MATH 454 SECTION 002 Quiz 8

April 2, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the solution of the heat equation $u_{t}=K \nabla^{2} u$ in the infinite cylinder $0 \leq \rho<\rho_{\max }$ satisfying the boundary condition $u\left(\rho_{\max }, \varphi, t\right)=0$ and the initial condition $u(\rho, \varphi, 0)=$ $\rho_{\max }^{2}-\rho^{2}$. [Hint: The Laplacian in polar coordinates is given by $\Delta=\partial_{\rho \rho}+(1 / \rho) \partial_{\rho}+\left(1 / \rho^{2}\right) \partial_{\varphi \varphi}$. You can use the facts that $\Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \Phi(-\pi)=\Phi(\pi), \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi)$ is solved as $\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \mu=m^{2}, m=0,1,2, \cdots$. We note that $a_{m n}, b_{m n}$ satisfy $1-x^{2}=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(x x_{n}^{(m)}\right)\left(a_{m n} \cos m \varphi+b_{m n} \sin m \varphi\right), 0 \leq x<1$, when $a_{0 n}=8 /\left[x_{n}^{(0) 3} J_{1}\left(x_{n}^{(0)}\right)\right]\left(J_{0}\left(x_{n}^{(0)}\right)=0\right), a_{m n}=b_{m n}=0(m \geq 1)$. $]$

Solution [8] We will solve

$$
\begin{cases}u_{t}=K\left(u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}\right), & 0 \leq \rho<\rho_{\max }, \quad t>0 \\ u(\rho, \varphi, t)=0, & \rho=\rho_{\max }, \quad t>0 \\ u(\rho, \varphi, 0)=\rho_{\max }^{2}-\rho^{2}, & 0 \leq \rho<\rho_{\max }\end{cases}
$$

We look for separated solutions of the form [2] $u(\rho, \varphi, t)=R(\rho) \Phi(\varphi) T(t)$ (the form $u=R T$ is also fine because we can assume that u is independent of φ from the initial and boundary conditions). By introducing separation constants as $-\lambda=T^{\prime} /(K T)$ and $-\mu=\Phi^{\prime \prime} / \Phi$, we obtain

$$
\begin{aligned}
& \Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi) \\
& R^{\prime \prime}(\rho)+\frac{1}{\rho} R^{\prime}(\rho)+\left(\lambda-\frac{\mu}{\rho^{2}}\right) R(\rho)=0, \quad R\left(\rho_{\max }\right)=0 \\
& T^{\prime}(t)+\lambda K T(t)=0 .
\end{aligned}
$$

The equation for Φ is solved as $\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \mu=m^{2}, m=0,1,2, \cdots$. We obtain $T(t)=e^{-\lambda K t}$. From the second equation we obtain $[2] R(\rho)=J_{m}(\rho \sqrt{\lambda})$. Since $R\left(\rho_{\max }\right)=0$, we obtain $[2] \sqrt{\lambda}=x_{n}^{(m)} / \rho_{\max }$ where $J_{m}\left(x_{n}^{(m)}\right)=0, x_{n}^{(m)}>0$. Hence the general solution is obtained as

$$
u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\rho x_{n}^{(m)}}{\rho_{\max }}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right) e^{-\left(x_{n}^{(m)} / \rho_{\max }\right)^{2} K t}
$$

To satisfy the condition, $A_{m n}, B_{m n}$ must satisfy

$$
1-x^{2}=\frac{1}{\rho_{\max }^{2}} \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(x x_{n}^{(m)}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right)
$$

where $x=\frac{\rho}{\rho_{\max }}$. Since $A_{0 n}=8 \rho_{\max }^{2} /\left[x_{n}^{(0) 3} J_{1}\left(x_{n}^{(0)}\right)\right], A_{m n}=B_{m n}=0(m \geq 1)$, we obtain [2]

$$
u(\rho, \varphi, t)=8 \rho_{\max }^{2} \sum_{n=1}^{\infty} \frac{1}{x_{n}^{(0) 3} J_{1}\left(x_{n}^{(0)}\right)} J_{0}\left(\frac{\rho x_{n}^{(0)}}{\rho_{\max }}\right) e^{-\left(x_{n}^{(0)} / \rho_{\max }\right)^{2} K t}
$$

