
Quiz 8 – Supplement

Let us consider
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∞
∑
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We can find amn, bmn as follow. First of all, we look at the right-hand side as the Fourier

series of 1− x2. We find
∞
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J0(xx
(0)
n
)a0n = 1− x2,

and all other amn, bmn are zero. For simplicity, hereafter, we write xn = x
(0)
n . To find a0n, we

multiply another Bessel function and integrate over x:
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We obtain
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Alternatively, using (t2J2(t))
′ = t2J1(t),
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is also fine (cf. the recurrence relation J1(x) =
x

2
[J0(x) + J2(x)]). On the other hand,
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Therefore we obtain,

a0n =
8

x3
n
J1(xn)

, J0(xn) = 0, xn > 0.


