The bisection method

Let us find a root of $f(x)=x^{2}-3$. We note that $f(1)=-2$ and $f(2)=1$. Indeed, there is a root $r=\sqrt{3}=1.73205 \ldots$ on the interval [1,2].

n	a_{n}	b_{n}	x_{n}	$f\left(x_{n}\right)$	$\left\|r-x_{n}\right\|$
0	1	2	1.5	-0.75	0.2321
1	1.5	2	1.75	0.0625	0.0179
2	1.5	1.75	1.625	-0.3594	0.1071
3	1.625	1.75	1.6875	-0.1523	0.0446
4	1.6875	1.75	1.71875	-0.0459	0.0133

Fixed-point iteration

To obtain the positive root of $f(x)=x^{2}-3=0$, we can rewrite the equation as

$$
x=g_{1}(x)=\frac{3}{x}, \quad x=g_{2}(x)=x-\left(x^{2}-3\right), \quad x=g_{3}(x)=x-\frac{1}{2}\left(x^{2}-3\right)
$$

Recall $r=\sqrt{3}=1.73205 \ldots$ Let us start the fixed-point iteration with $x_{0}=1.5$.

	Case 1	Case 2	Case 3
n	x_{n}	x_{n}	x_{n}
0	1.5	1.5	1.5
1	2	2.25	1.875
2	1.5	0.1875	1.6172
3	2	3.1523	1.8095
4	1.5	-3.7849	1.6723
5	2	-15.1106	1.7740

We see that Case 3 converges whereas Case 1 and Case 2 diverge.

