MATH 454 SECTION 002
 Quiz 11

April 18, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Solve $t u_{t}+x u_{x}+2 u=0,-\infty<x<\infty, 1<t$ with the initial condition $u(x, 1)=\sin x$, $-\infty<x<\infty$. (Hint: $s=0$ corresponds to the initial condition.)

Solution [10] Let us introduce s and τ [2]. We have [1]

$$
\begin{cases}\frac{d t}{d s}=t, & s>0 \\ t=1, & s=0\end{cases}
$$

and [1]

$$
\begin{cases}\frac{d x}{d s}=x, & s>0 \\ x=\tau, & s=0\end{cases}
$$

By solving the equations we obtain [2]

$$
t=e^{s}, \quad x=\tau e^{s} .
$$

We note that

$$
\frac{d u}{d s}=\frac{\partial u}{\partial t} \frac{d t}{d s}+\frac{\partial u}{\partial x} \frac{d x}{d s}=t u_{t}+x u_{x}=-2 u
$$

Therefore we have

$$
\begin{cases}\frac{d u}{d s}+2 u=0, & s>0 \\ u=\sin \tau, & s=0\end{cases}
$$

We obtain [2]

$$
u=e^{-2 s} \sin \tau
$$

Since

$$
s=\ln t, \quad \tau=\frac{x}{t}
$$

finally we obtain [2]

$$
u(x, t)=\frac{1}{t^{2}} \sin \left(\frac{x}{t}\right) .
$$

