Problem Set 3 (9/20, 23, 25, 27) Due on Fri, Oct 4

1) Consider the system

$$\begin{cases} 2x_1 + 3x_2 - x_3 = 5, \\ 4x_1 + 4x_2 - 3x_3 = 3, \\ -2x_1 + 3x_2 - x_3 = 1. \end{cases}$$

- (a) Write the augmented matrix (A | b) and find x_1, x_2, x_3 by Gaussian elimination (no pivoting). Show intermediate steps.
- (b) Compute the determinant of A in two ways: the usual method and the formula $\det A = a_{11}^{(1)} a_{22}^{(2)} a_{33}^{(3)}$, where $a_{kk}^{(k)}$ is the pivot element in step k of Gaussian elimination.
- 2) Consider $A = \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix}$. (a) Find $\frac{\|A\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$ for the following three vectors. $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. (b) Find a vector \mathbf{x} such that $\frac{\|A\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} = \|A\|_{\infty}$. 3) Let $A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}$. (a) Is A invertible? Explain. (b) Show that \mathbf{x} is the exact solution to $A\mathbf{x} = \mathbf{b}$.
 - (c) Let $\mathbf{\tilde{x}}_1 = \begin{pmatrix} 2.1 \\ -2.1 \end{pmatrix}$, $\mathbf{\tilde{x}}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{\tilde{x}}_3 = \begin{pmatrix} 0.9911 \\ -0.4870 \end{pmatrix}$. The vectors $\mathbf{\tilde{x}}_1$, $\mathbf{\tilde{x}}_2$, $\mathbf{\tilde{x}}_3$ are approximations to the exact solution \mathbf{x} . For each case, find the error norm $\|\mathbf{e}\|_{\infty} = \|\mathbf{x} \mathbf{\tilde{x}}\|_{\infty}$ and residual norm $\|\mathbf{r}\|_{\infty} = \|\mathbf{b} A\mathbf{\tilde{x}}\|_{\infty}$.
 - (d) In part (c), which case has the smallest error norm? Which case has the smallest residual norm? Does a smaller error norm imply a smaller residual norm? Does a smaller residual norm imply a smaller error norm?
 - (e) Find $||A||_{\infty}$, $||A^{-1}||_{\infty}$, and $\kappa_{\infty}(A)$.
 - (f) For the vectors $\mathbf{\tilde{x}}_1$, $\mathbf{\tilde{x}}_2$, $\mathbf{\tilde{x}}_3$, show that the following relation is satisfied.

$$\frac{\|\mathbf{e}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le \kappa_{\infty}(A) \frac{\|\mathbf{r}\|_{\infty}}{\|\mathbf{b}\|_{\infty}}.$$

(g) Derive the above relation $\frac{\|\mathbf{e}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \leq \kappa_{\infty}(A) \frac{\|\mathbf{r}\|_{\infty}}{\|\mathbf{b}\|_{\infty}}$.

4) Solve the system below in three ways.

$$\begin{cases} 3.41x_1 + 1.23x_2 - 1.09x_3 = 4.72, \\ 2.71x_1 + 2.14x_2 + 1.29x_3 = 3.10, \\ 1.89x_1 - 1.91x_2 - 1.89x_3 = 2.91. \end{cases}$$

- (a) Gaussian elimination with no pivoting, 3 decimal digit arithmetic with rounding (not chopping).
- (b) Gaussian elimination with partial pivoting, 3 decimal digit arithmetic with rounding (not chopping).
- (c) Matlab backslash command.
- 5) Verify that the l_{∞} -norm $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$ satisfies the properties of a vector norm:
 - (a) $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$.
 - (b) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \quad \alpha \in \mathbb{C}.$
 - (c) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$
- 6) For matrices A and B, prove $||AB|| \le ||A|| ||B||$ (*Hint:* Consider $||AB\mathbf{x}||$).