Let us solve the following 2D boundary value problem with the Jacobi method.

$$\begin{aligned} \phi_{xx} + \phi_{yy} &= 0, & (x, y) \in (0, 1) \times (0, 1), \\ \phi(x, 1) &= 1, & \\ \phi(x, 0) &= \phi(0, y) = \phi(1, y) = 0. & \end{aligned}$$

In the calculation the zero vector was chosen for the initial guess. The main part of the code is written as follows. As the stopping criterion, tol=10e-4 was used.

```
1
    while ratio > tol
 2
      k=k+1:
 3
      for i = 2: n+1
 4
      for j = 2: n+1
 5
        res(i,j)=(4*w(i,j)-w(i+1,j)-w(i-1,j)-w(i,j+1)-w(i,j-1))/(h^2);
 6
      end
 7
      end
 8
      rn(k) = norm(res);
 9
      ratio=rn(k)/rn(1);
10
      for i = 2: n+1
      for j = 2: n+1
11
12
        w_{old}(i, j) = (w(i+1, j)+w(i-1, j)+w(i, j+1)+w(i, j-1))/4;
13
14
      end
15
      w=w_old;
16 end
```

The number of iterations k required for different methods is summarized as follows.

Jacobi	h 1/4 1/8 1/16	9	k 6 6 84	0	.9239 .9808
Gauss-Seidel	h 1/4 1/8 1/16		15 51 172		ρ(B _{GS}) 0.5000 0.8536 0.9619
optimal SOR	h 1/4 1/8 1/16		9 18 34	3	$\rho(B_{\omega_*})$ 0.1716 0.4465 0.6735

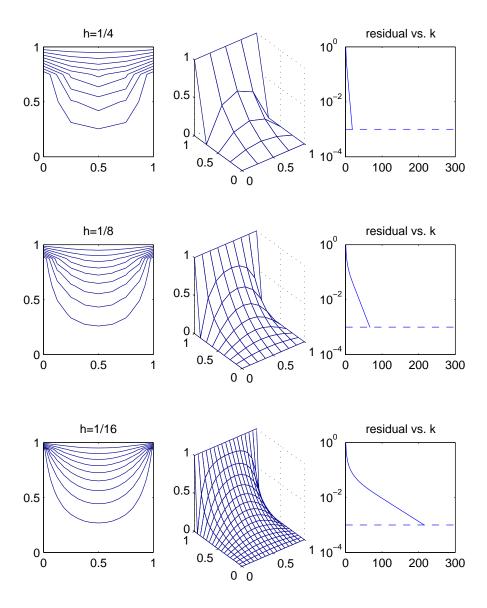


Fig. 2.1 Numerical solutions to $\phi_{xx} + \phi_{yy} = 0$, $\phi(x,1) = 1$, $\phi(x,0) = \phi(0,y) = \phi(1,y) = 0$. The Jacobi method is used.