Problem Set 3 (9/20, 23, 25, 27)

Due on Fri, Oct 4

1) Consider the system

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}-x_{3} & =5, \\
4 x_{1}+4 x_{2}-3 x_{3} & =3, \\
-2 x_{1}+3 x_{2}-x_{3} & =1
\end{aligned}\right.
$$

(a) Write the augmented matrix $(A \mid b)$ and find x_{1}, x_{2}, x_{3} by Gaussian elimination (no pivoting). Show intermediate steps.
(b) Compute the determinant of A in two ways: the usual method and the formula $\operatorname{det} A=a_{11}^{(1)} a_{22}^{(2)} a_{33}^{(3)}$, where $a_{k k}^{(k)}$ is the pivot element in step k of Gaussian elimination.
2) Consider $A=\left(\begin{array}{rr}-2 & 1 \\ 2 & 0\end{array}\right)$.
(a) Find $\frac{\|A \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$ for the following three vectors.

$$
\mathbf{x}_{1}=\binom{1}{0}, \quad \mathbf{x}_{2}=\binom{0}{1}, \quad \mathbf{x}_{3}=\binom{1}{1}
$$

(b) Find a vector \mathbf{x} such that $\frac{\|A \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}=\|A\|_{\infty}$.
3) Let $A=\left(\begin{array}{ll}1.2969 & 0.8648 \\ 0.2161 & 0.1441\end{array}\right), \mathbf{x}=\binom{2}{-2}, \mathbf{b}=\binom{0.8642}{0.1440}$.
(a) Is A invertible? Explain.
(b) Show that \mathbf{x} is the exact solution to $A \mathbf{x}=\mathbf{b}$.
(c) Let $\tilde{\mathbf{x}}_{1}=\binom{2.1}{-2.1}, \tilde{\mathbf{x}}_{2}=\binom{0}{1}, \tilde{\mathbf{x}}_{3}=\binom{0.9911}{-0.4870}$. The vectors $\tilde{\mathbf{x}}_{1}, \tilde{\mathbf{x}}_{2}, \tilde{\mathbf{x}}_{3}$ are approximations to the exact solution \mathbf{x}. For each case, find the error norm $\|\mathbf{e}\|_{\infty}=\|\mathbf{x}-\tilde{\mathbf{x}}\|_{\infty}$ and residual norm $\|\mathbf{r}\|_{\infty}=\|\mathbf{b}-A \tilde{\mathbf{x}}\|_{\infty}$.
(d) In part (c), which case has the smallest error norm? Which case has the smallest residual norm? Does a smaller error norm imply a smaller residual norm? Does a smaller residual norm imply a smaller error norm?
(e) Find $\|A\|_{\infty},\left\|A^{-1}\right\|_{\infty}$, and $\kappa_{\infty}(A)$.
(f) For the vectors $\tilde{\mathbf{x}}_{1}, \tilde{\mathbf{x}}_{2}, \tilde{\mathbf{x}}_{3}$, show that the following relation is satisfied.

$$
\frac{\|\mathbf{e}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \leq \kappa_{\infty}(A) \frac{\|\mathbf{r}\|_{\infty}}{\|\mathbf{b}\|_{\infty}} .
$$

(g) Derive the above relation $\frac{\|\mathbf{e}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \leq \kappa_{\infty}(A) \frac{\|\mathbf{r}\|_{\infty}}{\|\mathbf{b}\|_{\infty}}$.
4) Solve the system below in three ways.

$$
\left\{\begin{array}{l}
3.41 x_{1}+1.23 x_{2}-1.09 x_{3}=4.72 \\
2.71 x_{1}+2.14 x_{2}+1.29 x_{3}=3.10 \\
1.89 x_{1}-1.91 x_{2}-1.89 x_{3}=2.91
\end{array}\right.
$$

(a) Gaussian elimination with no pivoting, 3 decimal digit arithmetic with rounding (not chopping).
(b) Gaussian elimination with partial pivoting, 3 decimal digit arithmetic with rounding (not chopping).
(c) Matlab backslash command.
5) Verify that the l_{∞}-norm $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$ satisfies the properties of a vector norm:
(a) $\|\mathbf{x}\| \geq 0$, and $\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\mathbf{0}$.
(b) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|, \quad \alpha \in \mathbb{C}$.
(c) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
6) For matrices A and B, prove $\|A B\| \leq\|A\|\|B\|$ (Hint: Consider $\|A B \mathbf{x}\|$).

