MATH 454 SECTION 002 Quiz 9

April 4, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Let $f(s)=0$ for $-1<s<0$ and $f(s)=1$ for $0<s<1$. Find the expansion of $f(s)$ in a series of Legendre polynomials. [Hint: The Legendre polynomial $P_{k}(s)$ satisfies the Legendre equation, $\frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d}{d s} P_{k}(s)\right]+k(k+1) P_{k}(s)=0$. These Legendre polynomials satisfy the orthogonality relations, $\int_{-1}^{1} P_{k}(s) P_{j}(s) d s=\frac{2}{2 k+1} \delta_{k j}$.]

Solution [6] We write [1]

$$
f(s)=\sum_{k=0}^{\infty} A_{k} P_{k}(s), \quad-1<s<1
$$

where A_{k} are constants to be determined. We multiply $P_{j}(s)$ and integrate over s [1]:

$$
\int_{-1}^{1} f(s) P_{j}(s) d s=\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{k}(s) P_{j}(s) d s
$$

The left-hand side is obtained as follows. For $j=0$, we have [1]

$$
\mathrm{LHS}=\int_{0}^{1} P_{0}(s) d s=\int_{0}^{1} d s=1
$$

For $j \geq 1$, we have [1]

$$
\begin{aligned}
\operatorname{LHS} & =\int_{0}^{1} P_{j}(s) d s=\int_{0}^{1} \frac{-1}{j(j+1)} \frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d}{d s} P_{j}(s)\right] d s \\
& =\left.\frac{-1}{j(j+1)}\left(1-s^{2}\right) \frac{d}{d s} P_{j}(s)\right|_{0} ^{1}=\left.\frac{1}{j(j+1)} \frac{d P_{j}(s)}{d s}\right|_{s=0} .
\end{aligned}
$$

The right-hand side is obtained as [1]

$$
\text { RHS }=\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{k}(s) P_{j}(s) d s=\sum_{k=0}^{\infty} A_{k} \frac{2}{2 k+1} \delta_{k j}=\frac{2 A_{j}}{2 j+1} .
$$

Therefore we obtain

$$
A_{0}=\frac{1}{2}, \quad A_{j}=\frac{2 j+1}{2 j(j+1)} P_{j}^{\prime}(0) \quad(j \geq 1)
$$

That is, [1]

$$
f(s)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{2 k+1}{2 k(k+1)} P_{k}^{\prime}(0) P_{k}(s), \quad-1<s<1 .
$$

