Problem Set 2 (9/11, 13, 16)

Due on Fri, Sep 27

1) Consider $f(x)=x^{2}-5$. Since $f(2)=-1<0$ and $f(3)=4>0$, it follows that $f(x)$ has a root r in the interval $[2,3]$. Compute an approximation to r and fill the following table. Take 10 steps in each case. Do the results agree with the theory discussed in class?
(a) Use bisection method with starting interval $[a, b]=[2,3]$.
(b) Use fixed-point iteration with $g_{1}(x)=5 / x, g_{2}(x)=x-\left(x^{2}-5\right), g_{3}(x)=$ $x-\frac{1}{3}\left(x^{2}-5\right), x_{0}=2.5$.
(c) Use Newton's method with $x_{0}=2.5$.

n	x_{n}	$\left\|r-x_{n}\right\|$
1	$*$	$*$
2	$*$	$*$
\vdots	\vdots	\vdots

2) Let us consider the equation of state of chlorine gas. The ideal gas law is given by

$$
P V=n R T
$$

where P is pressure, V is volume, T is temperature, n is the number of moles, and R is the gas constant $(R=0.08206 \mathrm{~atm} \cdot$ liter $/(\mathrm{mole} \cdot \mathrm{K}))$. We get van der Waals equation by improving the left-hand side as

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

where $a=6.29 \mathrm{~atm} \cdot$ liter $^{2} / \mathrm{mole}^{2}$ (accounts for intermolecular attractive forces), and $b=0.0562$ liter $/$ mole (accounts for size of gas molecules). Let us find V by Newton's method when $n=1$ mole, $P=2 \mathrm{~atm}$, and $T=313 \mathrm{~K}$. We give the starting guess V_{0} by the ideal gas law. We introduce $f(V)$ as

$$
f(V)=\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)-n R T
$$

(a) Find $f^{\prime}(V)$.
(b) Find V_{0}.
(c) Find V_{1}, V_{2}.
(d) We infer that V_{0} has 2 correct digits and V_{1} has 5 correct digits. Compute V_{3}. How many correct digits does V_{2} have? Explain your answer.
3) Consider the following system of nonlinear equations.

$$
\left\{\begin{array}{l}
f(x, y)=(x-1)^{2}+y^{2}-4=0 \tag{1}\\
g(x, y)=x y-1=0
\end{array}\right.
$$

This corresponds to finding the intersection of a circle and a hyperbola. Find an approximate solution using Newton's method for systems. Take two steps starting from $\left(x_{0}, y_{0}\right)=(3,0)$. Present the iterates $\left(x_{i}, y_{i}\right)$ and residual values $f\left(x_{i}, y_{i}\right)$, $g\left(x_{i}, y_{i}\right)$ for $i=0,1,2$. Present also intermediate calculations.
4) Let us solve the system (1) by Matlab. By using the Matlab code below as a template, write your own code and find a solution. The solution must have at least 4 significant digits. For $i=1,2$, do $\left(x_{i}, y_{i}\right), f\left(x_{i}, y_{i}\right), g\left(x_{i}, y_{i}\right)$ agree with the values found in 2)? If so, it seems that the Matlab code is working correctly.

```
%
% Template for Problem 4)
%
function Newton
clear; format long;
x = 3.0; y = 0.0; % initial guess
nmax = 2; % number of iterations (Choose a suitable number)
for n = 1:nmax
    result(n,1) = n-1;
    result(n,2) = x;
    result(n,3) = y;
    result(n,4) = f(x,y);
    result(n,5) = g(x,y);
    answer = [x; y] - jacobian(x,y)\[f(x,y); g(x,y)];
    x = answer(1); y = answer(2);
end
result
%
function ffun = f(x,y)
ffun = % fill in 1st function
%
function gfun = g(x,y)
gfun = % fill in 2nd function
%
function j = jacobian(x,y)
j11 = % fill in 11 element
j12 = % fill in 12 element
j21 = % fill in 21 element
j22 = % fill in 22 element
j = [j11 j12; j21 j22];
```

