MATH 471 SECTION 002
 FINAL

December 19, 2013, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- A US letter size paper $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ with notes on both sides is OK.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem	Points	Score
1	10	
2	15	
3	10	
4	5	
5	15	
6	10	
7	5	
8	10	
TOTAL	80	

Problem 1. (10 points) Consider $f(x)=\cos x$ with the three points $x_{0}=-\frac{\pi}{2}, x_{1}=0$, $x_{2}=\frac{\pi}{2}$. Find Newton's form for the interpolating polynomial $p_{2}(x)$.

Solution We obtain

$$
\begin{aligned}
& f\left[x_{0}\right]=f\left(x_{0}\right)=0, \quad f\left[x_{1}\right]=f\left(x_{1}\right)=1, \quad f\left[x_{2}\right]=f\left(x_{2}\right)=0, \\
& f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=\frac{2}{\pi}, \quad f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}=-\frac{2}{\pi}, \\
& f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=-\frac{4}{\pi^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
p_{2}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =\frac{2}{\pi}\left(x+\frac{\pi}{2}\right)-\frac{4}{\pi^{2}}\left(x+\frac{\pi}{2}\right) x \\
& =1-\frac{4}{\pi^{2}} x^{2} .
\end{aligned}
$$

Problem 2. (15 points)
(a) Find the diagonal matrix D below.

$$
A S=S D, \quad A=\left(\begin{array}{rrr}
5 & 1 & -2 \\
1 & 6 & -1 \\
-2 & -1 & 5
\end{array}\right), \quad S=\left(\begin{array}{rrr}
-\sqrt{2} & -1 & \sqrt{3} \\
-\sqrt{2} & 2 & 0 \\
\sqrt{2} & 1 & \sqrt{3}
\end{array}\right) .
$$

(b) The table below shows numerical results of finding the dominant eigenvalue λ_{1} of A by power method with initial vector $\mathbf{x}_{0}^{T}=(1.2,-6,12)$. What is the asymptotic rate a ?

k	$\lambda^{(k)}$	$\left\|\lambda^{(k)}-\lambda_{1}\right\|$	$\left\|\lambda^{(k)}-\lambda_{1}\right\| /\left\|\lambda^{(k-1)}-\lambda_{1}\right\|$
0	$1.015200 \mathrm{e}+03$	$1.007200 \mathrm{e}+03$	-
1	$7.421776 \mathrm{e}+00$	$5.782241 \mathrm{e}-01$	$5.740906 \mathrm{e}-04$
2	$7.908973 \mathrm{e}+00$	$9.102748 \mathrm{e}-02$	$1.574259 \mathrm{e}-01$
3	$7.986704 \mathrm{e}+00$	$1.329581 \mathrm{e}-02$	$1.460637 \mathrm{e}-01$
		\downarrow	
		a	

Solution (a) We can write

$$
A S=S\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \Leftrightarrow\left(\begin{array}{ccc}
-8 \sqrt{2} & * & * \\
* & 10 & * \\
* & * & 3 \sqrt{3}
\end{array}\right)=\left(\begin{array}{ccc}
-\sqrt{2} \lambda_{1} & * & * \\
* & 2 \lambda_{2} & * \\
* & * & \sqrt{3} \lambda_{3}
\end{array}\right)
$$

By comparing both sides, we find

$$
D=\left(\begin{array}{lll}
8 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(b) $\lambda_{1}=8>\lambda_{2}=5>\lambda_{3}=3 \quad \Rightarrow \quad a=(5 / 8)^{2}(=0.390625)$.
(continued)

Problem 3. (10 points) Consider $x^{\prime}(t)=f(x), x(0)=1$. Let us calculate numerical solution $w_{i} \approx x\left(t_{i}\right)$, where $t_{i}=i \Delta t(i=0,1, \ldots)$.
(a) For $f(x)=x, \Delta t=0.1$, compute w_{1} by Euler's method.
(b) Let us improve Euler's method as follows. What are RHS1 and RHS2? Use $\Delta t, t_{i}, x^{\prime}$ for RHS1, and use $\Delta t, t_{i}, x, f$ for RHS2.

By the midpoint integration we have

$$
x\left(t_{i+1}\right)-x\left(t_{i}\right)=\int_{t_{i}}^{t_{i+1}} x^{\prime} d t \approx \text { RHS1 } .
$$

By Euler's method with step $\Delta t / 2$ we have

$$
x\left(t_{i}+\frac{\Delta t}{2}\right) \approx \text { RHS2. }
$$

(c) For $f(x)=x, \Delta t=0.1$, compute w_{1} by this improved Euler's method.

Solution (a) $w_{1}=w_{0}+\Delta t f\left(w_{0}\right)=1+0.1 \cdot 1=1.1$.
(b)

$$
\begin{aligned}
& \text { RHS1 }=\left(t_{i+1}-t_{i}\right) x^{\prime}\left(\frac{t_{i}+t_{i+1}}{2}\right)=\Delta t x^{\prime}\left(t_{i}+\frac{\Delta t}{2}\right) . \\
& \text { RHS2 }=x\left(t_{i}\right)+\frac{\Delta t}{2} f\left(x\left(t_{i}\right)\right) .
\end{aligned}
$$

(c) The improved version is obtained as

$$
w_{i+1}=w_{i}+k, \quad k=\Delta t f\left(w_{i}+\frac{\Delta t}{2} f\left(w_{i}\right)\right) .
$$

Hence, $k=0.1 \cdot(1+0.05 \cdot 1)=0.105, w_{1}=w_{0}+k=1+0.105=1.105$.
(continued)

Problem 4. (5 points) The positive root of $f(x)=x^{2}-3$ is $\sqrt{3}=1.73205 \ldots$.. Let us calculate the root by the bisection method, fixed-point iteration, and Newton's method. The results are presented below. What are Methods A, B, and C?

n	Method A	Method B	Method C
0	1.5	1.5	1.5
1	2	1.75	1.75
2	1.5	1.732	1.625
3	2	1.73205	1.6875

Solution Method $\mathrm{A}=$ fixed-iteration $(x=3 / x)$, Method $\mathrm{B}=$ Newton's method, and Method C $=$ bisection.

Problem 5. (15 points) In the code below, elements of an upper triangular matrix A are stored in the array $a(:,:)$, and components of a vector b are stored in the array $b(:)$.

```
x(n)=b(n)/a(n,n)
for i=n-1:-1:1
    tmp=b(i)
    for j=i+1:n
        tmp=tmp-a(i,j)*x(j)
    end
    x(i)=tmp/a (1,1)
end
```

(a) What is the purpose of the code?
(b) Find and correct any bugs.
(c) Obtain the operation count for this algorithm.

Solution (a) The code obtains \mathbf{x} in $A \mathbf{x}=\mathbf{b}$ by back substitution. (b) $\mathbf{x}(i)=t m p / a(1,1)$ should be $\mathrm{x}(\mathrm{i})=\operatorname{tmp} / \mathrm{a}(\mathrm{i}, \mathrm{i})$. (c) The number of divisions is n. The numbers of multiplications and additions are $1+2+\cdots+(n-1)=\frac{1}{2} n(n-1)$, respectively. Therefore, the operation count is $n+2 \cdot \frac{1}{2} n(n-1)=n^{2}$.
(continued)

Problem 6. (10 points) Consider the floating point representation $x= \pm\left(0 . d_{1} d_{2} \cdots d_{n}\right)_{\beta} \cdot \beta^{e}$, $-M \leq e \leq M$. Suppose $\beta=n=M=4$.
(a) How many different numbers can be represented?
(b) Find $\mathrm{f}(33.75)$, the floating point representation of 33.75 in this system.

Solution (a) $2 \cdot 3 \cdot 4^{3} \cdot 9+1=3457$. (b) $33.75=2 \cdot 4^{2}+1 \cdot 4^{0}+3 \cdot 4^{-1}=(201.3)_{4}=(0.2013)_{4} \cdot 4^{3}$.

Problem 7. (5 points) For a given function $f(x)$ on $[-1,1]$, the cubic spline for uniform points $x_{i}=-1+i h, h=2 / n(i=0,1, \ldots, n)$ is obtained as follows. What is RHS below? Step 1: We write $s_{i}^{\prime \prime}(x)$ as follows using a_{i}, a_{i+1}.

$$
s_{i}^{\prime \prime}(x)=\text { RHS }, \quad i=0,1, \ldots, n-1
$$

Then $s_{i}^{\prime \prime}\left(x_{i}\right)=a_{i}, s_{i}^{\prime \prime}\left(x_{i+1}\right)=a_{i+1}$, and $s_{i-1}^{\prime \prime}\left(x_{i}\right)=a_{i}=s_{i}^{\prime \prime}\left(x_{i}\right)$.
Step 2: We integrate $s_{i}^{\prime \prime}(x)$ twice. Note that $s_{i}\left(x_{i}\right)=f_{i}$.
Step 3: We differentiate $s_{i}(x)$. Note that $s_{i-1}^{\prime}\left(x_{i}\right)=s_{i}^{\prime}\left(x_{i}\right)(i=1, \ldots, n-1)$.
Step 4: Set $s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0$. We obtain a_{i} by solving a matrix-vector equation.

Solution

$$
\text { RHS }=a_{i}\left(\frac{x_{i+1}-x}{h}\right)+a_{i+1}\left(\frac{x-x_{i}}{h}\right) .
$$

Problem 8. (10 points) Consider $\int_{0}^{1} x^{2} d x$. We take $x_{i}=i h, h=1 / n, i=0,1, \ldots, n$.
(a) Find the trapezoid rule $T(h)$ for $h=1,0.5$.
(b) Find a better approximation by Richardson extrapolation.

Solution (a)

$$
\begin{aligned}
& T(1)=\left(\frac{1}{2} 0^{2}+\frac{1}{2} 1^{2}\right) \cdot 1=\frac{1}{2}=0.5 \\
& T(0.5)=\left(\frac{1}{2} 0^{2}+0.5^{2}+\frac{1}{2} 1^{2}\right) \cdot 0.5=\frac{3}{8}=0.375
\end{aligned}
$$

(b)

$$
R_{1}(0.5)=\frac{1}{3}(4 T(0.5)-T(2 \cdot 0.5))=\frac{1}{3}\left(4 \cdot \frac{3}{8}-\frac{1}{2}\right)=\frac{1}{3} .
$$

