Problem Set 1 (9/4, 6, 9) Due on Fri, Sep 13

- 1) (a) Convert $(9.125)_{10}$ to base 2.
 - (b) Convert $(110110.001)_2$ to base 10.
- 2) Consider the floating point representation $x = \pm (0.d_1d_2...d_n)_{\beta} \cdot \beta^e$, where $d_1 \neq 0$, $0 \leq d_i \leq \beta 1, -M \leq e \leq M$. Suppose $\beta = 2, n = 5$, and M = 2.
 - (a) What is the largest number x_{max} ?
 - (b) What is the smallest positive number x_{\min} ?
 - (c) How many different numbers can be represented?
 - (d) Find $fl(\sqrt{2})$, the floating point representation of $\sqrt{2}$ in this system. Then convert the result to decimal form.
- 3) Matlab gives pi = 3.141592653589793 and 355/113 = 3.141592920353983. All the digits shown are correct. (Use the command formatlong to see all the digits). Matlab also gives pi (355/113) = -2.667641894049666e-07; do you trust all the digits in this result? Explain your answer.
- 4) Consider the equation $x^2 + 25x + 0.1 = 0$. In general, for $ax^2 + bx + c = 0$, x is obtained by using the quadratic formula, $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
 - (a) Solve for the roots using the quadratic formula. Find x using Matlab.
 - (b) Suppose you have a 4-digit computer with the base 10 (i.e., each arithmetic step is rounded to 4 digits). Find x by the quadratic formula.
 - (c) Show that $\frac{-b \pm \sqrt{b^2 4ac}}{2a} = \frac{2c}{-b \mp \sqrt{b^2 4ac}}$. (d) Find x with 4-digit arithmetic by using the new formula. Do the results change?
 - (d) Find x with 4-digit arithmetic by using the new formula. Do the results change? Explain.
- 5) Let $f(x) = \sqrt{1 + x^2} 1$. Matlab gives f(0.1) = 0.004987562112089.
 - (a) Evaluate f(x) for x = 0.1 using 4-digit arithmetic. Show all intermediate steps.
 - (b) Show that $f(x) = x^2/(\sqrt{1+x^2}+1)$.
 - (c) Evaluate $x^2/(\sqrt{1+x^2}+1)$ for x = 0.1 using 4-digit arithmetic. Show all intermediate steps. Is the result improved?
- 6) The forward difference approximation for f'(x) is $D_+f(x) = \frac{f(x+h) f(x)}{h}$. Similarly the centered difference approximation for f'(x) is $D_0f(x) = \frac{f(x+h) - f(x-h)}{2h}$. We consider $f(\pi/4)$, where $f(x) = \sin x$. Note that $f'(\pi/4) = \cos(\pi/4) = 0.70710678$.
 - (a) Present a table in the format below; take h = 0.1, 0.05, 0.025, 0.0125; the first line for h = 0.1 is given and you must fill in the entries for the remaining values of h.

h	$D_+f(x)$	$ f'(x) - D_+f(x) $	$\frac{ f'(x) - D_+ f(x) }{h}$	$\frac{ f'(x) - D_+ f(x) }{h^2}$	$\frac{ f'(x) - D_+ f(x) }{h^3}$
0.1	0.67060297	0.03650381	0.3650381	3.650381	36.50381
÷		÷	÷	:	

- (b) Present a table for $D_0 f(x)$ in the same format as part (a). Which approximation is more accurate, $D_+ f(x)$ or $D_0 f(x)$?
- (c) Using Taylor series, show that $D_0 f(x) = f'(x) + ch^2 + \cdots$ for some constant c which is independent of h. Recall that $D_+ f(x)$ is first order accurate (i.e., the truncation error is O(h)). What is the order of accuracy of $D_0 f(x)$?
- (d) Modify the Matlab code given in class to plot the error in D₊f(x) and D₀f(x) for step size h = 1/2^(j-1) with j = 1 : 65. Use log scales for the error |f'(x) − Df(x)| and the step size h. Plot both cases on the same graph (to do this in Matlab, type hold on after the first loglog command).

7) The backward finite-difference operator is defined by $D_{-}f(x) = \frac{f(x) - f(x-h)}{h}$.

- (a) Show that $D_+D_-f(x) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2}$.
- (b) Using Taylor series, show that $D_+D_-f'(x) = f''(x) + ch^2 + \cdots$, and find the constant c.