - solution of linear system
n = length(r);
%
% Fill in the steps below using the tridiagonal LU method given in class.
%
% find L, U
%
% solve Lz = r
%
% solve Uw = z
%
```

